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In this assignment we’ll ask you to implement a probability monad
and an instrumented state monad.

1 A Game of Chance

Here’s a game I like to play: I toss a coin six times and count the number
of heads I see, then I roll a dice; if the number of eyes on the dice is greater
than or equal to the number of heads I counted then I win, else I lose. As I’m
somewhat of a sore loser, I’d like to know my chances of winning beforehand,
though.

There are three ways to compute this probability:

1. Use a pen, paper (or, if you prefer, chalk and a blackboard) and some
basic discrete probability theory to calculate the probability directly.

2. Draw or compute the complete decision tree of the game and count the
number of wins and losses.

3. Write a computer program that simulates the game to approximate the
probability.

As we’re computer scientists, we’ll leave the first option to the mathematicians
and focus on the second and third possibilities. In fact, using monads, we’ll
see how both can be done at the same time.

1.1 The Gambling Monad

Modeling a coin and a dice in Haskell shouldn’t pose much difficulty for you
anymore:

data Coin = H | T
data Dice = D1 | D2 | D3 | D4 | D5 | D6
data Outcome = Win | Lose

The tossing of a Coin and rolling of a Dice is given by the monadic interface
MonadGamble:
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class Monad m ⇒ MonadGamble m where
toss :: m Coin
roll :: m Dice

Exercise 1. Write a function game :: MonadGamble m ⇒ m Outcome that imple-
ments the game above. Read the description of the game very carefully: it is easy to
make an off-by-one error; furthermore, as tossing and rolling are side-effects the order
in which you perform them matters.

1.2 Simulation

Simulating probabilistic events requires a (pseudo)random number genera-
tor. Haskell has one available in the System.Random library. Random number
generators need to have access to a piece of state called the seed, as such the
random number generator runs in a monad, the IO monad to be exact.

Exercise 2. Give Random instances for Coin and Dice.

Exercise 3. Give a MonadGamble instance for the IO monad.

Exercise 4. Write a function simulate :: IO Outcome → Integer → IO Rational
that runs a game of chance (given as the first parameter, not necessarily the game
implemented in Exercise 1) n times (n > 0, the second parameter) and returns the
fraction of games won.

You can now approximate to probability of winning using simulate game 10000.
Would you care to take a guess what the exact probability of winning is?

1.3 Decision trees

One drawback of simulation is that the answer is only approximate. We can
obtain an exact answer using decision trees. Decision trees of probabilistic
games can be modeled as:

data DecisionTree α = Result α | Decision [DecisionTree α ]

In the leaves we store the result and in each branch we can take one of several
possibilities. As we don’t store the probabilities of each decision, we’ll have
to assume they are uniformly distributed (i.e., each possibility has an equally
great possibility of being taken). Fortunately for us, both fair coins and fair
dice produce a uniform distribution.

Exercise 5. Give a Monad instance for DecisionTree. (Hint: Use the types of (>>=)
and return for guidance: it’s the most straightforward, type-correct definition that
isn’t an infinite loop. This is an example of a so-called free monad.)

Exercise 6. Give a MonadGamble instance for DecisionTree.

Exercise 7. Write a function probabilityOfWinning :: DecisionTree Outcome →
Rational that, given a decision tree, computes the probability of winning.
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You can find the exact probability of winning using probabilityOfWinning game.
Was your earlier guess correct? If you know a bit of probability theory, you
can double check the correctness by doing the pen-and-paper calculation sug-
gested above.

Note that we used the same implementation of game to obtain both an
approximate and an exact answer.

2 Instrumented State Monad

In this course, we have encountered the idea of a state monad, which lets us
emulate an imperative style of programming with mutable variables in a func-
tional language. We’ll now take a moment to study some of the operations
that constitute a state monad.

A state monad is monad with additional monadic operations get and put,
and some optional compound operations such as the operation modify we in-
clude below (which is slightly different from the operation modify in Control.Monad.State):

class Monad m ⇒ MonadState m s | m → s where
get :: m s
put :: s → m ()
modify :: (s → s) → m s

(The “| m → s” part of this class is called a functional dependency. You can
ignore this. If you want to know exactly what it does, then you should follow
the Advanced Functional Programming course during your Master’s. The short
answer is that it helps the compiler figure out which particular state monad
instance it needs to use for a given type.)

Apart from the usual three monad laws, state monads should also satisfy:

put s1 >> put s2 ≡ put s2
put s >> get ≡ put s >> return s
get >>= put ≡ return ()
get >>= (λs → get >>= k s) ≡ get >>= (λs → k s s)

Check to see if you understand what these four laws say and if they make
sense.

Exercise 8. Give default implementations of get and put in terms of modify, and a
default implementation of modify in terms of get and put. Your implementation of
modify should not use return.

2.1 Instrumentation

We are now going to define our own, slightly modified state monad that,
besides keeping track of a piece of state, has also been instrumented to count
the number of (>>=), return, get and put operations that have been performed
during a monadic computation.

The counts are given by the type:

data Counts = Counts {
binds :: Int,
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returns :: Int,
gets :: Int,
puts :: Int

}

Exercise 9. As a convenience, give a Monoid instance for Count that sums the
counts pairwise. Define constants oneBind, oneReturn, oneGet, onePut :: Counts that
represent a count of one (>>=), return, get and put operation, respectively.

Our state monad is now given by:

newtype State′ s α = State′ {runState′ :: (s, Counts) → (α, s, Counts)}

Note that our State′ is like the usual State monad, but that it has been param-
eterized over the type of state s. Additionally, we keep track of the Counts as
an internal piece of state that is not exposed through the get and put interface.

Exercise 10. Give Monad and MonadState instances for State′ that count the number
of (>>=), return, get and put operations.

2.2 Tree labeling

Here is another tree data type:

data Tree α = Branch (Tree α) α (Tree α) | Leaf

This is a binary tree that stores values on the internal nodes only.

Exercise 11. Write a function label :: MonadState m Int ⇒ Tree α → m (Tree (Int, α))
that labels a tree with integers increasingly, using a depth-first in-order traversal. In
your implementation, make use of the operation modify rather than using get and put.

Exercise 12. Write a function run :: State′ s α → s → (α, Counts) that runs a state
monadic computation in the instrumented state monad, given some initial state of
type s, and returns the computed value and the number of operations counted.

For example, the expression

let tree = Branch (Branch Leaf "B" Leaf ) "A" Leaf
in run (label tree) 42

should evaluate to

(Branch (Branch Leaf (42, "B") Leaf ) (43, "A") Leaf
, Counts {binds = 10, returns = 5, gets = 4, puts = 2})

3 Further reading

If you want to know more about the probability monad then have look at
“Probabilistic Functional Programming in Haskell”, Martin Erwig and Steve
Kollmansberger, Journal of Functional Programming, Vol. 16, No. 1, pp. 21–34,
2006.
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