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Goal of typed purely functional programming

Keep programs easy to reason about by

• data-flow only through function arguments and return values

• no hidden data-flow through mutable variables/state

• (almost) unique types

• no inheritance hell

• high-level declarative data-structures

• no explicit reference-based data structures

• function call and return as only control-flow primitive

• no loops, break, continue, goto
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Goal of typed purely functional programming

Keep programs easy to reason about by

• function call and return as only control-flow primitive

• no loops, break, continue, goto

• instead: higher-order functions (functions which use other functions)

• extra pay-off: huge abstraction power -> more code reuse!
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Goals of today

• Define and use higher-order functions

• Functions which use other functions

• In particular, map, filter, foldr and foldl

• vs general recursion

• Use anonymous functions

• Understand function composition

• Understand partial application

Chapter 7 and 4.5-4.6 from Hutton’s book
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Higher-order functions vs curried functions

• Curried functions (of multiple arguments):

f :: a -> b -> c

read

f :: a -> (b -> c)

• Higher-order functions:

f :: (a -> b) -> c

• Exercise: come up with some examples from high school mathematics
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What can higher-order functions do?

• How can we use argument-functions?

• Can we pattern match on them?

• Can we inspect their source code from a higher-order function?
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What can higher-order functions do?

• How can we use argument-functions?

• By applying them! That’s it!

• Can we pattern match on them?

• No! But we can feed them inputs and pattern match on the results!

• Can we inspect their source code from a higher-order function?

• No! Only their input-output behaviour!
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Usage of map

From the previous lectures…

• map applies a function uniformly over a list

• The function to apply is an argument to map

map :: (a -> b) -> [a] -> [b]

> map length ["a", "abc", "ab"]

[1,3,2]

• It is very similar to a list comprehension

> [length s | s <- ["a", "abc", "ab"]]

[1,3,2]
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Cooking map

1. Define the type

map :: _

2. Enumerate the cases

• We cannot pattern match on functions

map f [] = _

map f (x:xs) = _

Try it yourself!

9



Cooking map

1. Define the type

map :: (a -> b) -> [a] -> [b]

2. Enumerate the cases

• We cannot pattern match on functions

map f [] = _

map f (x:xs) = _

3. Define the simple (base) cases

map f [] = []
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Cooking map

4. Define the other (recursive) cases

• The current element needs to be transformed by f

• The rest are transformed uniformly by map

map f (x:xs) = f x : map f xs

It makes no difference whether the function we use is global or is an argument
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Usage of filter

filter p xs leaves only the elements in xs which satisfy the predicate p

• A predicate is a function which returns True or False

• In other words, pmust return Bool

> even x = x `mod` 2 == 0

> filter even [1 .. 4]

[2,4]

> largerThan10 x = x > 10

> filter largerThan10 [1 .. 4]

[]
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Cooking filter

1. Define the type

filter :: _

2. Enumerate the cases

filter p [] = _

filter p (x:xs) = _

Try it yourself!
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Cooking filter

1. Define the type

filter :: (a -> Bool) -> [a] -> [a]

2. Enumerate the cases

filter p [] = _

filter p (x:xs) = _

3. Define the simple (base) cases

filter p [] = []
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Cooking filter

4. Define the other (recursive) cases

• We have to distinguish whether the predicate holds

• Version 1, using conditionals

filter p (x:xs) = if p x

then x : filter p xs

else filter p xs

• Version 2, using guards

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs
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Alternative definitions using comprehensions

map and filter can be easily defined using comprehensions

map f xs = [f x | x <- xs]

filter p xs = [x | x <- xs, p x]

The recursive definitions are better to reason about code
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(Ab)use of local definitions

Suppose we want to double the numbers in a list

• We can define a double function and apply it to the list

double n = 2 * n

doubleList xs = map double xs

• This pollutes the code, so we can put it in a where

doubleList xs = map double xs

where double n = 2 * n

• But we are still using too much code for such a simple and small function!

• Each call to map or filtermay require one of those
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Anonymous functions

\ arguments -> code

Haskell allows you to define functions without a name

doubleList xs = map (\x -> 2 * x) xs

• They are called anonymous functions or (lambda) abstractions

• The \ symbol resembles a Greek λ

Historical note: the theoretical basis for functional programming is called λ-calculus and was

introduced in the 1930s by the American mathematician Alonzo Church
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Anonymous functions are just functions

• They have a type, which is always a function type

> :t \x -> 2 * x

\x -> 2 * x :: Num a => a -> a

• You can use it everywhere you need a function

> (\x -> 2 * x) 3

6

> filter (\x -> x > 10) [1 .. 20]

[11,12,13,14,15,16,17,18,19,20]

• Even when you define a function

double = \x -> 2 * x
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Functions which return functions

flip :: (a -> b -> c) -> (b -> a -> c)

flip f = _
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Functions which return functions

flip :: (a -> b -> c) -> (b -> a -> c)

flip f = \y x -> f x y

• This function is called a combinator

• It creates a function from another function

• The resulting function may get more arguments

• They appear in reverse order from the original

> flip map [1,2,3] (\x -> 2 * x)

[2,4,6]
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Functions are curried

• In Haskell, functions take one argument at a time

• The result might be another function

map :: (a -> b) -> [a] -> [b]

map :: (a -> b) -> ([a] -> [b])

• We say functions in Haskell are curried

• A two-argument function is actually a one-argument function which returns yet another

function which takes the next argument and produces a result
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Different ways to write

Take a function with three arguments

addThree :: Int -> Int -> Int -> Int

addThree x y z = x + y + z

Parentheses in functions associate to the right

addThree :: Int -> (Int -> (Int -> Int))

We can define the function in these other ways

addThree x y = \z -> x + y + z

addThree x = \y -> \z -> x + y + z

addThree = \x -> \y -> \z -> x + y + z

addThree = \x y z -> x + y + z
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Partial application

• Since Haskell functions take one argument at a time, we can provide less than the ones stated

in the signature

• The result is yet another function

• We say the function has been partially appplied

> :t map (\x -> 2 * x)

map (\x -> 2 * x) :: ???
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Partial application

• Since Haskell functions take one argument at a time, we can provide less than the ones stated

in the signature

• The result is yet another function

• We say the function has been partially appplied

> :t map (\x -> 2 * x)

map (\x -> 2 * x) :: Num b => [b] -> [b]

> :{

| let doubleList = map (\x -> 2 * x)

| in doubleList [1,2,3]

| :}

[2,4,6]
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Definition by partial application

Instead of writing out all the arguments

doubleList xs = map (\x -> 2 * x) xs

Haskells make use of partial application if possible

doubleList = map (\x -> 2 * x)

Note that xs has been dropped from both sides

Technical note: this is called η (eta) reduction
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Sections

Sections are shorthand for partial application of operators

(x #) = \y -> x # y -- Application of 1st arg.

(# y) = \x -> x # y -- Application of 2nd arg.

They help us remove even more clutter

doubleList = map (2 *)

largerThan10 = filter (> 10)

Warning! Order matters in sections

> filter (> 10) [1 .. 20]

[11,12,13,14,15,16,17,18,19,20]

> filter (10 >) [1 .. 20]

[1,2,3,4,5,6,7,8,9]
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Example: working with a list of functions

Apply a list of functions in order to a starting argument

> applyAll [(+ 1), (* 2), (\x -> x - 3)] 3

5 -- ((3 + 1) * 2) - 3

• Define the function

• What is the type of applyAll?

Try it yourself!
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Example: working with a list of functions

applyAll [f] x = f x

applyAll (f : fs) x = applyAll fs (f x)

Let’s think harder about the base case!

applyAll [] x = x

applyAll (f : fs) x = applyAll fs (f x)

> :t applyAll

applyAll :: [a -> a] -> a -> a
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Function composition

Another example of function combinator

• g composed with f, or g after f

(.) :: (b -> c) -> (a -> b) -> (a -> c)

g . f = _
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Function composition

Another example of function combinator

• g composed with f, or g after f

(.) :: (b -> c) -> (a -> b) -> (a -> c)

g . f = \x -> g (f x)
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Examples of function composition

not :: Bool -> Bool

even :: Int -> Bool

odd x = not (even x)

odd = not . even -- Better

-- Remove all elements which satisfy the predicate

filterNot :: (a -> Bool) -> [a] -> [a]

Try it yourself!
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Examples of function composition

not :: Bool -> Bool

even :: Int -> Bool

odd x = not (even x)

odd = not . even -- Better

-- Remove all elements which satisfy the predicate

filterNot :: (a -> Bool) -> [a] -> [a]

filterNot p xs = filter (\x -> not (p x)) xs

filterNot p xs = filter (not . p) xs -- Better

filterNot p = filter (not . p) -- Even better
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Function pipelines

You can define many functions as a pipeline

• Sequence of functions composed one after the other

• This style of coding is called point-free

• Even though it actually has more point symbols!

maxAverage :: [[Float]] -> Float

maxAverage

= maximum . map average . filter (not . null)

where average xs

= sum xs / fromIntegral (length xs)
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Point-free craziness

You can go even further in this point-free style by using more combinators

where average = (/) <$> sum

<*> (fromIntegral . length)

(<$>) :: (a -> b) -> (c -> a) -> (c -> b)

(<*>) :: (c -> a -> b) -> (c -> a) -> (c -> b)

Warning! Don’t overdo it!

• This definition of average is less readable
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Question

Write applyAll in point-free style

applyAll [] x = x

applyAll (f : fs) x = applyAll fs (f x)

Hint: for the first case remember that id x = x

applyAll [] = id

applyAll (f : fs) = applyAll fs . f
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Folds
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Similar functions

sum [] = 0

sum (x:xs) = x + sum xs

product [] = 1

product (x:xs) = x * product xs

and [] = True

and (x:xs) = x && and xs

• The three return a value in the [] case

• For the x:xs case, they combine the head with the result for the rest of the list

• (+) for sum, (*) for product, (&&) for and
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Avoid duplication, abstract!

sum [] = 0

sum (x:xs) = x + sum xs

Let’s replace the moving parts with arguments f and v

• First-class functions are key for abstraction

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr _ v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

= x `f` foldr f v xs -- Infix
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Avoid duplication, abstract!

• The previous definitions become much shorter

• The use of foldr conveys an intention

• They all compute a result by iteratively applying a function over all the elements in the list

sum = foldr (+) 0

product = foldr (*) 1

and = foldr (&&) True
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foldr is for “fold right”

foldr (+) 0 (x : y : z : [])

=

x + foldr (+) 0 (y : z : [])

=

x + (y + foldr (+) 0 (z : []))

=

x + (y + (z + foldr 0 []))

=

x + (y + (z + 0))

• foldr introduces parentheses “to the right”

• Initial value is in innermost parentheses
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Another view of foldr

foldr (+) 0 [x, y, z]

=

foldr (+) 0 (x : (y : (z : [ ])))

| | | |

| | | |

� � � �

(x + (y + (z + 0 )))

• (:) is replaced by the combination function

• [] is replaced by the initial value
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length as a right fold

length [] = 0

length (_:xs) = 1 + length xs

foldr _ v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

We want to find f and v such that

length = foldr f v

Try it yourself!
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length as a right fold

• Case of empty list, []

length [] = 0

= v = foldr f v []

• Case of cons, x:xs

length (x:xs) = 1 + length xs

= f x (foldr f v xs)

= -- Assuming we know it for xs

f x (length xs)

• We need to have a function such that

f x (length xs) = 1 + length xs

===> f x y = 1 + y

===> f = \x y -> 1 + y
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length as a right fold

In conclusion,

length = foldr (\_ y -> 1 + y) 0

length [1,2,3]

= -- definition of length

foldr (\_ y -> 1 + y) [1,2,3]

= -- application of foldr

1 + (1 + (1 + 0))

= -- perform addition

3
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Left folds

foldr (+) 0 [x,y,z]

= (x + (y + (z + 0)))

Is it possible to have a “mirror” function foldl?

foldl (+) 0 [x,y,z]

= (((0 + x) + y) + z)

• Parenthesis associate to the left

• Initial value still in the innermost position
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Calculating foldl

• The case for empty lists is the same as foldr

foldl f v [] = v

• For the general case, notice this fact:

foldl (+) 0 [x,y,z]

= foldl (+) (0 + x) [y,z]

= foldl (+) ((0 + x) + y) [z]

= foldl (+) (((0 + x) + y) + z) []

• The second argument works as an accumulator

foldl f v (x:xs) = foldl f (f v x) xs
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foldr versus foldl

foldr (+) 0 [1, 2, ..., n]

= 1 + foldr (+) 0 [2, ..., n]

= ... = 1 + (2 + (... + (n + 0)))

= 1 + (2 + (... + n)) = ...

foldl (+) 0 [1, 2, ..., n]

= foldl (+) (0 + 1) [2, ..., n]

= ... = foldl (+) (((0 + 1) + ...) + n) []

= (((0 + 1) + ...) + n)

= ((1 + ...) + n) = ...

• With foldr and foldl you wait until the end to start combining
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foldr versus foldl

foldl' (+) 0 [1, 2, ..., n]

= foldl' (+) (0 + 1) [2, ..., n]

= foldl' (+) 1 [2, ..., n] -- (!)

= foldl' (+) (1 + 2) [..., n]

= foldl' (+) 3 [..., n] -- (!)

• With foldr and foldl you wait until the end to start combining

• With foldl' you compute the value “on the go”

• foldl' is usually more efficient
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foldr versus foldl

In the case of (+), the result is the same

> foldr (+) 0 [1,2,3]

6

> foldl (+) 0 [1,2,3]

6

This is not the case for every function

> foldr (-) 0 [1,2,3]

2

> foldl (-) 0 [1,2,3]

-6
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Monoids

One possible set of properties which ensure that the direction of folding does not matter

1. The initial value does not affect the outcome

f v x = x = f v x 0 + x = x = x + 0

• We say that v is an identity for f

2. The way we parenthesize does not affect the outcome

f (f x y) z = f x (f y z)

(x + y) + z = x + (y + z)

• We say that the operation f is associative

A data type with such an operation is called amonoid
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Avoid explicit recursion

• map, filter, foldr and foldl abstract common recursion patterns over lists

• Most functions can be written as a combination of those

• Good style: prefer using those functions over recursion

Why?
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Avoid explicit recursion

• map, filter, foldr and foldl abstract common recursion patterns over lists

• Most functions can be written as a combination of those

• Good style: prefer using those functions over recursion

• The intention of the code is clearer

• Less code written means less code to debug

• Complex recursion suggest that you might be doing too much in one function

• Primitive rather than general recursion: always terminates!
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Avoid explicit recursion, example

count p xs counts how many elements in xs satisfy p

count :: (a -> Bool) -> [a] -> Int

count _ [] = 0

count p (x:xs) | p x = 1 + count p xs

| otherwise = count p xs

Try it yourself!
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Avoid explicit recursion, example

count p xs counts how many elements in xs satisfy p

count :: (a -> Bool) -> [a] -> Int

count _ [] = 0

count p (x:xs) | p x = 1 + count p xs

| otherwise = count p xs

count p xs = length (filter p xs)

count p = length . filter p
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applyAll as a fold

applyAll [] x = x

applyAll (f : fs) x = applyAll fs (f x)

Is applyAll as a right or a left fold?

> applyAll [f1,f2,f3] x

f3 (f2 (f1 x)) -- start from the left value

-- Solution 1

applyAll fs x = foldl (\y f -> f y) x fs
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applyAll as a fold

applyAll [] = id

applyAll (f : fs) = applyAll fs . f

We can also see it as a series of compositions

> applyAll [f1,f2,f3]

id . (f3 . (f2 . f1))

-- Solution 2

applyAll fs = foldr (\r f -> f . r) id fs

Can we make it look better?
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applyAll as a fold

applyAll fs = foldr (\r f -> f . r) id fs

-- Drop the argument in both sides

applyAll = foldr (\r f -> f . r) id

-- Use "normal" application order for (.)

applyAll = foldr (\r f -> (.) f r) id

-- Use the flip combinator

applyAll = foldr (flip (.)) id

-- "flip (.)" has a name for itself

applyAll = foldr (>>>) id
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Important concepts

• Higher-order functions use functions

• Curried functions return functions

• Anonymous functions are introduced by \x -> ...

• All multi-argument functions in Haskell are curried

• They take one parameter at a time

f :: A -> (B -> (C -> D))

• Functions can be partially applied

• map, filter, foldr and foldl describe common recursion patterns over lists
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A type inference question

Given a list of numbers, let’s create a list of “adders”, each of them adding this number to another

given one

adders = map (\n -> \x -> n + x)

= -- eta reducation

map (\n -> (n +))

= -- eta reduction

map (+)

> [a 5 | a <- adders [1,2,3]]

[6,7,8]
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A type inference question

Let us look at the types of the functions involved

(+) :: Int -> (Int -> Int)

-- Generalized type

map :: (a -> b) -> [a] -> [b]

-- In our case a = Int

-- a -> b = Int -> (Int -> Int)

-- Thus, b = Int -> Int

map :: (Int -> Int -> Int)

-> [Int] -> [Int -> Int]
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