%% Utrecht University

Lists and recursion

Functional Programming

Utrecht University

« More list functions
* Recursion

* List comprehensions

Chapters 5 and 6 from Hutton’s book

Primitives for building lists
« [1 :: [a]isthe empty list
« (:) :: a -> [a] -> [a] (the*“cons” constructor)
+ Build a list by putting an element at the front

* When we write [1, 2, 3] the compilertranslatesittol : 2 : 3 : []

Pattern matching over lists
0
1 + length xs

length []
length (_:xs)

Useful list functions
null :: [a] -> Bool

head :: [a] -> a
tail :: [a] -> [a]

reverse :: [a] -> [a]

(++) 1t [al -> [al -> [a]
sum :: Num a => [a] -> a
replicate :: Int -> a -> [a]

If you ask for the type of sumin ghci, you get
sum :: (Foldable t, Num a) => t a -> a
+ This is a more generic version of sum
+ “Adding up all elements” works for other containers

+ Think of sets or (binary) trees

> :t sum
sum :: (Num a, Foldable t) => t a -> a
> :t +d sum

sum :: [Integer] -> Integer

Recursion

Recursion = defining something in terms of itself

fac 0 1
fac n =n * fac (n - 1)

0 *m=20
n*m=m+(n-1) *m

* Acasefor0Oor1

+ Arecursive case where the value of n is computed from the same function applied ton — 1

0 *m=20 -- (1)
n*m=m+ (n-1) *m -- (2)

-- apply (2)
+ (2 -1) * 4

»

-- perform substraction
+1*4

SN

-- apply (2) and perform substraction
+ (4 +0*4)

-- apply (1)

+ (4 + 0)

-- perform additions

SN

SN

without base case:
fac n =n * fac (n-1) -- (1)

-- No more equations

fac 1

-- apply (1), what else?
* fac 0

-- apply (1)

* @ * fac (-1)

-- apply (1)

*Q * (-1) * fac (-2)

-- apply (1)

=

[uny

[uny

argument does not get smaller:

(1 -- (1)

replicate 0 _

replicate n x = x : replicate n x -- (2)
replicate 2 'a’

= -- apply (2)

'a' : replicate 2 'a’

= -- apply (2)

'a' : 'a' : replicate 2 'a’

= -- apply (2)

()
1 + length xs

length []
length (_ : xs)

[1] ++ ys = ys
(x:xs) ++ ys X ! (XS ++ ys)

[1 ++ys = ys -- (1)
(X:XS) ++ ys = X : (XS ++ ys) -- (2)

[1, 2] ++ [3, 4]
= -- remove syntactic sugar for [1, 2]
(1 22 []1) ++ [3, 4]

= -- apply (2)

10 ((2: [1) ++ [3, 4])

= -- apply (2)

10 (20 ([1 ++ [3, 4]1))

= -- apply (1)

1:2: [3, 4]

= -- resugar the resulting list
[1, 2, 3, 4]

Define the type
Enumerate the cases
Define the simple (base) cases

= @ N S

Define the other (recursive) cases

+ This part involves most of the thinking

+ The main question:

can | obtain the value of the function if | know its result for a smaller part (e.g. for the tail of the list)?

5. Generalize and simplify
+ Remove duplicate equations
+ Pattern match only as necessary
+ Infer a more general type

1. Define the type
sum :: [Int] -> Int
2. Enumerate the cases

sum [] =

sum (X:Xs)

3. Define the simple (base) cases
sum [] =0
4. Define the other (recursive) cases

+ If know the result of sum xs, canlget sum (x:xs)?
+ Just add the head element to that result!

sum (X:XS) = X + sum Xs
5. Generalize and simplify
+ In this case our definition works for any numeric type

sum :: Num a => [a] -> a

elem x xs tells you whether x is an element of xs

> 1 “elem” [1,2]
True

> 3 “elem’ [1,2]
False

> 2 ‘elem” []
False

We usually write elem infix to make it look like 1 € [1, 2]

1. Define the (approximate) type
elem :: Int -> [Int] -> Bool
2. Enumerate the cases

elem x [] =

elem x (y:ys)
3. Define the simple (base) cases

elem x [] = False

4. Define the other (recursive) cases
+ We need to distinguish between x equal to y or not
+ Remember: we cannot repeat a variable in a pattern

« Ifitis, we stop; otherwise, we continue further

elem x (y:ys) | x ==y True

| otherwise = elem x ys

5. Generalize and simplify

+ We only use (==) to inspect values, so Eq is enough

elem :: Eq a => a -> [a] -> Bool

take n xs gets the first n elements of list xs, or the entire list if there are less than those
> take 2 [1,2,3]

[1,2]

> take 0 [1,2,3]

[1

> take 4 [1,2,3]

[1,2,3]

20

1. Define the type
+ The type of the elements of the list does not matter
take :: Int -> [a] -> [a]
2. Enumerate the cases
+ We can match on both the number and list
take 0 []
take 0 (x:xs)
take n []

take n (x:xs)

21

3. Define the simple (base) cases
+ If there are no elements to take, we obtain an empty list
take 0 [] (1
take 0 (x:xs) [
take n [] =[]

4. Define the other (recursive) cases

+ If we have taken 1 element from x: xs, there are only n-1 left to take from xs

take n (x:xs) = x : take (n-1) xs

22

4. We have the following until now
take 0 [] [1
take 0 (x:xs) []
take n [] [1
take n (x:xs) x : take (n-1) xs

5. Generalize and simplify
+ When the number is 0, the list does not matter
+ If the list is empty, the number does not matter

take 0 _ =[]

take _ [] =[]
take n (x:xs)

x . take (n-1) xs

23

Define list difference

(\\) :: Eq a => [a] -> [a] -> [a]
* Return all elements in the first list except if they appear in the second

> [1,2] \\ [1]

[2]

> [1,2] \\ [2,3,4]
[1]

> [1 \W\ [1,2,3]

(1

24

Define list difference
(\\) :: Eq a => [a] -> [a] -> [a]
* Return all elements in the first list except if they appear in the second
> [1,2] \\ [1]
[2]
> [1,2] \\ [2,3,4]
[1]
> [1 W [1,2,3]
(1

Hint: use elem to detect if an element appears in the second

24

init xs gives you all the elements except for the last
> init [1,2,3]

[1,2]

> init []

**% Exception: Prelude.init: empty list

25

init xs gives you all the elements except for the last
> init [1,2,3]

[1,2]

> init []

**% Exception: Prelude.init: empty list

1. Define the type
init :: [a] -> [a]
2. Enumerate the cases
+ The empty list should yield an error
init [] = error "empty list in init"

init (x:xs) = _

25

+ Here is the trick, we need to distinguish whether we have just one element in the list - and we
are finished - or we need to get more elements

+ We do this by further pattern matching
2. Enumerate the cases

init (x:[1)

init (x:xs)

3. Define the simple (base) cases
init (x:[1) = []
4. Define the other (recursive) cases

init (x:xs) = x : init xs

26

5. Generalize and simplify

* We can use [x] to match a one-element list
+ We do not care about that single element — use _

init :: [a] -> [a]

error "empty list in init"
[]
X @ init xs

init []

init [_]

init (x:xs)

27

sorted xs returns True if and only if the elements in the list are in ascending order

> sorted [1,2,3]
True

> sorted [2,1,3]
False

> sorted []

True

28

sorted xs returns True if and only if the elements in the list are in ascending order

> sorted [1,2,3]
True

> sorted [2,1,3]
False

> sorted []

True
1. Define the type

sorted :: [Int] -> Bool
2. Enumerate the cases

sorted [] 5 _

sorted (x:xs) = _

28

3. Define the simple (base) cases
sorted [] = True
4. Define the other (recursive) cases
+ We need to compare the first and second elements
+ We need further pattern matching

+ If they are in the right relation, we check further

sorted (x:[]) = True

sorted (x:y:ys) | x <=y sorted (y:ys)

| otherwise = False

29

5. Generalize and simplify
* As before, we can use [x] instead of x: []
+ We are reusing the whole y : ys in the right-hand side
+ We can give it a name using @
+ We avoid matching and rebuilding the list
sorted [] = True
sorted [_] = True
sorted (x : xs@(y : _))
| x <=y = sorted xs

| otherwise = False

30

zip Xxs ys turnstwo lists into a list of tuples

> zip [1,2] [3,4]
[(1,3),(2,4)]

> zip [1,2] [3,4,5]
[(1,3),(2,4)]

If one of the lists runs out of elements, we stop

31

zip Xxs ys turnstwo lists into a list of tuples

> zip [1,2] [3,4]
[(1,3),(2,4)]

> zip [1,2] [3,4,5]
[(1,3),(2,4)]

If one of the lists runs out of elements, we stop

Try yourself!

31

1. Define the type

zip :: [a] -> [b] -> [(a,b)]
2. Enumerate the cases

zip [] [] =

zip [] (y:ys) = _

zip (x:xs) [] -

zip (x:xs) (y:ys) = _

3. Define the simple (base) cases
zip [] [] =[]
zip [1] (yrys) =[]
zip (x:xs) [1] []

32

4. Define the other (recursive) cases
zip (x:xs) (y:ys) = (x,y) : zip xs ys
5. Generalize and simplify
+ If one of the lists is empty, we don't care about the other
zip :: [a] -> [b] -> [(a,b)]
zip [1] - (1

zip _ [] [1
zip (x:xs) (y:ys) = (x,y) : zip Xs ys

533

Given two sorted lists xs and ys, merge xs ys produces a new sorted list from those elements

+ This is the basis of a sorting algorithm called MergeSort

> mexge [1,4] [2,3,5]
[1,2,3,4,5]

> mexrge [] [2,3,5]
[2,3,5]

34

1. Define the type
merge :: [Int] -> [Int] -> [Int]

2. Enumerate the cases

merge [] [1 = _
merge (x:xs) [] = _
merge [] (y:ys) = _

+ In the last case we have to decide which number is larger

merge (X:xs) (y:ys)

| x <=y

| otherwise =

35

3. Define the simple (base) cases

merge [] [=[]
merge (x:xs) [] = X:XS
merge [] (y:ys) = y:ys

4. Define the other (recursive) cases

+ Choose the smallest one and merge the rest

merge (Xx:xs) (y:ys)

| x <=y X @ merge Xs (y:ys)

| otherwise y @ merge (X:Xs) ys

36

5. Generalize and simplify
+ This function works for any type which can be ordered
+ In the case of an empty list, we just return the other list
+ We can give names to complete lists to avoid duplication

merge :: Ord a => [a] -> [a] -> [a]
merge [] ys =ys
merge xs [] = XS

merge xss@(x:xs) yss@(y:ys)

| x <=y X ! merge Xs Yss

| otherwise =y : merge xss ys

37

inits xs returns the initial segments of xs, that is, all the lists which are prefixes of the original
one
> inits [1,2,3]

(ri1.,r11,11,21,11,2,311
> inits []

[[11l

1. Define the type
inits :: [a] -> [[a]l]
2. Enumerate the cases

inits [] =

inits (x:xs)

38

3. Define the simple (base) cases
inits [1] = [[I1]
4. Define the other (recursive) cases
+ Suppose you have [1,2,3],thatis, 1 : [2,3]
* Theinitial segments of [2,3] are [[1,[2],[2,3]1, what do you do with the 1?

+ If you put the 1in front of every list,youget [[11,[1,21,[1,2,3]1]
+ We are almost there! We are just missing the extra empty list at the front

inits (x:xs) = [] : prefixWith x (inits xs)

39

prefixWith tia -> [[al] -> [[al]
prefixwith p [] [1
(p:ys) : prefixWith p yss

prefixwith p (ys:yss)

40

prefixWith ia -> [[al]l -> [[a]l]
prefixwith p [] [1
prefixwith p (ys:yss) (p:ys) : prefixWith p yss

prefixwith p yss prefixes every list in yss with a p. Reuse!

prefixwith p yss = map (p:) yss

40

prefixWith ia -> [[al]l -> [[a]l]
prefixwith p [] [1
prefixwith p (ys:yss) (p:ys) : prefixWith p yss

prefixwith p yss prefixes every list in yss with a p. Reuse!
prefixwith p yss = map (p:) yss

Use map:

[[1]
[1 : map (x:) (inits xs)

inits []

inits (x:xs)

40

reverse Xxs gives the same elements in reverse order

> reverse [1,2,3]
[3,2,1]

1. Define the type
reverse :: [a] -> [a]
2. Enumerate the cases

reverse [] = _

reverse (X:Xs) _

a1

3. Define the simple (base) cases
reverse [] =[]
4. Define the other (recursive) cases
+ Suppose you get [1,2,3], which you splitas1and [2,3]

+ Thereverse of [2,3] is [3,2], where do you put the 1?
+ At the end of the reversed list!

reverse (Xx:Xs) = reverse xs ++ [X]

2

+ This definition is very inefficient
+ Each time you call (++), you need to traverse the whole list, since the new element goes at the
end
+ If the list has n elements, the amount of steps is
n-(n—1)

n—1+n—2+n—3+...+1=T=O(n2)

43

Solution: use an accumulator

* There is a standard technique to solve this problem: using an accumulator

Introduce a local definition with an additional parameter (the accumulator)
2. Figure out the invariant:
invariant: accumulator contains solution for all elements seen so far.
3. Follow Hutton's recipe, but
+ Do not pattern match on the accumulator
» Return the accumulator in the base case

+ Update the accumulator in the recursive steps

4. Initialize the accumulator in the main call

44

Define sum using an accumulator

45

Define sum using an accumulator

1 + sum [2,3,4]
1+ 2 + sum [3,4]
1+ 2+ 3 + sum [4]
1+2+ 3+ 4+ sum []

sum [1,2,3,4]

45

Define sum using an accumulator

sum [1,2,3,4] 1+ sum [2,3,4]
1+ 2 + sum [3,4]
1+ 2+ 3 + sum [4]

1 +2+ 3+ 4+ sum []

+ Observation: Always of the form ‘a + sum xs'
* Introduce the function sum' that has as invariant:

sum' acc xs == acc + sum Xs

45

* invariant: ‘'sum' acc xs == acc + sum XS

sum' ;o Int -> [Int] -> Int

sum' acc []

sum' acc (X:Xs)

46

* invariant: ‘'sum' acc xs == acc + sum XS

sum'

sum' acc []

sum' acc (X:Xs)
Invariant tells us that:

sum'

sum' acc []

sum' acc (X:Xs)

Int

Int
acc

sum'

-> [Int] -> Int

-> [Int] -> Int

(acc + x) xs

46

* invariant: ‘'sum' acc xs == acc + sum XS

sum' ;o Int -> [Int] -> Int

sum' acc []

sum' acc (X:Xs)
Invariant tells us that:

sum' ;o Int -> [Int] -> Int
sum' acc []

acc

sum' acc (X:Xs) sum' (acc + X) Xs

SO

sum o [Int] -> Int

sum xs = sum' 0 xs
46

Define sum using an accumulator.

We can also apply n)-reduction and use a case expression.

sum :: [Int] -> Int
sum = sum' 0
where
sum' ;o Int -> [Int] -> Int
sum' acc xs = case xs of
[1] -> acc

(X:Xs) -> sum' (acc+x) Xs

47

1. Introduce a local definition with an additional parameter to hold the interim result
reverse Xxs = _
where
reverse' :: [a]l -> [a] -> [a]

reverse' acc Xs = _

48

2. Figure out the invariant

reverse [1,2,3,4]

reverse [2,3,4] ++ [1]
(reverse [3,4] ++ [2]) ++ [1]
reverse [3,4] ++ ([2] ++ [1])

49

2. Figure out the invariant
reverse [1,2,3,4]
= reverse [2,3,4] ++ [1]
(reverse [3,4] ++ [2]) ++ [1]
reverse [3,4] ++ ([2] ++ [1])

Invariant:

reverse' acc XS == reverse Xs ++ acc

49

reverse with an accumulator

3. Follow Hutton's recipe, but

4

+ Do not pattern match on the accumulator

+ Return the accumulator in the base case

+ Update the accumulator in the recursive steps

reverse xs = _

where
reverse'

reverse'

acc []

acc (x:xs)

acc

reverse'

Initialize the accumulator in the main call

(x:acc) xs

+ When we start, we haven't accumulated any element yet

reverse Xxs =
wherxre
reverse'

reverse'

reverse' [] Xs

acc []

acc (x:xs)

acc

reverse'

(x:acc) xs

50

List comprehensions

51

[expr | x <- list]
Succint notation for building new lists from old ones

addone :: Num a => [a] -> [a]

addone xs = [x + 1 | x <- xs]

+ “For each xin xs, return x + 1"
+ Very similar to mathematical notation

{z+1|z € xs}

52

[expr | x <- list, condition]
-- Check is a number is divisible by 2

even :: Integer -> Bool

sumeven :: [Integer] -> Integer

sumeven xs = sum [x | X <- Xs, even Xx]

+ “Take all x in xs such that x is even”
* The result of a comprehension is another list

+ We can further consume it with other functions

+ In this case, we use sum

53]

inits [] [[1]

[1 : map (x:) (inits xs)

inits (x:xs)

or

inits []

(1]

[1 : [x:xs rs <- inits xs]

inits (x:xs)

54

More List comprehensions; Pattern matching

[expr | pattern <- list]
heads :: [[a]l] -> [a]
heads xs = [y | (y:_) <- xs]

* Only includes those elements which match the pattern
+ In this case, non-empty lists
> heads [[1,21,[1,[3,4,5]1]
[1,31]
* We can introduce new names, as we do with usual pattern matching

+ In this case, we refer to the head in the result

55

We can have multiple generators and guards

+ Generators provide every possible combination
> [(x,y) | x <- [1,2], y <- [3,4]]
[(1.3), (L, 4)5(2,3),(2.4)]

+ Generators and conditions may refer to each other
> [(x,y) | x <-[1,2,3], y <- [1,2,3], x <=y]
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
> [(x,y) | x <- [1,2,3], y <- [x .. 3]]
[(1,1),(1,2),(1,3),(2,2),(2,3).(3,3)]

56

* Problem: Compute all primes < n

57

* Problem: Compute all primes < n

1. Anumber x is a prime iff (x > 2 and) it has exactly two factors
2. fisafactor of x if the remainder of % is zero

57

* Problem: Compute all primes < n

1. Anumber x is a prime iff (x > 2 and) it has exactly two factors

2. fis afactor of x if the remainder of % is zero
Good style: divide the problem in parts and refine it

primes o Int -> [Int]
primes n = [x | x <- [2 .. n], isPrime x]

whexre isPrime x = _

58

* Problem: Compute all primes < n

1. Anumber x is a prime iff (x > 2 and) it has exactly two factors
2. fisafactor of x if the remainder of % is zero

Good style: divide the problem in parts and refine it

primes o Int -> [Int]

primes n = [x | x <- [2 .. n], isPrime x]

where isPrime x length (factors x) ==

factors x

59

* Problem: Compute all primes < n

1. Anumber x is a prime iff (x > 2 and) it has exactly two factors
2. fisafactor of x if the remainder of % is zero

Good style: divide the problem in parts and refine it

primes o Int -> [Int]
primes n = [x | x <- [2 .. n], isPrime x]
where isPrime x = length (factors x) ==
factors x = [f | f <- [1 .. x]
, X ‘mod® f ==

60

+ Divide and conquer approach

Pick a pivot

Partition the elements smaller and larger than the pivot
Sort those partitions

Put together the list

> BN &

61

+ Divide and conquer approach
1. Pick a pivot
+ The first element in the list works
2. Partition the elements smaller and larger than the pivot
3. Sort those partitions
4. Put together the list

quicksort [] []

undefined

quicksort (pivot:rest)

62

+ Divide and conquer approach
Pick a pivot

Partition the elements
Sort those partitions

Put together the list

> N 2

(1

undefined

quicksort []

quicksort (pivot:rest)

where smaller [x | x <- rest, x <= pivot]

larger [x | x <- rest, x > pivot]

63

+ Divide and conquer approach

Pick a pivot

Partition the elements smaller and larger than the pivot
Sort those partitions

= WP S

Put together the list

quicksort []

[]
quicksort (pivot:rest)

quicksort smaller ++ [pivot] ++ quicksort larger
where smaller

[x | x <- rest, x <= pivot]

larger = [x | x <- rest, x > pivot]

64

Define replicate using comprehensions

65

Define replicate using comprehensions

replicate :: Int -> a -> [a]

replicate n x = [x | _ <- [1 .. n]]

65

More List Functions

66

tails xs returns the final segments of xs, that is, all the lists which are suffixes of the original one
> tails [1,2,3]

(r1,2,31.12,31,131,[11]

> tails [2,3]

[[2,31,[31,[11]

> tails [3]

[[31,[1]

tails :: [a] -> [[all
tails [] = [[1]
tails ts@(_:xs) = ts : tails xs

67

Final segments of xs seem related to initial segments of reverse xs

> tails [1,2,3]
[01,2,31,02,31,[31,[11]
> inits [3,2,1]
[[1,031,03,21,[3,2,1]1

+ There are two problems with the second result

1. Each of the inner lists is reversed
2. The whole outer list is reversed

+ Let’s fix this and give an alternative definition of tails

68

+ To reverse each of the inner lists we use a list comprehension
> [reverse i | i <- inits [3,2,1]]
[r1.131.12,31,11,2,3]]

+ This leads to this final definition

tails xs = reverse [reverse i

| i <- inits (reverse xs)]

69

+ Write fizzbuzz using direct recursion; test if some element is divisible by n (and by m) only once.

fizzbuzz :: (Int, Int) -> [Int]
-> ([Int], [Int], [Int])

A call of the form fizzbuzz (m, n) xs should return a triple with a list in each element:

+ The first list contains elements of xs divisible by m
+ The second list those divisible by n (and not by m)
* The third list should contain the rest

70

fizzbuzz (m,n) xs = fb xs

where
fb [1] = ([1.,01.11)
fb (x:xs) = case (x ‘mod” m == 0
, X ‘mod’ n ==20
) of
(Txrue, _) -> (X:ms,ns, IS)
(_ , True) -> (ms, X:ns,rs)
(_ ., _) ->(ms, ns, Xx:rs)
where

(ms,ns,rs) = fb xs

71

fizzbuzz (m,n) xs = fb xs

where
fb [1] = ([1.,01.11)
fb (x:xs) = case (x ‘mod” m == 0
, X ‘mod’ n ==20
) of
(Txrue, _) -> (X:ms,ns, IS)
(_ , True) -> (ms, X:ns,rs)
(_ ., _) ->(ms, ns, Xx:rs)
where

(ms,ns,rs) = fb xs

+ Exercise: write fizzbuzz using a comprehensions

71

Defining recursive functions is like riding a bicycle: it looks easy when someone else is doing it,
may seem impossible when you first try to do it yourself, but becomes simple and natural with
practice.

- From "Programming in Haskell”
+ On the other hand, don't get too attached to recursion

+ Many of these examples have better implementations using higher-order functions

+ Which happens to be the topic for next lecture!

72

	Recursion
	List comprehensions
	More List Functions

