
Lists and recursion

Functional Programming

Utrecht University

1

Goals

• More list functions

• Recursion

• List comprehensions

Chapters 5 and 6 from Hutton’s book

2

From previous lectures

Primitives for building lists

• [] :: [a] is the empty list

• (:) :: a -> [a] -> [a] (the “cons” constructor)

• Build a list by putting an element at the front

• When we write [1, 2, 3] the compiler translates it to 1 : 2 : 3 : []

Pattern matching over lists

length [] = 0

length (_:xs) = 1 + length xs

3

From previous lectures

Useful list functions

null :: [a] -> Bool

head :: [a] -> a

tail :: [a] -> [a]

reverse :: [a] -> [a]

(++) :: [a] -> [a] -> [a]

sum :: Num a => [a] -> a

replicate :: Int -> a -> [a]

4

Foldable in the interpreter

If you ask for the type of sum in ghci, you get

sum :: (Foldable t, Num a) => t a -> a

• This is amore generic version of sum

• “Adding up all elements” works for other containers

• Think of sets or (binary) trees

5

How to obtain the types shown here

> :t sum

sum :: (Num a, Foldable t) => t a -> a

> :t +d sum

sum :: [Integer] -> Integer

6

Recursion

7

Recursion on natural numbers

Recursion = defining something in terms of itself

fac 0 = 1

fac n = n * fac (n - 1)

0 * m = 0

n * m = m + (n - 1) * m

• A case for 0 or 1

• A recursive case where the value of n is computed from the same function applied to n − 1

8

Does our product work?

0 * m = 0 -- (1)

n * m = m + (n - 1) * m -- (2)

2 * 4

= -- apply (2)

4 + (2 - 1) * 4

= -- perform substraction

4 + 1 * 4

= -- apply (2) and perform substraction

4 + (4 + 0 * 4)

= -- apply (1)

4 + (4 + 0)

= -- perform additions

8
9

Recursion needs a base case

without base case:

fac n = n * fac (n-1) -- (1)

-- No more equations

fac 1

= -- apply (1), what else?

1 * fac 0

= -- apply (1)

1 * 0 * fac (-1)

= -- apply (1)

1 * 0 * (-1) * fac (-2)

= -- apply (1)

...

10

Recursion needs the argument to get smaller

argument does not get smaller:

replicate 0 _ = [] -- (1)

replicate n x = x : replicate n x -- (2)

replicate 2 'a'

= -- apply (2)

'a' : replicate 2 'a'

= -- apply (2)

'a' : 'a' : replicate 2 'a'

= -- apply (2)

...

11

Recursion on Lists

length [] = 0

length (_ : xs) = 1 + length xs

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

12

Does our concatenation work?

[] ++ ys = ys -- (1)

(x:xs) ++ ys = x : (xs ++ ys) -- (2)

[1, 2] ++ [3, 4]

= -- remove syntactic sugar for [1, 2]

(1 : 2 : []) ++ [3, 4]

= -- apply (2)

1 : ((2 : []) ++ [3, 4])

= -- apply (2)

1 : (2 : ([] ++ [3, 4]))

= -- apply (1)

1 : 2 : [3, 4]

= -- resugar the resulting list

[1, 2, 3, 4]
13

Hutton’s recipe for recursion

1. Define the type

2. Enumerate the cases

3. Define the simple (base) cases

4. Define the other (recursive) cases

• This part involves most of the thinking

• The main question:

can I obtain the value of the function if I know its result for a smaller part (e.g. for the tail of the list)?

5. Generalize and simplify

• Remove duplicate equations

• Pattern match only as necessary

• Infer a more general type

14

Cooking sum

1. Define the type

sum :: [Int] -> Int

2. Enumerate the cases

sum [] = _

sum (x:xs) = _

15

Cooking sum

1. Define the type

sum :: [Int] -> Int

2. Enumerate the cases

sum [] = _

sum (x:xs) = _

15

Cooking sum

3. Define the simple (base) cases

sum [] = 0

4. Define the other (recursive) cases

• If I know the result of sum xs, can I get sum (x:xs)?

• Just add the head element to that result!

sum (x:xs) = x + sum xs

5. Generalize and simplify

• In this case our definition works for any numeric type

sum :: Num a => [a] -> a

16

Cooking elem

elem x xs tells you whether x is an element of xs

> 1 `elem` [1,2]

True

> 3 `elem` [1,2]

False

> 2 `elem` []

False

We usually write elem infix to make it look like 1 ∈ [1, 2]

17

Cooking elem

1. Define the (approximate) type

elem :: Int -> [Int] -> Bool

2. Enumerate the cases

elem x [] = _

elem x (y:ys) = _

3. Define the simple (base) cases

elem x [] = False

18

Cooking elem

4. Define the other (recursive) cases

• We need to distinguish between x equal to y or not

• Remember: we cannot repeat a variable in a pattern

• If it is, we stop; otherwise, we continue further

elem x (y:ys) | x == y = True

| otherwise = elem x ys

5. Generalize and simplify

• We only use (==) to inspect values, so Eq is enough

elem :: Eq a => a -> [a] -> Bool

19

Cooking take

take n xs gets the first n elements of list xs, or the entire list if there are less than those

> take 2 [1,2,3]

[1,2]

> take 0 [1,2,3]

[]

> take 4 [1,2,3]

[1,2,3]

20

Cooking take

1. Define the type

• The type of the elements of the list does not matter

take :: Int -> [a] -> [a]

2. Enumerate the cases

• We can match on both the number and list

take 0 [] = _

take 0 (x:xs) = _

take n [] = _

take n (x:xs) = _

21

Cooking take

3. Define the simple (base) cases

• If there are no elements to take, we obtain an empty list

take 0 [] = []

take 0 (x:xs) = []

take n [] = []

4. Define the other (recursive) cases

• If we have taken 1 element from x:xs, there are only n-1 left to take from xs

take n (x:xs) = x : take (n-1) xs

22

Cooking take

4. We have the following until now

take 0 [] = []

take 0 (x:xs) = []

take n [] = []

take n (x:xs) = x : take (n-1) xs

5. Generalize and simplify

• When the number is 0, the list does not matter

• If the list is empty, the number does not matter

take 0 _ = []

take _ [] = []

take n (x:xs) = x : take (n-1) xs

23

Question

Define list difference

(\\) :: Eq a => [a] -> [a] -> [a]

• Return all elements in the first list except if they appear in the second

> [1,2] \\ [1]

[2]

> [1,2] \\ [2,3,4]

[1]

> [] \\ [1,2,3]

[]

Hint: use elem to detect if an element appears in the second

24

Question

Define list difference

(\\) :: Eq a => [a] -> [a] -> [a]

• Return all elements in the first list except if they appear in the second

> [1,2] \\ [1]

[2]

> [1,2] \\ [2,3,4]

[1]

> [] \\ [1,2,3]

[]

Hint: use elem to detect if an element appears in the second

24

Cooking init

init xs gives you all the elements except for the last

> init [1,2,3]

[1,2]

> init []

*** Exception: Prelude.init: empty list

1. Define the type

init :: [a] -> [a]

2. Enumerate the cases

• The empty list should yield an error

init [] = error "empty list in init"

init (x:xs) = _

25

Cooking init

init xs gives you all the elements except for the last

> init [1,2,3]

[1,2]

> init []

*** Exception: Prelude.init: empty list

1. Define the type

init :: [a] -> [a]

2. Enumerate the cases

• The empty list should yield an error

init [] = error "empty list in init"

init (x:xs) = _

25

Cooking init

• Here is the trick, we need to distinguish whether we have just one element in the list – and we

are finished – or we need to get more elements

• We do this by further pattern matching

2. Enumerate the cases

init (x:[]) = _

init (x:xs) = _

3. Define the simple (base) cases

init (x:[]) = []

4. Define the other (recursive) cases

init (x:xs) = x : init xs

26

Cooking init

5. Generalize and simplify

• We can use [x] to match a one-element list

• We do not care about that single element → use _

init :: [a] -> [a]

init [] = error "empty list in init"

init [_] = []

init (x:xs) = x : init xs

27

Cooking sorted

sorted xs returns True if and only if the elements in the list are in ascending order

> sorted [1,2,3]

True

> sorted [2,1,3]

False

> sorted []

True

1. Define the type

sorted :: [Int] -> Bool

2. Enumerate the cases

sorted [] = _

sorted (x:xs) = _

28

Cooking sorted

sorted xs returns True if and only if the elements in the list are in ascending order

> sorted [1,2,3]

True

> sorted [2,1,3]

False

> sorted []

True

1. Define the type

sorted :: [Int] -> Bool

2. Enumerate the cases

sorted [] = _

sorted (x:xs) = _

28

Cooking sorted

3. Define the simple (base) cases

sorted [] = True

4. Define the other (recursive) cases

• We need to compare the first and second elements

• We need further pattern matching

• If they are in the right relation, we check further

sorted (x:[]) = True

sorted (x:y:ys) | x <= y = sorted (y:ys)

| otherwise = False

29

Cooking sorted

5. Generalize and simplify

• As before, we can use [x] instead of x:[]

• We are reusing the whole y:ys in the right-hand side

• We can give it a name using @

• We avoid matching and rebuilding the list

sorted [] = True

sorted [_] = True

sorted (x : xs@(y : _))

| x <= y = sorted xs

| otherwise = False

30

Cooking zip

zip xs ys turns two lists into a list of tuples

> zip [1,2] [3,4]

[(1,3),(2,4)]

> zip [1,2] [3,4,5]

[(1,3),(2,4)]

If one of the lists runs out of elements, we stop

Try yourself!

31

Cooking zip

zip xs ys turns two lists into a list of tuples

> zip [1,2] [3,4]

[(1,3),(2,4)]

> zip [1,2] [3,4,5]

[(1,3),(2,4)]

If one of the lists runs out of elements, we stop

Try yourself!

31

Cooking zip

1. Define the type

zip :: [a] -> [b] -> [(a,b)]

2. Enumerate the cases

zip [] [] = _

zip [] (y:ys) = _

zip (x:xs) [] = _

zip (x:xs) (y:ys) = _

3. Define the simple (base) cases

zip [] [] = []

zip [] (y:ys) = []

zip (x:xs) [] = []

32

Cooking zip

4. Define the other (recursive) cases

zip (x:xs) (y:ys) = (x,y) : zip xs ys

5. Generalize and simplify

• If one of the lists is empty, we don’t care about the other

zip :: [a] -> [b] -> [(a,b)]

zip [] _ = []

zip _ [] = []

zip (x:xs) (y:ys) = (x,y) : zip xs ys

33

Cooking merge

Given two sorted lists xs and ys, merge xs ys produces a new sorted list from those elements

• This is the basis of a sorting algorithm called MergeSort

> merge [1,4] [2,3,5]

[1,2,3,4,5]

> merge [] [2,3,5]

[2,3,5]

34

Cooking merge

1. Define the type

merge :: [Int] -> [Int] -> [Int]

2. Enumerate the cases

merge [] [] = _

merge (x:xs) [] = _

merge [] (y:ys) = _

• In the last case we have to decide which number is larger

merge (x:xs) (y:ys)

| x <= y = _

| otherwise = _

35

Cooking merge

3. Define the simple (base) cases

merge [] [] = []

merge (x:xs) [] = x:xs

merge [] (y:ys) = y:ys

4. Define the other (recursive) cases

• Choose the smallest one and merge the rest

merge (x:xs) (y:ys)

| x <= y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

36

Cooking merge

5. Generalize and simplify

• This function works for any type which can be ordered

• In the case of an empty list, we just return the other list

• We can give names to complete lists to avoid duplication

merge :: Ord a => [a] -> [a] -> [a]

merge [] ys = ys

merge xs [] = xs

merge xss@(x:xs) yss@(y:ys)

| x <= y = x : merge xs yss

| otherwise = y : merge xss ys

37

cooking inits

inits xs returns the initial segments of xs, that is, all the lists which are prefixes of the original

one

> inits [1,2,3]

[[],[1],[1,2],[1,2,3]]

> inits []

[[]]

1. Define the type

inits :: [a] -> [[a]]

2. Enumerate the cases

inits [] = _

inits (x:xs) = _

38

Cooking initial segments

3. Define the simple (base) cases

inits [] = [[]]

4. Define the other (recursive) cases

• Suppose you have [1,2,3], that is, 1 : [2,3]

• The initial segments of [2,3] are [[],[2],[2,3]], what do you do with the 1?

• If you put the 1 in front of every list, you get [[1],[1,2],[1,2,3]]

• We are almost there! We are just missing the extra empty list at the front

inits (x:xs) = [] : prefixWith x (inits xs)

39

Cooking initial segments

prefixWith :: a -> [[a]] -> [[a]]

prefixWith p [] = []

prefixwith p (ys:yss) = (p:ys) : prefixWith p yss

prefixWith p yss prefixes every list in yss with a p. Reuse!

prefixWith p yss = map (p:) yss

Use map:

inits [] = [[]]

inits (x:xs) = [] : map (x:) (inits xs)

40

Cooking initial segments

prefixWith :: a -> [[a]] -> [[a]]

prefixWith p [] = []

prefixwith p (ys:yss) = (p:ys) : prefixWith p yss

prefixWith p yss prefixes every list in yss with a p. Reuse!

prefixWith p yss = map (p:) yss

Use map:

inits [] = [[]]

inits (x:xs) = [] : map (x:) (inits xs)

40

Cooking initial segments

prefixWith :: a -> [[a]] -> [[a]]

prefixWith p [] = []

prefixwith p (ys:yss) = (p:ys) : prefixWith p yss

prefixWith p yss prefixes every list in yss with a p. Reuse!

prefixWith p yss = map (p:) yss

Use map:

inits [] = [[]]

inits (x:xs) = [] : map (x:) (inits xs)

40

Cooking reverse

reverse xs gives the same elements in reverse order

> reverse [1,2,3]

[3,2,1]

1. Define the type

reverse :: [a] -> [a]

2. Enumerate the cases

reverse [] = _

reverse (x:xs) = _

41

Cooking reverse

3. Define the simple (base) cases

reverse [] = []

4. Define the other (recursive) cases

• Suppose you get [1,2,3], which you split as 1 and [2,3]

• The reverse of [2,3] is [3,2], where do you put the 1?

• At the end of the reversed list!

reverse (x:xs) = reverse xs ++ [x]

42

Problem with reverse reverse

• This definition is very inefficient

• Each time you call (++), you need to traverse the whole list, since the new element goes at the

end

• If the list has n elements, the amount of steps is

n − 1 + n − 2 + n − 3 + ... + 1 = n · (n − 1)
2 = O(n2)

43

Solution: use an accumulator

• There is a standard technique to solve this problem: using an accumulator

1. Introduce a local definition with an additional parameter (the accumulator)

2. Figure out the invariant:

invariant: accumulator contains solution for all elements seen so far.

3. Follow Hutton’s recipe, but

• Do not pattern match on the accumulator

• Return the accumulator in the base case

• Update the accumulator in the recursive steps

4. Initialize the accumulator in the main call

44

sum with accumulator

Define sum using an accumulator

sum [1,2,3,4] = 1 + sum [2,3,4]

= 1 + 2 + sum [3,4]

= 1 + 2 + 3 + sum [4]

= 1 + 2 + 3 + 4 + sum []

• Observation: Always of the form ‘a + sum xs’

• Introduce the function sum' that has as invariant:

sum' acc xs == acc + sum xs

45

sum with accumulator

Define sum using an accumulator

sum [1,2,3,4] = 1 + sum [2,3,4]

= 1 + 2 + sum [3,4]

= 1 + 2 + 3 + sum [4]

= 1 + 2 + 3 + 4 + sum []

• Observation: Always of the form ‘a + sum xs’

• Introduce the function sum' that has as invariant:

sum' acc xs == acc + sum xs

45

sum with accumulator

Define sum using an accumulator

sum [1,2,3,4] = 1 + sum [2,3,4]

= 1 + 2 + sum [3,4]

= 1 + 2 + 3 + sum [4]

= 1 + 2 + 3 + 4 + sum []

• Observation: Always of the form ‘a + sum xs’

• Introduce the function sum' that has as invariant:

sum' acc xs == acc + sum xs

45

Implementing sum'

• invariant: ‘sum' acc xs == acc + sum xs

sum' :: Int -> [Int] -> Int

sum' acc [] = _

sum' acc (x:xs) = _

Invariant tells us that:

sum' :: Int -> [Int] -> Int

sum' acc [] = acc

sum' acc (x:xs) = sum' (acc + x) xs

so:

sum :: [Int] -> Int

sum xs = sum' 0 xs

46

Implementing sum'

• invariant: ‘sum' acc xs == acc + sum xs

sum' :: Int -> [Int] -> Int

sum' acc [] = _

sum' acc (x:xs) = _

Invariant tells us that:

sum' :: Int -> [Int] -> Int

sum' acc [] = acc

sum' acc (x:xs) = sum' (acc + x) xs

so:

sum :: [Int] -> Int

sum xs = sum' 0 xs

46

Implementing sum'

• invariant: ‘sum' acc xs == acc + sum xs

sum' :: Int -> [Int] -> Int

sum' acc [] = _

sum' acc (x:xs) = _

Invariant tells us that:

sum' :: Int -> [Int] -> Int

sum' acc [] = acc

sum' acc (x:xs) = sum' (acc + x) xs

so:

sum :: [Int] -> Int

sum xs = sum' 0 xs

46

sum with accumulator

Define sum using an accumulator.

We can also apply η-reduction and use a case expression.

sum :: [Int] -> Int

sum = sum' 0

where

sum' :: Int -> [Int] -> Int

sum' acc xs = case xs of

[] -> acc

(x:xs) -> sum' (acc+x) xs

47

reverse with an accumulator

1. Introduce a local definition with an additional parameter to hold the interim result

reverse xs = _

where

reverse' :: [a] -> [a] -> [a]

reverse' acc xs = _

48

reverse with an accumulator

2. Figure out the invariant

reverse [1,2,3,4]

= reverse [2,3,4] ++ [1]

= (reverse [3,4] ++ [2]) ++ [1]

= reverse [3,4] ++ ([2] ++ [1])

= ...

Invariant:

reverse' acc xs == reverse xs ++ acc

49

reverse with an accumulator

2. Figure out the invariant

reverse [1,2,3,4]

= reverse [2,3,4] ++ [1]

= (reverse [3,4] ++ [2]) ++ [1]

= reverse [3,4] ++ ([2] ++ [1])

= ...

Invariant:

reverse' acc xs == reverse xs ++ acc

49

reverse with an accumulator

3. Follow Hutton’s recipe, but

• Do not pattern match on the accumulator

• Return the accumulator in the base case

• Update the accumulator in the recursive steps

reverse xs = _

where

reverse' acc [] = acc

reverse' acc (x:xs) = reverse' (x:acc) xs

4. Initialize the accumulator in the main call

• When we start, we haven’t accumulated any element yet

reverse xs = reverse' [] xs

where

reverse' acc [] = acc

reverse' acc (x:xs) = reverse' (x:acc) xs
50

List comprehensions

51

List comprehensions

[expr | x <- list]

Succint notation for building new lists from old ones

addone :: Num a => [a] -> [a]

addone xs = [x + 1 | x <- xs]

• “For each x in xs, return x + 1”

• Very similar to mathematical notation

{x + 1 | x ∈ xs}

52

Guards

[expr | x <- list, condition]

-- Check is a number is divisible by 2

even :: Integer -> Bool

sumeven :: [Integer] -> Integer

sumeven xs = sum [x | x <- xs, even x]

• “Take all x in xs such that x is even”

• The result of a comprehension is another list

• We can further consume it with other functions

• In this case, we use sum

–

53

Inits with a list comprehension

inits [] = [[]]

inits (x:xs) = [] : map (x:) (inits xs)

or

inits [] = [[]]

inits (x:xs) = [] : [x:rs | rs <- inits xs]

54

More List comprehensions; Pattern matching

[expr | pattern <- list]

heads :: [[a]] -> [a]

heads xs = [y | (y:_) <- xs]

• Only includes those elements which match the pattern

• In this case, non-empty lists

> heads [[1,2],[],[3,4,5]]

[1,3]

• We can introduce new names, as we do with usual pattern matching

• In this case, we refer to the head in the result

55

Multiple clauses

We can have multiple generators and guards

• Generators provide every possible combination

> [(x,y) | x <- [1,2], y <- [3,4]]

[(1,3),(1,4),(2,3),(2,4)]

• Generators and conditions may refer to each other

> [(x,y) | x <- [1,2,3], y <- [1,2,3], x <= y]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

> [(x,y) | x <- [1,2,3], y <- [x .. 3]]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

56

Prime numbers up to a bound

• Problem: Compute all primes ≤ n

1. A number x is a prime iff (x ≥ 2 and) it has exactly two factors

2. f is a factor of x if the remainder of x
f is zero

57

Prime numbers up to a bound

• Problem: Compute all primes ≤ n

1. A number x is a prime iff (x ≥ 2 and) it has exactly two factors

2. f is a factor of x if the remainder of x
f is zero

57

Prime numbers up to a bound

• Problem: Compute all primes ≤ n

1. A number x is a prime iff (x ≥ 2 and) it has exactly two factors

2. f is a factor of x if the remainder of x
f is zero

Good style: divide the problem in parts and refine it

primes :: Int -> [Int]

primes n = [x | x <- [2 .. n], isPrime x]

where isPrime x = _

58

Prime numbers up to a bound

• Problem: Compute all primes ≤ n

1. A number x is a prime iff (x ≥ 2 and) it has exactly two factors

2. f is a factor of x if the remainder of x
f is zero

Good style: divide the problem in parts and refine it

primes :: Int -> [Int]

primes n = [x | x <- [2 .. n], isPrime x]

where isPrime x = length (factors x) == 2

factors x = _

59

Prime numbers up to a bound

• Problem: Compute all primes ≤ n

1. A number x is a prime iff (x ≥ 2 and) it has exactly two factors

2. f is a factor of x if the remainder of x
f is zero

Good style: divide the problem in parts and refine it

primes :: Int -> [Int]

primes n = [x | x <- [2 .. n], isPrime x]

where isPrime x = length (factors x) == 2

factors x = [f | f <- [1 .. x]

, x `mod` f == 0

]

60

(Functional) QuickSort

• Divide and conquer approach

1. Pick a pivot

2. Partition the elements smaller and larger than the pivot

3. Sort those partitions

4. Put together the list

61

(Functional) QuickSort

• Divide and conquer approach

1. Pick a pivot

• The first element in the list works

2. Partition the elements smaller and larger than the pivot

3. Sort those partitions

4. Put together the list

quicksort [] = []

quicksort (pivot:rest) = undefined

62

(Functional) QuickSort

• Divide and conquer approach

1. Pick a pivot

2. Partition the elements

3. Sort those partitions

4. Put together the list

quicksort [] = []

quicksort (pivot:rest) = undefined

where smaller = [x | x <- rest, x <= pivot]

larger = [x | x <- rest, x > pivot]

63

(Functional) QuickSort

• Divide and conquer approach

1. Pick a pivot

2. Partition the elements smaller and larger than the pivot

3. Sort those partitions

4. Put together the list

quicksort [] = []

quicksort (pivot:rest) =

quicksort smaller ++ [pivot] ++ quicksort larger

where smaller = [x | x <- rest, x <= pivot]

larger = [x | x <- rest, x > pivot]

64

Question

Define replicate using comprehensions

replicate :: Int -> a -> [a]

replicate n x = [x | _ <- [1 .. n]]

65

Question

Define replicate using comprehensions

replicate :: Int -> a -> [a]

replicate n x = [x | _ <- [1 .. n]]

65

More List Functions

66

Cooking final segments

tails xs returns the final segments of xs, that is, all the lists which are suffixes of the original one

> tails [1,2,3]

[[1,2,3],[2,3],[3],[]]

> tails [2,3]

[[2,3],[3],[]]

> tails [3]

[[3],[]]

tails :: [a] -> [[a]]

tails [] = [[]]

tails ts@(_:xs) = ts : tails xs

67

Final segments using initial segments

Final segments of xs seem related to initial segments of reverse xs

> tails [1,2,3]

[[1,2,3],[2,3],[3],[]]

> inits [3,2,1]

[[],[3],[3,2],[3,2,1]]

• There are two problems with the second result

1. Each of the inner lists is reversed

2. The whole outer list is reversed

• Let’s fix this and give an alternative definition of tails

68

Final segments using initial segments

• To reverse each of the inner lists we use a list comprehension

> [reverse i | i <- inits [3,2,1]]

[[],[3],[2,3],[1,2,3]]

• This leads to this final definition

tails xs = reverse [reverse i

| i <- inits (reverse xs)]

69

Fizzbuzz

• Write fizzbuzz using direct recursion; test if some element is divisible by n (and by m) only once.

fizzbuzz :: (Int, Int) -> [Int]

-> ([Int], [Int], [Int])

A call of the form fizzbuzz (m, n) xs should return a triple with a list in each element:

• The first list contains elements of xs divisible by m

• The second list those divisible by n (and not by m)

• The third list should contain the rest

70

Fizzbuzz

fizzbuzz (m,n) xs = fb xs

where

fb [] = ([],[],[])

fb (x:xs) = case (x `mod` m == 0

, x `mod` n == 0

) of

(True, _) -> (x:ms,ns, rs)

(_ , True) -> (ms, x:ns,rs)

(_ , _) -> (ms, ns, x:rs)

where

(ms,ns,rs) = fb xs

• Exercise: write fizzbuzz using a comprehensions

71

Fizzbuzz

fizzbuzz (m,n) xs = fb xs

where

fb [] = ([],[],[])

fb (x:xs) = case (x `mod` m == 0

, x `mod` n == 0

) of

(True, _) -> (x:ms,ns, rs)

(_ , True) -> (ms, x:ns,rs)

(_ , _) -> (ms, ns, x:rs)

where

(ms,ns,rs) = fb xs

• Exercise: write fizzbuzz using a comprehensions

71

Final words

Defining recursive functions is like riding a bicycle: it looks easy when someone else is doing it,

may seem impossible when you first try to do it yourself, but becomes simple and natural with

practice.

– From ”Programming in Haskell”

• On the other hand, don’t get too attached to recursion

• Many of these examples have better implementations using higher-order functions

• Which happens to be the topic for next lecture!

72

	Recursion
	List comprehensions
	More List Functions

