
Functional Programming? Haskell?

Functional Programming

Utrecht University

1

import Data.Char(toUpper)

mkWelcome :: (String -> String) -> Int -> Int -> String
mkWelcome stylize year n = concat

[stylize "Welcome", " to INFOFP in ", show year, "!\n\n"
, head teachers, " and me will have to grade ", show (numExams n)
, " exams this time .."
] where numExams m = 2 * m

capitalize s = map toUpper s

teachers = ["Mathijs Vakar", "Frank Staals"]

welcomeMsg = mkWelcome capitalize 2024 298

main = putStrLn welcomeMsg

2

import Data.Char(toUpper)

mkWelcome :: (String -> String) -> Int -> Int -> String
mkWelcome stylize year n = concat

[stylize "Welcome", " to INFOFP in ", show year, "!\n\n"
, head teachers, " and me will have to grade ", show (numExams n)
, " exams this time .."
] where numExams m = 2 * m

capitalize s = map toUpper s

teachers = ["Mathijs Vakar", "Frank Staals"]

welcomeMsg = mkWelcome capitalize 2024 298

main = putStrLn welcomeMsg
2

WELCOME to INFOFP in 2024!

Mathijs Vakar and me will have to grade 596 exams this time ..

3

What is Functional Programming?

• A way of thinking about problems:

Define what something is rather than how to compute it.

4

What is Functional Programming?

• A way of thinking about problems:

Define what something is rather than how to compute it.

4

Imperative (C#) vs. Functional (Haskell)

int sumUpTo(int n) {
int total = 0;
for (int i = n; n > 0; i--)
total += i;

return total;
}

sumUpTo 0 = 0
sumUpTo n = n + sumUpTo (n-1)

5

Our aim is to

Teach you functional programming techniques

• Using functions as first-class values

• Separating pure and impure computations

• Reasoning about your programs

• Using strong types

• …

You can write “functional code” in almost any language!

6

Our aim is to

Teach you functional programming techniques

• Using functions as first-class values

• Separating pure and impure computations

• Reasoning about your programs

• Using strong types

• …

You can write “functional code” in almost any language!

6

Why Functional Programming?

7

To create better software

1. Short term: fewer bugs
• Puritymeans fewer surprises when programming

• A function can no longer mutate a global state

• Puritymakes it easier to reason about programs
• Reasoning about OO =⇒ master/PhD course

• Reasoning about FP =⇒ this course

• Higher-order functions remove lots of boilerplate
• Also, less code to test and fewer edge cases

• Types prevent the “stupid” sort
• What does True + "1"mean?

2. Long term: more maintainable
• Types are always updated documentation

• Types help a lot in refactoring
• Change a definition, fix everywhere the compiler tells you there is a problem

8

To create better software

1. Short term: fewer bugs
• Puritymeans fewer surprises when programming

• A function can no longer mutate a global state

• Puritymakes it easier to reason about programs
• Reasoning about OO =⇒ master/PhD course

• Reasoning about FP =⇒ this course

• Higher-order functions remove lots of boilerplate
• Also, less code to test and fewer edge cases

• Types prevent the “stupid” sort
• What does True + "1"mean?

2. Long term: more maintainable
• Types are always updated documentation

• Types help a lot in refactoring
• Change a definition, fix everywhere the compiler tells you there is a problem

8

How?

Lectures:

• Tuesday, 11.00 to 12.45

• Thursday, 15.15 to 17.00

Instructions !!!!!: Once a week

• Thursday, 13.15 to 15.00

Practicals

• Tuesday, 09.00 to 10.45

9

Who?

Matthijs Vákár and Frank Staals (me) and in the lectures

• Contact us through email

10 teaching assistants in the labs

10

Resources

1. Slides contain most of the content

• In some cases, supplemented by additional material

2. Pen-and-paper exercises

• There’s more than programming in this course

• Ask questions during instruction sessions

• Remember: there is no compiler at the exam

3. Book: Programming in Haskell (2nd edition) by Graham Hutton

• The course follows it, except for chapters 13 and 17

• More resources can be found in the website (https://ics.uu.nl/docs/vakken/fp)

11

Midterm & Final Exam

• ‘Pen-and-Paper’ style exam questions

• Closed book

• No compiler

• Remindo-based

12

Practical assignments

1. The first one helps you getting started

2. Three small ones with DOMJudge, one per week

3. One bigger project at the end

13

DOMJudge assignments

• Submissions are individual

• Do not plagiarize!

• Graded automatically : Pass vs Fail

• correct = Pass, not fully correct = Fail

• You need to pass at least 2 out of 3 DOMJudge Assignments

14

Style

• Hints in DOMJudge for good style

• Ask TAs for advice during practicals

• Important part of the final project grade

15

Final project

Develop your own game in Haskell

• Work in pairs

• Submission in two parts

1. Preliminary design document

2. Code of the project

16

Optional bonus assignment

Learn and explain a Haskell library or language feature

• Up to additional 0.5 points for the final grade

• Work in groups of at most three

17

Grading

Linear combination of three grades

• Theory T = 0.3 × midterm + 0.7 × final

• Practical = Final project

• Optional assignment O

Final grade F = 0.5 × T + 0.5 × P + 0.05 × O

To pass the course, you essentially need

• F >= 5.5, T >= 5, P >= 5

• Pass at least two DOMJudge assignments

See website for details.

18

If you did the course last year

• Resubmit your DOMJudge assignments

• Redo the final project

• Using the same code as last year is not allowed

• Redo all the exams

19

Communication channels

• E-mail

• Check your UU-mail regularly

• Teams

• For questions about any of the material.

• Blackboard

• As a means to access your grades.

20

Course Website

http://ics.uu.nl/docs/vakken/fp
• All important information is found there

• Schedule, slides, assignments, exercises

21

Getting Started:

22

Functional Programming Features?

Some distinguishing features of FP:

1. Recursion instead of iteration

2. Pattern matching on values

3. Expressions instead of statements

4. Functions as first-class citizens

23

Try it!

1. Go to https://play.haskell.org

2. Write your definitions on the left pane

sumUpTo 0 = 0
sumUpTo n = n + sumUpTo (n-1)

main = print (sumUpTo 3)

3. Click Run

4. The right pane should now show:

6

24

Alternatively, use the interpreter ‘ghci’

1. Write your definitions in a file ‘main.hs’:

sumUpTo 0 = 0
sumUpTo n = n + sumUpTo (n-1)

2. Load your your code with “ghci main.hs”

3. Execute your functions:

> sumUpTo 3
6

25

Small exercise

Update the example to compute n! = n ∗ (n − 1) ∗ (n − 2) ∗ .. ∗ 1 instead.

26

Recursion instead of iteration

Iteration = repeating a process a number of times

int sumUpTo(int n) {
int total = 0;
for (int i = n; n > 0; i--)
total += i;

return total;
}

Recursion = defining something in terms of itself

sumUpTo 0 = 0
sumUpTo n = n + sumUpTo (n-1)

27

Pattern matching on values

A function is defined by a series of equations

• The value is compared with each left side until one “fits”

• In sumUpTo, if the value is zero we return zero, otherwise we fall to the second one

sumUpTo 0 = 0
sumUpTo n = n + sumUpTo (n-1)

28

Expressions instead of statements

What code does versus what code is

• Statements manipulate the state of the program

• Statements have an inherent order

• Variables name and store pieces of state

int sumUpTo(int n) {
int total = 0;
for (int i = n; n > 0; i--)
total += i;

return total;
}

29

Expressions instead of statements

What code does versus what code is

• Value of a whole expr. depends only on its subexpr.

• Easier to compose and reason about

• We will learn how to reason about programs

sumUpTo 3 --> 3 + sumUpTo 2
--> 3 + 2 + sumUpTo 1
--> ...

30

The factorial example:

Update the example to compute n! = n ∗ (n − 1) ∗ (n − 2) ∗ .. ∗ 1 instead.

fac :: Int -> Int
fac 0 = 1
fac n = n * fac (n-1)

• Each equation goes into its own line

• Equations are checked in order

• If n is 0, then the function equals 1
• If n is different from 0, then it goes to the second

• Good style: always write the type of your functions

31

The factorial example:

Update the example to compute n! = n ∗ (n − 1) ∗ (n − 2) ∗ .. ∗ 1 instead.

fac :: Int -> Int
fac 0 = 1
fac n = n * fac (n-1)

• Each equation goes into its own line

• Equations are checked in order

• If n is 0, then the function equals 1
• If n is different from 0, then it goes to the second

• Good style: always write the type of your functions

31

The factorial example:

Update the example to compute n! = n ∗ (n − 1) ∗ (n − 2) ∗ .. ∗ 1 instead.

fac :: Int -> Int
fac 0 = 1
fac n = n * fac (n-1)

• Each equation goes into its own line

• Equations are checked in order

• If n is 0, then the function equals 1
• If n is different from 0, then it goes to the second

• Good style: always write the type of your functions

31

Question

What happens if we write?

fac :: Int -> Int
fac n = n * fac (n-1)
fac 0 = 1

32

Functions as first-class citizens

Function = mapping of arguments to a result

greet name = "Hello, " ++ name ++ "!"

• Functions can be parameters of another function

• Functions can be returned from functions

> map greet ["Mary", "Joe"]
["Hello, Mary!", "Hello, Joe!"]

map applies the function greet to each element of the list

33

Why Haskell?

Haskell can be defined with four adjectives

• Functional

• Statically typed

• Pure

• Lazy

34

Haskell is statically typed

• Every expression and function has a type

• The compiler prevents wrong combinations

> :t greet -- Give me the type of greet
greet :: [Char] -> [Char]
> greet "Joe"
"Hello, Joe!"
> greet True
Couldn't match expected type ‘[Char]’

with actual type ‘Bool’

Inference = if no type is given for an expression, the compiler guesses one

35

Haskell is pure

• You cannot use statement-based programming

• Variables do not change, only give names

• Program is easy to compose, understand and paralellize

• Functions which interact with the “outer world” are marked in their type with IO
• This prevents unintended side-effects

readFile :: FilePath -> IO ()

36

Haskell is lazy

We shall get to this one…

37

Why Haskell?

From a pedagogical standpoint

• Haskell forces a functional style

• In contrast with imperative and OO languages

• We can do equational reasoning

• Haskell teaches the value of static types

• Compiler finds bugs long before run time

• We can express really detailed invariants

38

How do I “run” Haskell?

39

GHC

• We are going to use GHC in this course

• The (Glorious) Glasgow Haskell Compiler

• State-of-the-art and open source

• Installing

• Go to https://www.haskell.org/ghcup
• Follow the installation instructions for installing ‘ghcup’ and ‘ghc’ on your OS.

40

https://www.haskell.org/ghcup

Compiler versus interpreter

• Compiler (ghc)
• Takes one or more files as an input

• Generates a library or complete executable

• There is no interaction

• How you do things in Imperatief/Mobiel/Gameprogrammeren

• Interpreter (ghci)
• Interactive, expressions are evaluated on-the-go

• Useful for testing and exploration

• You can also load a file

• Almost as if you have typed in the entire file

41

GHC interpreter, ghci

1. Open a command line, terminal or console

2. Write ghci and press

GHCi, version 8.10.2: http://www.haskell.org/ghc/ :? for help
Prelude>

3. Type an expression and press to evaluate

Prelude> 2 + 3
5
Prelude>

4. Ctrl + D (+ D in Mac) or :q to quit

Prelude> :q
Leaving GHCi.

42

First examples

> length [1, 2, 3]
3
> sum [1 .. 10]
55
> reverse [1 .. 10]
[10,9,8,7,6,5,4,3,2,1]
> replicate 10 3
[3,3,3,3,3,3,3,3,3,3]
> sum (replicate 10 3)
30

• Integer numbers appear as themselves

• [1 .. 10] creates a list from 1 to 10
• Functions are called (applied) without parentheses

• In contrast to replicate(10, 3) in other languages 43

More about parentheses

• Parentheses delimit subexpressions

• sum (replicate 10 3): sum takes 1 parameter

• sum replicate 10 3: sum takes 3 parameters

> sum replicate 10 3
<interactive>: error:

• Couldn't match type ‘[t0]’ with ‘t1 -> t’
Expected type: Int -> t0 -> t1 -> t
Actual type: Int -> t0 -> [t0]

> sum (replicate 10 3)
30

44

First examples of types

> :t reverse
reverse :: [a] -> [a]
> :t replicate
replicate :: Int -> a -> [a]

• -> separates each argument and the result

• Int is the type of (machine) integers

• [Something] declares a list of Somethings
• For example, [Int] is a list of integers

• [a]means list of anything

• Note that a starts with a lowercase letter

• a is called a type variable

45

Operators

> [1, 2] ++ [3, 4]
[1, 2, 3, 4]
> (++) [1, 2] [3, 4]
> :t (++)
(++) :: [a] -> [a] -> [a]

• Some names are completely made out of symbols

• Think of +, *, &&, ||, …
• They are called operators

• Operators are used between the arguments

• Anywhere else, you use parentheses

46

Question

What happens if we do?

> [1, 2] ++ [True, False]

Type error!

47

Question

What happens if we do?

> [1, 2] ++ [True, False]

Type error!

47

Define a function in the interpreter

> let average ns = sum ns `div` length ns
> average [1,2,3]
2
> :t average
average :: Foldable t => t Int -> Int

• Functions are defined by one or more equations

• You turn a function into an operator with backticks

• Naming requirements

• Function names must start with a lowercase

• Arguments names too

• GHC has inferred a type for your function

48

Define a function in a file

You can write this definition in a file

average :: [Int] -> Int
average ns = sum ns `div` length ns

and then load it in the interpreter
> :load average.hs
[1 of 1] Compiling Main (average.hs, interpreted)
> average [1,2,3]
2

or even work on it an then reload
> :r
[1 of 1] Compiling Main (average.hs, interpreted)

49

More basic types

• Bool: True or False (note the uppercase!)
• Usual operations like && (and), || (or) and not
• Result of comparisons with ==, /=, <, …
• Warning! = defines, == compares

> 1 == 2 || 3 == 4
False
> 1 < 2 && 3 < 4
True
> nand x y = not (x && y)
> nand True False
True

50

More basic types

• Char: one single symbol

• Written in single quotes: 'a', 'b', …

• String: a sequence of characters
• Written in double quotes: "hello"
• They are simply [Char]

• All list functions work for String

> ['a', 'b', 'c'] ++ ['d', 'e', 'f']
"abcdef"
> replicate 5 'a'
"aaaaa"

51

First example of higher-order function

> map fac [1 .. 5]
[1,2,6,24,120]
> map not [True, False, False]
[False,True,True]

> :t map
map :: (a -> b) -> [a] -> [b]

• map takes two arguments

• The first argument is a function a -> b
• The second argument is a list [a]

• map works for every pair of types a and b you choose

• We say that map is polymorphic

52

Homework

1. Install GHC in your machine

2. Try out the examples

3. Basic exercises from the website.

4. Do Practical Assignment 0.

53

Three pieces of advice

1. Get yourself a good editor

• At the very least, with syntax highlighting

• Visual Studio Code and Atom are quite nice

• Available at code.visualstudio.com and atom.io
• Install Haskell syntax highlighting afterwards

• vi or Emacs for the adventurous

2. Get comfortable with the command line

• https://tutorial.djangogirls.org/en/intro_to_command_line/

3. Go to the Instruction sessions !!!

• And do the pen-and-paper exercises !!!

54

code.visualstudio.com
atom.io
https://tutorial.djangogirls.org/en/intro_to_command_line/

Three pieces of advice

1. Get yourself a good editor

• At the very least, with syntax highlighting

• Visual Studio Code and Atom are quite nice

• Available at code.visualstudio.com and atom.io
• Install Haskell syntax highlighting afterwards

• vi or Emacs for the adventurous

2. Get comfortable with the command line

• https://tutorial.djangogirls.org/en/intro_to_command_line/

3. Go to the Instruction sessions !!!

• And do the pen-and-paper exercises !!!

54

code.visualstudio.com
atom.io
https://tutorial.djangogirls.org/en/intro_to_command_line/

	Why Functional Programming?
	Getting Started:
	How do I “run” Haskell?

