
Basics

Functional Programming

Utrecht University

1

Goals

• Function definitions

• Local definitions

• Guards and pattern matching

• Working with tuples and lists

• Layout and comments

• Notions about types

• What is polymorphism?

Chapters 4 (up to 4.4) and 3 from Hutton’s book

2

Simple functions

From the previous lecture…

average ns = sum ns `div` length ns

• Function average and argument ns are in lowercase

• This line defines an equation

• Calling a function is done without parentheses

• div is used as an operator

3

List constructors

There are two ways to create a list:

• [] is the empty list

• Given an element x and a list xs, we can create a new list x : xs that starts with x and
whose remaining elements are in xs.

> 1 : []
[1]
> 1 : [2,3]
[1,2,3]

• In fact, [1,2,3] is sugar for 1 : (2 : (3 : []))

4

Basic list functions

• null tells whether a list is empty

• head returns the first element in a list

• tail returns all but the first element

> null [1,2,3]
False
> head [1,2,3]
1
> tail [1,2,3]
[2,3]

5

Basic list functions

• null tells whether a list is empty

• head returns the first element in a list
• head fails if the list is empty

• tail returns all but the first element
• tail fails if the list is empty

> null [1,2,3]
False
> head [1,2,3]
1
> head []
*** Exception: Prelude.head: empty list
> tail [1,2,3]
[2,3]

6

Types of the basic list functions

• What are the types of those functions?

Here is the first one: null checks if a list is empty

null :: [a] -> Bool

What about head, tail, [], and (:)?

head :: [a] -> a
tail :: [a] -> [a]

[] :: [a]
(:) :: a -> [a] -> [a]

7

Types of the basic list functions

• What are the types of those functions?

Here is the first one: null checks if a list is empty

null :: [a] -> Bool

What about head, tail, [], and (:)?

head :: [a] -> a
tail :: [a] -> [a]

[] :: [a]
(:) :: a -> [a] -> [a]

7

Types of the basic list functions

• What are the types of those functions?

Here is the first one: null checks if a list is empty

null :: [a] -> Bool

What about head, tail, [], and (:)?

head :: [a] -> a
tail :: [a] -> [a]

[] :: [a]
(:) :: a -> [a] -> [a]

7

Conditionals

if condition then expression else expression
abs n = if n < 0 then -n else n

firstordefault def list
=

8

Conditionals

if condition then expression else expression
abs n = if n < 0 then -n else n

firstordefault def list
= if null list then def else head list

• conditionmust be a Bool expression
• You always need both branches

• What would you return if one is missing?

• Remember, everything is an expression

9

Layout rule

• Haskell does not have other delimiters but parentheses

• Not completely true, but valid for human-produced code

• The grouping is done by indentation

• The layout rule applies for indentation

• Related elements must start on the same column

• In the case of conditionals, no requirements

abs n = if n < 0 abs n = if n < 0
then -n then -n
else n else n

10

Guards

Instead of conditionals, we use equations with guards

• Each guard defines a condition over the arguments

• These conditions are checked in order

• The first satisfiable one is applied

• We typically use otherwise for the default case

abs n | n < 0 = -n
| otherwise = n

11

Nested conditionals versus guards

sign n = if n < 0
then -1
else if n == 0

then 0
else 1

What does this function do?

It reads much better with guards!

sign n | n < 0 = -1
| n == 0 = 0
| otherwise = 1

-- Why not | n > 0 = 1 ?

12

Nested conditionals versus guards

sign n = if n < 0
then -1
else if n == 0

then 0
else 1

What does this function do?

It reads much better with guards!

sign n | n < 0 = -1
| n == 0 = 0
| otherwise = 1

-- Why not | n > 0 = 1 ?

12

Nested conditionals versus guards

Good style
Prefer guards overs conditionals

13

Local definitions

distance px py qx qy =
sqrt ((px - qx)*(px - qx) + (py - qy)*(py - qy))

expression where name = expression

distance px py qx qy = sqrt (xDiff + yDiff)
where
xDiff = square (px - qx)
yDiff = square (py - qy)
square z = z * z

14

Local definitions

distance px py qx qy =
sqrt ((px - qx)*(px - qx) + (py - qy)*(py - qy))

let name = expression in expression
distance px py qx qy =

let xDiff = square (px - qx)
yDiff = square (py - qy)
square z = z * z

in sqrt (xDiff + yDiff)

15

Local definitions

expression where name = expression

let name = expression in expression

• Local definitions assign a name to an expression

• In the larger expression, this name is available

• Multiple benefits

• Maintainability: reduce repetition of code

• Performance: the expression is only computed once

• Documentation: assign names to concepts

16

Local definitions

• You can have more than one local definition

• Definitions may refer to each other

• The layout rule kicks in

• All definition must start in the same column

• Aligning =’s is not mandated, but good style

17

Let vs Where

• where when thinking top down
• let when thinking bottom up

• let is an expression; where is not.

foo x = show (let y = x*x in y*y) ++ " someString"

bar x | f x < 5 = undefined
| f x == 5 = undefined
| otherwise = undefined

where
f y = undefined

18

Let vs Where

• where when thinking top down
• let when thinking bottom up

• let is an expression; where is not.

foo x = show (let y = x*x in y*y) ++ " someString"

bar x | f x < 5 = undefined
| f x == 5 = undefined
| otherwise = undefined

where
f y = undefined

18

Tuples

• Lists are sequences of elements of the same type

• Unknown length, uniform type

[True, False] :: [Bool]

• Tuples are made of a number of components

• Known length, different types

(True, 'a') :: (Bool, Char)
(1, 'b', 3) :: (Int, Char, Int)

• Useful for returning several values

19

Tuple Examples

Creating tuples:

trunc :: Double -> (Int,Double)
trunc x = let i = floor x

in (i, x - fromIntegral i)

Extracting from tuples:

distance (px, py) (qx,qy) = sqrt (xDiff + yDiff)
where

tpl = squareBoth (px - qx, py - qy)
squareBoth (xD,yD) = (xD*xD, yD*yD)

xDiff = fst tpl
yDiff = snd tpl

20

Tuple Examples

Creating tuples:

trunc :: Double -> (Int,Double)
trunc x = let i = floor x

in (i, x - fromIntegral i)

Extracting from tuples:

distance (px, py) (qx,qy) = sqrt (xDiff + yDiff)
where
tpl = squareBoth (px - qx, py - qy)
squareBoth (xD,yD) = (xD*xD, yD*yD)

xDiff = fst tpl
yDiff = snd tpl

20

Tuple Examples

Creating tuples:

remainder :: Double -> (Int,Double)
remainder x = let i = floor x

in (i, x - fromIntegral i)

Extracting from tuples:

distance (px, py) (qx,qy) = sqrt (xDiff + yDiff)
where
tpl = squareBoth (px - qx, py - qy)
squareBoth (xD,yD) = (xD*xD, yD*yD)

(xDiff, yDiff) = tpl

21

Comments

-- Euclidean distance between two points
distance (px, py) (qx, qy) =

sqrt (xDiff + yDiff) -- some comment
where

{- multi
line comments are also
possible -}

• -- comments skip until the end of the line

• {- comments skip until its matching -}
• Warning! These comments nest

22

Pattern matching, fac

From the previous lecture…

fac 0 = 1
fac n = n * fac (n-1)

• The first equation is chosen if the arguments is 0

• Otherwise, the second branch is executed

• This is an example of pattern matching

23

Pattern matching, replicate

• For a call replicate n x,
• If n is 0, we return an empty list

• Otherwise, we attach a copy of x to the result of replicating the element n-1 times

replicate :: Int -> a -> [a]
replicate 0 x = []
replicate n x = x : replicate (n-1) x

24

Pattern matching, replicate

• For a call replicate n x,
• If n is 0, we return an empty list

• Otherwise, we attach a copy of x to the result of replicating the element n-1 times

replicate :: Int -> a -> [a]
replicate 0 x = []
replicate n x = x : replicate (n-1) x

24

Pattern matching, replicate

• For a call replicate n x,
• If n is 0, we return an empty list

• Otherwise, we attach a copy of x to the result of replicating the element n-1 times

replicate :: Int -> a -> [a]
replicate 0 _ = []
replicate n x = x : replicate (n-1) x

• Good style: use _ if you don’t care about a value

25

Pattern matching for lists and tuples

• The syntax for construction can be used for matching

• Information is extracted by giving names to the parts

• As usual, starting with lowercase

null [] = True
null _ = False

length [] = 0
length (_ : xs) = 1 + length xs

squareBoth (xD,yD) = (xD*xD, yD*yD)

26

Pattern matching, conjunction

• For Bools, we can list all the possible values

conj :: Bool -> Bool -> Bool
conj True True = True
conj True False = False
conj False True = False
conj False False = False

• But this is very repetitive!

• All last three equations return False

conj True True = True
conj a b = False

• even better, use _ instead of a and b

27

Pattern matching, conjunction

• For Bools, we can list all the possible values

conj :: Bool -> Bool -> Bool
conj True True = True
conj True False = False
conj False True = False
conj False False = False

• But this is very repetitive!

• All last three equations return False

conj True True = True
conj a b = False

• even better, use _ instead of a and b

27

Nested patterns

• Instead of just giving a name, you can further pattern match in a list or tuple

• You can go as deep as you want

trimstart (' ' : xs) = trimstart xs
trimstart ('\t' : xs) = trimstart xs
trimstart xs = xs

iszero (0, 0) = True
iszero _ = False

sumifthree (a : b : c : []) = a + b + c
sumifthree _ = 0

28

Pattern matching versus guards with ==

length xs | xs == [] = 0
| otherwise = 1 + length (tail xs)

Two problems with this definition:

• == is more expensive than matching

• You need to call tail

Good style for defining a function

• Pattern matching, maybe with guards

• But not guards with ==

29

Pattern matching versus guards with ==

length xs | xs == [] = 0
| otherwise = 1 + length (tail xs)

Two problems with this definition:

• == is more expensive than matching

• You need to call tail

Good style for defining a function

• Pattern matching, maybe with guards

• But not guards with ==

29

Pattern matching versus guards with ==

length xs | xs == [] = 0
| otherwise = 1 + length (tail xs)

The correct way to write length is:

length [] = 0
length (_ : xs) = 1 + length xs

• Substitute check of [] by pattern matching

• Access the tail of the list by matching (_ : xs)

30

Exercise: define the existsPositive function

existsPositive xs should return True if and only if (at least) one of the elements in the list xs
is positive, that is, greater than 0

existsPositive [] = False
existsPositive (x:xs) | x > 0 = True

| otherwise = existsPositive xs

31

Exercise: define the existsPositive function

existsPositive xs should return True if and only if (at least) one of the elements in the list xs
is positive, that is, greater than 0

existsPositive [] = False
existsPositive (x:xs) | x > 0 = True

| otherwise = existsPositive xs

31

Exercise: define the existsPositive function

existsPositive xs should return True if and only if (at least) one of the elements in the list xs
is positive, that is, greater than 0

existsPositive [] = False
existsPositive (x:xs) = x > 0 || existsPositive xs

Next lecture is devoted to functions over lists

32

Operators

From the previous lecture…

• Operators are functions whose name is exclusivelymade out of symbols

• Operators are written between the arguments

• Both for definition and call

True && True = True
_ && _ = False

• Anywhere else, you need to use parentheses

(&&) :: Bool -> Bool -> Bool

33

Associativity and precedence

How should we read the following expressions?

1 + 2 - 3 1 * 2 + 3 / 4

We make it explicit by introducing parentheses

1 + (2 - 3) (1 * 2) + (3 / 4)

• We say that + associates to the left

• So 1 + 2 + 3means (1 + 2) + 3

• We say that * and / have higher precedence than +

34

Declaring associativity and precedence

infixr/infixl/infix precedence operator
• infixr and infixl declare associativity
• infixmakes the operator non-associative

• == and /= are examples of those

• Precedence ranges between 1 and 9

• Function application has the highest number, 10

infixr 3 &&

35

Types

36

Expressions have types

Type = collection of related values

• In Haskell, every expression has a type

• We write it as expression :: type
True :: Bool
'a' :: Char
[1, 2] :: [Int]
(1,'a') :: (Int,Char)
not :: Bool -> Bool

• This includes applied functions

1 + 2 :: Int
not True :: Bool

37

Static typing and type safety

• Haskell forbids executing code with type errors

• This is known as static typing

• Other languages are dynamically typed

• E.g., Python, JavaScript, Ruby…

• As a result, no run-time error may arise from this

• We say that Haskell programs are type safe

• Some “valid” expressions are rejected

• Code execution is not taken into account

if True then 1 else False

38

Type checking and inference

General rule: if f :: A -> B and e :: A, then f e :: B

This rule can be used in two ways:

• To check whether an application is correct

not :: Bool -> Bool
'a' :: Char
not 'a'
-- Couldn't match expected type ‘Bool’
-- with actual type ‘Char’

• To infer the result of an expression

f :: Bool -> String
f True :: String -- No further details needed!

39

Basic types

• Bool: logical values, that is, either True of False
• Char: single characters like ‘a’
• Integral types:

• Int: machine integers with a fixed range

> maxBound :: Int
9223372036854775807

• Integer: integers with unlimited range

• Floating-point types:

• Numbers with a decimal comma

• Float: single-precision
• Double: double-precision, take up more space

40

Compound types

These types are parametrized by other types

• Lists [T], uniform sequences of Ts
• Tuples come in different arities

• Pairs (T1, T2)
• Triples (T1, T2, T3)
• … up to 62 in GHC 8.0.1

• Functions T1 -> T2 -> ... -> R

Types can be nested as much as we want

41

Some differences

([1, 2], [True])

[(1, True), (2, False)]

42

Some differences

-- ↓ Tuple of lists
([1, 2], [True]) :: ([Int], [Bool])

-- ↓ List of tuples
[(1, True), (2, False)] :: [(Int, Bool)]

f :: (Int, Int) -> Int

g :: Int -> Int -> Int

43

Some differences

-- ↓ Tuple of lists
([1, 2], [True]) :: ([Int], [Bool])

-- ↓ List of tuples
[(1, True), (2, False)] :: [(Int, Bool)]

f :: (Int, Int) -> Int

g :: Int -> Int -> Int

43

Some differences

-- ↓ Tuple of lists
([1, 2], [True]) :: ([Int], [Bool])

-- ↓ List of tuples
[(1, True), (2, False)] :: [(Int, Bool)]

f :: (Int, Int) -> Int -- Takes one argument
-- which is a pair

g :: Int -> Int -> Int -- Takes two arguments

> f (1, 2) -- OK
> g 1 2 -- OK
> g (1, 2)
-- Couldn't match expected type ‘Int’
-- with actual type ‘(Int, Int)’

44

Some differences

-- ↓ Tuple of lists
([1, 2], [True]) :: ([Int], [Bool])

-- ↓ List of tuples
[(1, True), (2, False)] :: [(Int, Bool)]

f :: (Int, Int) -> Int -- Takes one argument
-- which is a pair

g :: Int -> Int -> Int -- Takes two arguments

> f (1, 2) -- OK
> g 1 2 -- OK
> g (1, 2)
-- Couldn't match expected type ‘Int’
-- with actual type ‘(Int, Int)’

45

Functions are first-class citizens

-- Functions can be put in a list
[(+), (*), (-)] :: [Int -> Int -> Int]
[(&&), (||)] :: [Bool -> Bool -> Bool]

-- Elements must agree in their type
[(+), (&&)] -- Type error!

-- Functions can be arguments and results
-- 'flip' takes one function and swaps the order
flip :: (a -> b -> c) -> (b -> a -> c)

46

length is polymorphic

length [1, 2, 3] -- OK
length [True, False] -- OK
length "abcd" -- OK

• length can be applied to any expression which is a list

• In type terms, to any [T], regardless of T
• We say that length is polymorphic

• From Greek, Πολυμορφισμός “of many forms/shapes”

• How does this show up in the type?

length :: [a] -> Int

• Types starting with lowercase are variables

• They can be substituted with whatever we need

47

Other polymorphic list functions

null :: [a] -> Bool
(++) :: [a] -> [a] -> [a] -- Concatenation
reverse :: [a] -> [a]

Important! A variable has to be substituted uniformly throughout the whole type

[1, 2] ++ [3, 4] :: [Int]
-- OK, 'a' is substituted by 'Int'

[1, 2] ++ [True, False]
-- Couldn't match expected type ‘Int’
-- with actual type ‘Bool’
This is the #1 type error in Haskell programming

48

Build your own polymorphic function

id x = x

What is the type of id?

1. It is a function with one argument

• α → β for yet unknown α and β

2. We return the same type we are given

• α → α for a yet unknown type α

3. There are no further constraints for x
• We reach the final type a -> a
• This function works for any type

49

Build your own polymorphic function

id x = x

What is the type of id?

1. It is a function with one argument

• α → β for yet unknown α and β

2. We return the same type we are given

• α → α for a yet unknown type α

3. There are no further constraints for x
• We reach the final type a -> a
• This function works for any type

49

Inferring the type of map id

Expect these kind of problems in the exam

map id :: ?

1. Disambiguate the names of the type variables

• map :: (a -> b) -> [a] -> [b]
• id :: c -> c

2. If f :: A -> B, in f e we must have e :: A
• In this case, the type a -> bmust be the same as the type c -> c, and
• thus type amust be type c and type bmust also be the same as type c.
• Thus, map, in map id, has type (c -> c) -> [c] -> [c]

3. The result type of f e is B
• In this case, map id :: [c] -> [c]

50

Inferring the type of map id

Expect these kind of problems in the exam

map id :: ?

1. Disambiguate the names of the type variables

• map :: (a -> b) -> [a] -> [b]
• id :: c -> c

2. If f :: A -> B, in f e we must have e :: A
• In this case, the type a -> bmust be the same as the type c -> c, and
• thus type amust be type c and type bmust also be the same as type c.
• Thus, map, in map id, has type (c -> c) -> [c] -> [c]

3. The result type of f e is B
• In this case, map id :: [c] -> [c]

50

Inferring the type of id id

id id :: ?

1. Disambiguate the names of variables for each id
• First id :: a -> a
• Second id :: b -> b

2. If f :: A -> B, in f e we must have e :: A
• In this case, a -> amust be b -> b
• Thus, first id :: (b -> b) -> (b -> b)

3. The result type of f e is B
• In this case, id id :: b -> b

51

Inferring the type of id id

id id :: ?

1. Disambiguate the names of variables for each id
• First id :: a -> a
• Second id :: b -> b

2. If f :: A -> B, in f e we must have e :: A
• In this case, a -> amust be b -> b
• Thus, first id :: (b -> b) -> (b -> b)

3. The result type of f e is B
• In this case, id id :: b -> b

51

Elements in a list have to match

> :t sin
sin :: Float -> Float
> :t [sin, id]
[sin,id] :: [Float -> Float]

1. We can choose any type for the a in id
2. All elements in a list must have the same type

3. The only solution is to make a be Float

52

Elements in a list have to match

What about these?

> :t [length, head]
> :t [head, null]
> :t [tail, null]

> :t [length, head]
[length,head] :: [[Int] -> Int]
> :t [head, null]
[head,null] :: [[Bool] -> Bool]
> :t [tail, null]
Couldn't match type ‘[a]’ with ‘Bool’

53

Elements in a list have to match

What about these?

> :t [length, head]
> :t [head, null]
> :t [tail, null]

> :t [length, head]
[length,head] :: [[Int] -> Int]
> :t [head, null]
[head,null] :: [[Bool] -> Bool]
> :t [tail, null]
Couldn't match type ‘[a]’ with ‘Bool’

53

Overloaded addition

In Haskell, addition works for different types:

> 1 + 2 -- Integers
3
> 1.0 + 2.5 -- Floating-point
3.5

But not for any type!

> 'a' + 'b'
No instance for (Num Char)
arising from a use of ‘+’

54

Overloaded addition

Addition cannot be given the following type

(+) :: a -> a -> a
because it does not work for any type.

Let’s ask GHC what is its real type:

> :t (+)
(+) :: Num a => a -> a -> a

• The Num a before the => symbol is a constraint

• It restricts (+) to types which satisfy the constraint

• In this case amust be “numeric”

• Num is called a type class

• Warning! Not to be confused with C++/C#/Java classes

55

Overloaded addition

Addition cannot be given the following type

(+) :: a -> a -> a
because it does not work for any type.

Let’s ask GHC what is its real type:

> :t (+)
(+) :: Num a => a -> a -> a

• The Num a before the => symbol is a constraint

• It restricts (+) to types which satisfy the constraint

• In this case amust be “numeric”

• Num is called a type class

• Warning! Not to be confused with C++/C#/Java classes

55

Basic type classes

• Num for numeric types

• Includes (+), (*), abs, among others

• For example, Int, Integer, Float, and Double have Num instances.
• Char or [Int] are not numeric

56

Basic type classes

• Num for numeric types

• Eq for types which support equality checks

(==) :: Eq a => a -> a -> Bool -- Equals
(/=) :: Eq a => a -> a -> Bool -- Not equals

• Int, Char, Bool, …, have Eq instances
• Also [T] if T is itself a member of Eq

• Like [Int] or String

• But not function types

> sin == cos
No instance for (Eq (Float -> Float))

57

Basic type classes

• Num for numeric types

• Eq for types which support equality checks

• Ord for types which in addition have an ordering

(<), (>) :: Ord a => a -> a -> Bool
(<=), (>=) :: Ord a => a -> a -> Bool
min, max :: Ord a => a -> a -> a

• Int, Char, Bool, .., have Ord instances
• Every type which is Ord is also Eq

58

Basic type classes

• Num for numeric types

• Eq for types which support equality checks

• Ord for types which in addition have an ordering

• Show for turning things into strings

show :: Show a => a -> String

age :: Int -> String
age y = "You are " ++ show y ++ " years old"

• Almost everything is in Show, but not functions
• We need a explicit call to show to preserve type safety

59

Basic type classes

• Num for numeric types

• Eq for types which support equality checks

• Ord for types which in addition have an ordering

• Show for turning things into strings

• And many more!

You can also define your own (later in the course)

60

Parse errors are not type errors

> isZero x = x = 0
<interactive>:1:14: error:

parse error on input ‘=’

Parse error = code does not follow the syntax

• The structure of the code cannot be understood

• In this case, where does the real definition start?

• Parsing happens before typing

• Check the shape and the upper/lowercase distinction

> isZero x = x == 0

61

Parse errors are not type errors

> isZero x = x = 0
<interactive>:1:14: error:

parse error on input ‘=’

Parse error = code does not follow the syntax

• The structure of the code cannot be understood

• In this case, where does the real definition start?

• Parsing happens before typing

• Check the shape and the upper/lowercase distinction

> isZero x = x == 0

61

Important concepts

• Every expression has a type

• Types are used in two different ways

• Checking that types match

• Inferring a type for an expression

• Two forms of polymorphism

• Functions that work for any type, parametric

• Functions that work for a subset of types, ad-hoc

Check exercises at the end of chapter 3 of Hutton’s book

62

	Types

