
Functional Programming
Final Project

In this final project you need to develop your own game in Haskell, using the Gloss library
for graphics. This is a larger and more “realistic” assignment than the previous ones, but
you have a lot of freedom on what and how to implement it.

1 Introduction

In short, the goal of this final project of Functional Programming is to develop a small game with a bit
of “action” and a bit of “intelligence” completely in Haskell. The focus is, of course, not in how great
the graphics look or whether there is a charming story behind the game. Rather, the grade depends
on the general architecture of the project, and in the use of good functional coding practices.

As stated above, one of the key points of this project is to architect your solution using good
programming practices. Because coming up with a good design is a difficult task, we ask you to hand
in a design document, stating what game you plan to implement and a rough idea of how, first. Please
use the suggestions in the feedback on the design document as input to write nicer code in your final
project.

2 Game Choice

For this project, you have to choose between one of the following four games:

1. Asteroids: the player controls a spaceship which can move around the screen. The spaceship
has to avoid the asteroids that pop up in the screen, and can destroy them by shooting at them.
After some time, different kinds of enemies try to catch them – like the asteroids, but with a bit
of intelligence. In http://www.freeasteroids.org/ you can find a very simplistic version.

2. Shoot’em Up: here the player also controls a spaceship, but this time it may only move vertically
and shoot – this is what we call a side-scrolling videogame. Enemies keep comming, and the
player has to avoid colliding with them or getting shot. R-Type is one game of this style, https:
//www.mobygames.com/game/r-type/screenshots offers screenshots.

3. Pac-Man: the player controls Pac-Man and has to eat all the circles in the maze. Meanwhile, four
ghosts try to catch him. Note that each of the ghosts follow a different strategy to catch Pac-Man.

4. Mario: the archetypal platform game. The player controls Mario, which tries to get at the end of
each level without falling in the holes or been hit by the enemies. Mario can kill those enemies by
jumping over them. Usually each level ends up with a “final boss”, but you can also implement
an infinite world in which enemies just keep appearing.

While these four games have roughly the same difficulty. We tried listing them in order of increas-
ing (expected) difficulty.

3 Requirements

There are some minimal requirements that you game must implement in order to get a passing grade.
On top of that, the design and coding style is an important part of the final grade. A good game with a

1

http://www.freeasteroids.org/
https://www.mobygames.com/game/r-type/screenshots
https://www.mobygames.com/game/r-type/screenshots

good style would receive a grade of 8. In order to receive a higher grade, you may implement optional
requirements. But note that grades are not linear: in order to improve your grade further, you will have
to do increasingly more work.

3.1 Minimal requirements

Player. The player controls (at least) one character, using the keyboard.

Enemies. The game has antagonistic characters in some sense, which try to make you lose the game.
You should implement a minimal “intelligence” for those enemies.

Randomness. The game has to include random components: the place where new enemies appear,
the place where bonus are located, and things like that.

Animation. Some events should trigger animations which span several frames. For example, dis-
troying an enemy may create an explosion effect.

Pause. It should be possible for the player to pause the game by pressing a key of your choice.

Interaction with the file system. The program must read and write data in one or more files. You
are free to decided what those files contain, a typical example would be a list of high scores.

3.2 Optional requirements

Here are some suggestions for additional features and design variations. Each of these requirements,
in turn, may be developed in different degrees; the grade will reflect this accordingly. Note that not
all optional requirements are applicable to all four game types. Implementing a requirement at its
fullest is worth 1 point. Note that this list of optional requirements is not ordered by any property, in
particular not by how difficult it is to implement each feature.

Levels. The game does not have a single screen, but different ones with different characteristics. The
player should be able to choose the level from a list.

Different enemies. Add multiple types of enemies, each of them with different appearance and
substantially different behavior (e.g. just subtracting five rather than four hitpoints on a collision with
an enemy is not sufficiently different). Make the game more interesting by making “harder” enemies
appear later.

Custom levels. Develop a file format which players can use to create new levels for the game. Provide
the ability to load one of those files, in addition to the default ones, either via a menu in the game or
via the command line.

Mouse input. Allow the user to interact with the game using the mouse in addition to the keyboard.
In contrast to keyboard actions, the effect of clicking on a place in the screen usually involves several
frames until the player arrives to the selected location.

Multi-player. Either in co-operative or antagonistic mode, two players play the game at the same
time. You may implement this by having each player use part of the keyboard. Be sure that the actions
of one player do not kill the actions of the other one!

2

Networking. Implement multi-player via network communication. You may use the Network li-
brary1. Chapter 27 of Real World Haskell2 provides a tutorial of this package.

Complex graphics. Refine the graphical part of your game by using techniques such as parallax
scrolling3 or by loading images from the file system. But remember: we are interested in your imple-
mentation of the techniques, not in the graphical quality per se.

Automated testing. Design the game in such a way that you can prove some interesting properties
about it using QuickCheck.

Use JSON to save the full game state. Allow saving and loading the full game state to and from
disk. Use JSON to serialize and deserialize the game state. You should use the Aeson4 library to parse
and write the game state. The documentation for that library has several examples of its intended
usage patterns.

3.3 Style

An important part of the grade of the final project depends on the way in which you have implemented
the game. Keep the following in mind while programming.

Data type definition. Think carefully about how you represent the game data in memory. Create
different data types for different goals, as explained during the lectures.

Use abstraction. Remove duplication in your code by means of (higher-order) functions. Use type
classes to implement functionality common to several data types.

Separate pure and impure parts. Do not put all functionality in IO. Most of the rendering and
update functions can be written in a pure style.

Modularity. Split your code into functions, and those functions into modules. Keep their size under
control. Feel free to introduce as many modules as required.

Follow good practices. Try to use higher-order functions such as foldr or map instead of recursion,
use pattern matching to define equations, do not use magic numbers.

Document your code. Always write type signatures for all your functions. Explain complex or subtle
parts of your program in comments.

4 Libraries and tooling

We provide an example project using Gloss which just updates the screen with a random number
every now and then. You can use this example project as a template for your own code or initialize
a new one following the steps explained during the lectures. In any case, please ensure that you can
run your project with the files you submit to us.

1http://hackage.haskell.org/package/network
2http://book.realworldhaskell.org/read/sockets-and-syslog.html
3https://en.wikipedia.org/wiki/Parallax_scrolling
4http://hackage.haskell.org/package/aeson/docs/Data-Aeson.html

3

http://hackage.haskell.org/package/network
http://book.realworldhaskell.org/read/sockets-and-syslog.html
https://en.wikipedia.org/wiki/Parallax_scrolling
http://hackage.haskell.org/package/aeson/docs/Data-Aeson.html

4.1 The Gloss library

The Gloss library provides a nice interface to build small 2-D games. It is also a good example of a
domain-specific language; in this case for the definition of what to show on the screen. In order to
define a game in Gloss you need to write four functions, all of them operating on a shared state of the
world w, which you ought to define.

• What is the initial state of the world.

• How to turn the world w into a Picture, which is then displayed in the screen.

• How to handle user input in the form of Events.

• How to update the state of the world every time some amount of seconds have elapsed.

This design is commonly known as model-view-controller. The model consists of the definitions of the
involved data types; the view is the function which displays the picture; and the controller how to
update that state in response to either time or user interaction. In the example project, each of these
components is defined in a different module.

Gloss provides a pure interface. Alas, this makes it difficult to have random elements in the game,
and impossible to access the file system. For that reason we suggest you to use the IO version of Gloss,
which can be found in the module Graphics.Gloss.Interface.IO.Game. The key function is playIO, which
after a bunch of configuration options receives the four aforementioned functions,

initial :: world
view :: world → IO Picture
input :: Event → world → IO world
step :: Float → world → IO world

You can look at the main function for an example of how to initialize Gloss.
The Picture data type, defined in the Graphics.Gloss.Data.Picture module,5 provides several functions

to build the entire scene of your game:

• Primitive shapes, such as circle, polygon, and text.

• To change the color of a picture, use the function color with one of the colors defined in the
module Graphics.Gloss.Data.Color. For example, here is the code to display a green A:

color green (text "A")

• Transformations over a picture, like translate and rotate.

• Finally, a way to compose several pictures into another one. Note that pictures are drawn on top
of each other, so you need to translate them first. For example:

picture [text "A", translate 20 20 (color green (circle 10))]

A neat way to explore drawing with Gloss is by means of an interactive session with the interpreter.

Prelude> import Graphics.Gloss

Prelude Graphics.Gloss> let d = InWindow "example" (800, 600) (0, 0)

Prelude Graphics.Gloss> display d black (color green (circle 100))

4.2 Using records

In the lectures you have learnt to access information inside a value by using pattern matching and to
build new values by calling the constructors of the data type. This is very simple, but breaks when we
need to handle larger data types with several levels of nesting, as will be the case with the state of
your game. For this scenario, Haskell provides a nice feature called records.

5https://hackage.haskell.org/package/gloss/docs/Graphics-Gloss-Data-Picture.html

4

https://hackage.haskell.org/package/gloss/docs/Graphics-Gloss-Data-Picture.html

Definition. A record is like any other Haskell data type, with an additional piece of information: a
name for each of the fields. For example, here is the definition of GameState in the example project:

data GameState = GameState {
infoToShow :: InfoToShow

, elapsedTime :: Float
}

For comparison, here is the definition without field names:

data GameState = GameState InfoToShow Float

Accessing information in a record. Pattern matching is available as usual for records,

view (GameState info elapsed) = ...

In addition, records introduce other three forms of accessing the information:

1. We can also use the name of the field as a function which retrieves that piece of information,

infoToShow :: GameState → InfoToShow
elapsedTime :: GameState → Float

For example, in the example project we are only interested in the first field to display:

view gstate = case infoToShow gstate of ...

2. Pattern matching is extended to retrieve the information of a field using a key/value syntax:

view GameState { infoToShow = info} = ... -- use ’info’ here

The great advantage is that we only need to include those fields we are interested in, whereas
with usual pattern matching we need to give names (or use underscores) for every field.

3. We can even make it shorter if we enable the “named field puns” extension by including the
following line at the beginning of your file:

{-# language NamedFieldPuns #-}

Then you do not even need to use field = value in pattern matching, only the name of the field:

view GameState { infoToShow} = ... -- use ’infoToShow’ here

Updating part of a record. Another problem with normal data types is that if you want to change
only one part of a value you are forced to write all the other fields in your source. With records you
can tell the compiler to reuse part of a previous record and only “update” one or more fields.

step secs gstate = gstate {elapsedTime = elapsedTime gstate + secs}

In this example, we want to keep the whole game state – we do not even match on it – except for
the elapsedTime, which is increased by the given amount of seconds. An alternative way to write this
function is:

step secs gstate@(GameState {elapsedTime}) = gstate {elapsedTime = elapsedTime + secs}

In this case the final elapsedTime refers to the value in the original game state, which we obtain using
the named field syntax, whereas the other appearances refer to the field name.

5

Lenses. The problem of accessing larger and nested pieces of data has been “itchy” issue for Haskellers
since a long time ago. Records are a simple solution, but many other people use a more powerful no-
tion called lenses. If you want to dive into it – but not before having a working game! – look at the
packages lens-tutorial and microlens.

4.3 Loading bitmaps

It is strongly recommended to start by implementing your game with simple pictures, like squares
and circles. But if you want to make it look better – note that this will not influence your grade – you
can load bitmaps and use them in Gloss.

The only function you need is loadBMP :: String → IO Picture. This function receives the path to
a file, relative to your current folder, and loads it into memory. Since the result is a Picture, you can
use it in the same way as you would use any other shape. Note however that it works on IO, so you
should plan ahead the initialization of the pictures, before moving into the pure world.

Another important detail is that loadBMP only supports images in BMP format. If your files are in
other format, like JPEG, PNG, or GIF, you need to convert them first to BMP. There are plenty of tools
which can perform this work; as the assistants if you need help.

Finally, remember that you should not use material which falls under copyright, especially if you
are hosting your code somewhere else, like the UU servers or GitHub. OpenGameArt, https://

opengameart.org/, provides a huge amount of graphical resources that you can use for free.

5 Getting Started

There are two parts to this final project, that you will have to hand in at different moments:

• An initial design document, and
• The implementation of your final game (with updated design document if necessary).

You have to submit your work via Blackboard. See the course webpage for the exact deadlines.

5.1 The Design Document

You have to submit a design document briefly describing your game. We are mostly interested in how
you plan to structure your game, rather than in how pretty your game will look, or how fun it will be
to play it. In particular, make sure your design document answers the following questions.

1. Which game type will you implement?
2. If you plan on having a “twist” with respect to the basic games, briefly (at most one paragraph)

describe it.
3. What data types will you use?
4. How will (the architecture of) your game incorporate the minimal requirements?

For each of the minimal requirements, specify briefly how your game will incorporate it. In
particular, how will you structure your code to support this requirement. For example, for
randomness: how/where do you plan to incorporate it, how is this reflected in your data types?

5. Which optional requirements are you planning to implement? For each of them, specify how
you plan to structure your code and data types to support them, as you did with the minimal
requirements.

6. How will you separate the pure and impure parts in your game?
7. Do you forsee opportunities for using abstraction? For example, is there functionality that you

will want to implement using typeclasses?

Try to be specific; a good design document will already describe the data types you plan to use in
a fair amount of detail. To describe you will implement the requirements: consider giving the function
names with their type signatures. An example design document is available on the website.

Remember to avoid using an “object oriented” approach that does something like:

data Object = Mario Position | Mushroom Position | Ground | Flower | ...

6

https://opengameart.org/
https://opengameart.org/

type World = [Object]

as it does not provide sufficient type safety. For example, it does not differentiate between Mario
and the environment, nor does it enforce that there is only one Mario (rather than many). Hence,
starting with one generic “object” type and refining it in “subclasses” is bad practice in a functional
language!

When you provide snippets and/or function signatures make sure they are highlighted properly.
This makes it easier to read for everyone.

What to hand in: A single pdf file describing your game.

5.2 The Implementation

Use the starting framework available on the website to implement your game.

What to hand in: A single zip file which contains:

• The original design document,

• an updated design document that reflects the game as it was implemented,

• a README with instructions on how to run and play the game,

• The source code (and all required assets) as a buildable Cabal project. Make sure that you can
properly build/compile your game just using ’cabal build’ or ’stack build’ from within the folder
containing your cabal file.

Please do not include the dist-newstyle folder.

Make sure to upload and submit your game correctly on Blackboard.

7

5.3 Grading Criteria

Minimal requirements – 5 points
Note: the grade is not divided evenly between the different requirements
Player Drawing the player on the screen

Control the player with the keyboard
Enemies Evolution and movement over time

Enemies appear or move randomly
(Some) enemies work “intelligently” towards their goal

Animation Some graphical elements change over time
Interaction with the
file system

Reads and interprets data from the file system, such as high scores or
levels, using a simple format
Note: loading bitmaps with Gloss does not count

Pause The player can pause and resume the game with a key
There is visual indication of the game being paused

Document The document discusses the design decisions in the game
Style – 3 points
Good use of data types
and type classes

Do not reuse a single data type for too many things, that is, a single
GameObject type or similar
Correct use of sum types – do not shoehorn object-oriented practices
Abstract common interfaces into type classes

Purity Use IO only when necessary
Correct initialization of IO resources

Good practices Separate view from logic
Use higher-order functions instead of recursion
Use pattern matching
Do not have magic numbers
Include documentation in the code

Optional requirements – 2 points
Implementing an optional requirement at its fullest is worth 1 point

8

	Introduction
	Game Choice
	Requirements
	Minimal requirements
	Optional requirements
	Style

	Libraries and tooling
	The Gloss library
	Using records
	Loading bitmaps

	Getting Started
	The Design Document
	The Implementation
	Grading Criteria

