
Case studies

Functional Programming

Utrecht University

1



Goals

• Decompose the problem into subproblems.

• Compose subsolutions into the solution.

1. Propositions

• Tautology checker

• Simplification

2. Arithmetic expressions

• Differentiation

Chapters 8.6 from Hutton’s book

2



Goals

• Decompose the problem into subproblems.

• Compose subsolutions into the solution.

1. Propositions

• Tautology checker

• Simplification

2. Arithmetic expressions

• Differentiation

Chapters 8.6 from Hutton’s book

2



Propositions

3



Definition

Propositional logic is the simplest branch of logic, which studies the truth of propositional formulae

or propositions

Propositions P are built up from the following components:

• Basic values, ⊤ (true) and ⊥ (false)

• Variables, X , Y , …

• Negation, ¬P

• Conjunction, P1 ∧ P2

• Disjunction, P1 ∨ P2

• Implication, P1 =⇒ P2

For example, (X ∧ Y ) =⇒ ¬Y

4



Truth value of a proposition

Each proposition becomes either true or false given an assignment of truth values to each of its

variables

Take (X ∧ Y ) =⇒ ¬Y :

• { X true, Y false } makes the proposition true

• { X true, Y true } makes the proposition false

5



Tautologies

A proposition is called a tautology if it is true for any assignment of variables

• X ∨ ¬X ∨ ¬Y

6



Tautologies

A proposition is called a tautology if it is true for any assignment of variables

• X ∨ ¬X ∨ ¬Y

6



Problem: Test for Tautologies

• Problem: Compute if a proposition is a tautology.

• Approach:

1. Design a data type Prop to represent Propositions

2. Write a function tv :: Assignment -> Prop -> Bool computes the truth value of a

proposition

3. Collect all possible assignments

4. Write a function taut :: Prop -> Bool which computes if a given proposition is a tautology

7



Problem: Test for Tautologies

• Problem: Compute if a proposition is a tautology.

• Approach:

1. Design a data type Prop to represent Propositions

2. Write a function tv :: Assignment -> Prop -> Bool computes the truth value of a

proposition

3. Collect all possible assignments

4. Write a function taut :: Prop -> Bool which computes if a given proposition is a tautology

7



Step 1: Propositions as a data type

We can represent propositions in Haskell

data Prop = Basic Bool
| Var Char
| Not Prop
| Prop :/\: Prop
| Prop :\/: Prop
| Prop :=>: Prop
deriving Show

The example (X ∧ Y ) =⇒ ¬Y becomes

(Var 'X' :/\: Var 'Y') :=>: (Not (Var 'Y'))

8



Step 1: Assignments as a data type

• How to represent assignments?

type Assigment = Map Char Bool

9



Step 1: Assignments as a data type

• How to represent assignments?

type Assigment = Map Char Bool

9



Step 2: Cooking tv

1. Define the type

tv :: Assignment -> Prop -> Bool

2. Enumerate the cases

tv _ (Basic b) = _
tv m (Var v) = _
tv m (Not p) = _
tv m (p1 :/\: p2) = _
tv m (p1 :\/: p2) = _
tv m (p1 :=>: p2) = _

10



Step 2: Cooking tv

3. Define the simple (base) cases

• The truth value of a basic value is itself

• For a variable, we look up its value in the map

tv _ (Basic b) = b
tv m (Var v) =

case lookup v m of
Nothing -> error "Variable unknown!"
Just b -> b

11



Step 2: Cooking tv

4. Define the other (recursive) cases

• We call the function recursively and apply the corresponding Boolean operator

tv m (Not p) = not (tv m p)
tv m (p1 :/\: p2) = tv m p1 && tv m p2
tv m (p1 :\/: p2) = tv m p1 || tv m p2
tv m (p1 :=>: p2) = not (tv m p1) || tv m p2

12



Step 3: Obtaining Assignments

• Find all assignments

assigns :: Prop -> [Assignment]

• Main idea:

a. Obtain all the variables in the formula

vars :: Prop -> [Char]

b. Generate all possible assignments

assigns' :: [Char] -> [Assignment]

assigns = assigns' . vars

13



Step 3: Obtaining Assignments

• Find all assignments

assigns :: Prop -> [Assignment]

• Main idea:

a. Obtain all the variables in the formula

vars :: Prop -> [Char]

b. Generate all possible assignments

assigns' :: [Char] -> [Assignment]

assigns = assigns' . vars

13



Step 3: Obtaining Assignments

• Find all assignments

assigns :: Prop -> [Assignment]

• Main idea:

a. Obtain all the variables in the formula

vars :: Prop -> [Char]

b. Generate all possible assignments

assigns' :: [Char] -> [Assignment]

assigns = assigns' . vars

13



Step 3: Obtaining Assignments

• Find all assignments

assigns :: Prop -> [Assignment]

• Main idea:

a. Obtain all the variables in the formula

vars :: Prop -> [Char]

b. Generate all possible assignments

assigns' :: [Char] -> [Assignment]

assigns = assigns' . vars

13



Step 3a: Cooking vars

1. Define the type

2. Enumerate the cases

3. Define the simple (base) cases

• A basic value has no variables, a Var its own

4. Define the other (recursive) cases

vars :: Prop -> [Char]
vars (Basic b) = []
vars (Var v) = [v]
vars (Not p) = vars p
vars (p1 :/\: p2) = vars p1 ++ vars p2
vars (p1 :\/: p2) = vars p1 ++ vars p2
vars (p1 :=>: p2) = vars p1 ++ vars p2

14



Step 3a: Cooking vars

> vars ((Var 'X' :/\: Var 'Y') :=>: (Not (Var 'Y')))
"XYY"

This is not what we want, each variable should appear once

• Remove duplicates using nub from the Prelude

vars :: Prop -> [Char]
vars = nub . vars'
where vars' (Basic b) = []

vars' (Var v) = [v]
vars' ... -- as before

15



Step 3b: Cooking assigns'

1. Define the type

assigns' :: [Char] -> [Assignment]

2. Enumerate the cases

assigns' [] = _
assigns' (v:vs) = _

3. Define the simple (base) cases

• Be careful! You have one assignment for zero variables

assigns' [] = [empty]

• What happens if we return [] instead?

16



Step 3b: Cooking assigns'

4. Define the other (recursive) cases

• We duplicate the assignment for the rest of variables, once with the head assigned true and

one with the head assigned false

assigns' (v:vs)
= [ insert v True as | as <- assigns' vs]
++ [ insert v False as | as <- assigns' vs]

17



Step 4: Checking for Tautologies

• We want a function taut :: Prop -> Bool which checks that a given proposition is a

tautology

• Given the ingredients, taut is simple to cook

-- Using and :: [Bool] -> Bool
taut p = and [tv as p | as <- assigns p]
-- Using all :: (a -> Bool) -> [a] -> Bool
taut p = all (\as -> tv as p) (assigns p)
-- Using all :: (a -> Bool) -> [a] -> Bool
-- and flip :: (a -> b -> c) -> (b -> a -> c)
taut p = all (flip tv p) (assigns p)

18



Step 4: Checking for Tautologies

• We want a function taut :: Prop -> Bool which checks that a given proposition is a

tautology

• Given the ingredients, taut is simple to cook

-- Using and :: [Bool] -> Bool
taut p = and [tv as p | as <- assigns p]
-- Using all :: (a -> Bool) -> [a] -> Bool
taut p = all (\as -> tv as p) (assigns p)
-- Using all :: (a -> Bool) -> [a] -> Bool
-- and flip :: (a -> b -> c) -> (b -> a -> c)
taut p = all (flip tv p) (assigns p)

18



Simplification

A classic result in propositional logic
Any proposition can be transformed to an equivalent one which uses only the operators ¬
and ∧

1. De Morgan law: A ∨ B ≡ ¬(¬A ∧ ¬B)
2. Double negation: ¬(¬A) ≡ A

3. Implication truth: A =⇒ B ≡ ¬A ∨ B

19



Cooking simp

1. Define the type

simp :: Prop -> Prop

2. Enumerate the cases

3. Define the simple (base) cases

simp b@(Basic _) = b
simp v@(Var _) = v

20



Cooking simp

4. Define the other (recursive) cases

• For negation, we simplify if we detect a double one

simp (Not p) = case simp p of
Not q -> q
q -> Not q

• For conjunction we rewrite recursively

simp (p1 :/\: p2) = simp p1 :/\: simp p2

• For disjunction and implication, we simplify an equivalent form with less operators

simp (p1 :\/: p2) = simp (Not (Not p1 :/\: Not p2))
simp (p1 :=>: p2) = simp (Not p1 :\/: p2)

21



Arithmetic expressions

22



Expressions as a data type

We define a Haskell data type for arithmetic expressions

data ArithOp = Plus | Minus | Times | Div
deriving Show

data ArithExpr = Constant Integer
| Variable Char
| Op ArithOp ArithExpr ArithExpr
deriving Show

In contrast with propositions, we separate the name of the operations from the structure of the

expression

23



Evaluation

• Returns an integer value given values for the variables

• Similar to the truth value of a proposition
eval :: Map Char Integer -> ArithExpr -> Integer
eval _ (Constant c) = c
eval m (Variable v) = case lookup v m of

Nothing -> error "unknown variable!"
Just x -> x

eval m (Op o x y) = evalOp o (eval m x) (eval m y)
where evalOp Plus = (+)

evalOp Minus = (-)
evalOp Times = (*)
evalOp Div = div

• Note that the result of evalOp is a function

24



Differentiation

25



Derivative / Afgeleide

The derivative of a function is another function which measures the amount of change in the

output with respect to the amount of change in the input

For example, velocity is the derivative of distance with respect to time

We write v = dx

dt
following Leibniz’s notation

26



Rules for differentiation

Differentiation is the process of finding the derivative

We just need to follow some simple rules

dx

dx
= 1 dc

dx
= 0 if c is constant

dy

dx
= 0 if y ̸≡ x

d(f ± g)
dx

= df

dx
± dg

dx

d(f · g)
dx

= · df

dx
· g + f · dg

dx

df
g

dx
=

df
dx · g − f · dg

dx

g · g

27



Differentiation in Haskell

dx

dx
= 1 dc

dx
= 0 if c is constant

dy

dx
= 0 if y ̸≡ x

diff (Constant _) _ = Constant 0
diff (Variable v) x
| v == x = Constant 1
| otherwise = Constant 0

d(f ± g)
dx

= df

dx
± dg

dx

diff (Op Plus f g) x
= Op Plus (diff f x) (diff g x)

diff (Op Minus f g) x
= Op Minus (diff f x) (diff g x)

28



Differentiation in Haskell

d(f · g)
dx

= · df

dx
· g + f · dg

dx

df
g

dx
=

df
dx · g − f · dg

dx

g · g

diff (Op Times f g) x
= Op Plus (Op Times (diff f x) g)

(Op Times f (diff g x))
diff (Op Div f g) x
= Op Div (Op Plus (Op Times (diff f x) g)

(Op Times f (diff g x)))
(Op Times g g)

29



Symbolic manipulation

• eval, simp and diffmanipulate expressions

• As opposed to values such as numbers or Booleans

• This is called symbolic manipulation

• Data types and pattern matching are essential to write these functions concisely

• Functions operate as rules to rewrite expressions

• Source code can be represented in a similar way

• The corresponding data type is big

• For that reason, Haskell is regarded as one of the best languages to write a compiler

30


	Propositions
	Arithmetic expressions
	Differentiation

