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Big picture

• This course: typed, purely functional programming

• Today: purity and impurity
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Goals

• Learn the difference between pure and impure

• Interact with the outside world in Haskell

• Input/output

• Random generation

• Introduce do- and monadic notation through an example

Chapter 10 from Hutton’s book
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Interactive programs

• In the old days, all programs were batch programs

• Introduce the program and input, sit and drink tea/coffee for hours, and get the output

• Programs were isolated from each other

• The part of Haskell your have learnt up to now

• In this modern era, programs are interactive

• Respond to user input, more like a dialogue

• From the perspective of a program, it needs to communicate with an outside world

• Examples?

• Today: how we model this in Haskell!

• examples?
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Purity = referential transparency

Referential transparency = you can always substitute a term by its definition without change in

the meaning

• Inlining:

let x = e in ... x ... x ...

is by definition equivalent to:

(\x -> ... x ... x ...) e

is by definition equivalent to:

... x ... x ... where x = e

is (because we may inline) equivalent to:

... e ... e ...
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Referential transparency

A concrete example:

reverse xs ++ xs

where xs = filter p ys

is equivalent to:

reverse (filter p ys) ++ filter p ys

Note that the second version duplicates work, but we are speaking here about themeaning of the

expression, not its efficiency
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Referential transparency: why care?

• Copying/duplication (contraction)

let x1 = e; x2 = e in t

is always equivalent to:

let x1 = e in t[x1/x2]

• Discarding (weakening)

let x = e in t

if t does not mention x, is equivalent to :

t

• Commuting/reordering (exchange)

let x1 = e1; x2 = e2 in t

is always equivalent to:

let x2 = e2; x1 = e1 in t
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Referential transparency

• Referential transparency decouples the meaning of the program from the order of evaluation

• Inlining or duplicating does not change the program

• This has practical advantages:

• The compiler can reorder your program for efficiency

• Expressions are only evaluated (once) when really needed

• This is called lazy evaluation

• Paralellism becomes much easier
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Side-effects

Interaction with the world in not referentially transparent!

Any examples?

Suppose that getChar :: Char retrieves the next key stroke from the user

Why is

let k = getChar in k == k

not referentially transparent?
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Side-effects

Interaction with the world in not referentially transparent!

Any examples?

Suppose that getChar :: Char retrieves the next key stroke from the user

let k = getChar in k == k

is always True, whereas this is not the case with

getChar == getChar

We say that getChar is a side-effectful action

• getChar is also called an impure function
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Side-effects

• Many other actions have side-effects (why?)

• Printing to the screen

• Generate a random number

• Communicate through a network

• Talk to a database

• Intuitively, these actions influence the outside world

• Key properties: we cannot dicard/duplicate/exchange the world

• And thus we cannot substitute for free
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Haskell typing of code with IO/side-effects

getChar :: IO Char

getLine :: IO String

getArgs :: IO [String]

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

.

.

. 12



Haskell typing of code with IO/side-effects

return :: a -> IO a

(>>=) :: IO a -> (a -> IO b) -> IO b -- may not inline!

-- gives us 2nd, non-referentially transparent assignment!

getChar :: IO Char

getLine :: IO String

getArgs :: IO [String]

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

.

.
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How IO is implemented
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Modelling output

Following this idea, we model an action by a function which changes the world

type IOCom = World -> World -- IO ()

Using IOCom we can give a type to putChar

putChar :: Char -> IOCom

putChar c world = ... -- details hidden

How should we think of World and putChar?
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Combining output actions

Executing two actions in sequence is plain composition

putAB :: IOCom

putAB world = putChar 'b' (putChar 'a' world)

-- or using composition

putAB = putChar 'b' . putChar 'a'
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putStr, first version

putStr s prints the whole string to the screen

putStr :: String -> IOCom

putStr [] = id -- keep the world as it is

putStr (c:cs) = putStr cs . putChar c

putStrLn s does the same, with a newline at the end

putStrLn s = putChar '\n' . putStr s
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Modelling input

Our IOCom type is not suitable for getChar. Why not? Fix?

• Solution: pair the output value with the new world

type IO a = World -> (a, World)

getChar :: IO Char

getChar = ... -- details hidden

What is now the return type of putChar?

• We use the empty tuple as a dummy value

putChar :: Char -> IO ()
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Combining input and output

Suppose that we want to echo a character

echo = putChar getChar

• Couldn't match expected type ‘Char’

with actual type ‘IO Char’
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Combining input and output

Let’s try again with function composition

echo = putChar . getChar

• Couldn't match expected type ‘IO b’

with actual type ‘Char -> IO ()’

getChar :: IO Char

-- World -> (Char, World)

putChar :: Char -> IO ()

-- Char -> World -> ((), World)

(.) :: (b -> c) -> (a -> b) -> a -> c

Types do not fit, since b should be both (Char, World) – from getChar – and Char – from

putChar
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Solution: bind

(>>=) – pronounced “bind” – takes care of threading the world around

(>>=) :: IO a -> (a -> IO b) -> IO b

(f >>= g) w = ...

Based on the output of the first action, we choose which action to perform next

echo = getChar >>= \c -> putChar c

-- also getChar >>= putChar
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(>>=) – pronounced “bind” – takes care of threading the world around

(>>=) :: IO a -> (a -> IO b) -> IO b

(f >>= g) w = g a' w' where

(a', w') = f w

Based on the output of the first action, we choose which action to perform next

echo = getChar >>= \c -> putChar c

-- also getChar >>= putChar
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Uppercase input

We want to build a getUpper function which returns the uppercase version of the last keystroke

getChar :: IO Char

toUpper :: Char -> Char

getUpper = getChar >>= \c -> toUpper c

• Couldn't match expected type ‘IO Char’

with actual type ‘Char’
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Uppercase input

We need a way to embed pure computations, like toUpper, in the impure world

return :: a -> IO a

return a = ...

Warning! return is indeed a very confusing name

• Does not “break” the flow of the function

• A more apt synonym is available, pure

getUpper = getChar >>= \c -> return (toUpper c)

-- getChar >>= return . toUpper
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Preserving purity

There is no bridge back from the impure to the pure world

backFromHell :: IO a -> a

Why?

In this way we ensure that the outside world never “infects” pure expressions

• Referential transparency is preserved
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IO is abstract: never see World
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Mixing IO and recursion

When dealing with IO, we cannot directly pattern match

• We often use case expressions after (>>=)

mystery :: IO String

mystery = getChar >>= (\c ->

case c of

'\n' -> return []

_ -> mystery >>= (\rest ->

return (c : rest)

)

)

What does this code do?

Working directly with (>>=) is very cumbersome!
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do-notation

Luckily, Haskell has specific notation for IO

getLine = do c <- getChar

case c of

'\n' -> return []

_ -> do rest <- getLine

return (c : rest)

Blocks for IO start with the keyword do

• <- gives a name to the result of an IO action

• The notation was chosen to “look imperative”

• <- is not referentially transparent!
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Cooking putStr

Let us write putStr with the new combinators

putStr :: String -> IO ()

putStr [] = return ()

putStr (c:cs) = putChar c >>= (\_ -> putStr cs)

What is happening is much clearer with do-notation

putStr :: String -> IO ()

putStr [] = return ()

putStr (c:cs) = do putChar c

putStr cs

30
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do-notation, in general

A general do block is translated as nested (>>=)

do x1 <- a1 a1 >>= (\x1 ->

x2 <- a2 a2 >>= (\x2 ->

... ===> ...

xn <- an an >>= (\xn ->

expr expr) ... ))

In addition, if you don’t care about a value, you can write simply ai instead of _ <- ai

Rule of thumb: do not think about (>>=) at all, just use do
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Guess a number

Pick a number between 1 and 100.

Is it 50? (g = greater, l = less, c = correct)

g

Is it 75? (g = greater, l = less, c = correct)

l

Is it 62? (g = greater, l = less, c = correct)

g

Is it 68? (g = greater, l = less, c = correct)

l

Is it 65? (g = greater, l = less, c = correct)

c

Guessed
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Guess a number

We do binary search over the list of numbers

• At each step, we pick the middle value as a guess

guess :: Int -> Int -> IO ()

guess l u

= do let m = l + ((u - l) `div` 2)

putStr ("Is it " ++ show m ++ "?")

putStrLn "(g = greater, l = less, c = correct)"

k <- getChar

case k of

'g' -> guess (m + 1) u

'l' -> guess l (m - 1)

'c' -> putStrLn "Guessed"

_ -> do putStrLn "Press type g/l/c!"

guess l u 33



Guess a number, main program

When an executable written in Haskell starts, the main function is called

• main always has type IO ()

main :: IO ()

main = do (l:u:_) <- getArgs

guess (read l) (read u)

• getArgs :: IO [String] obtains program arguments

• read :: Read a => String -> a

• Parses a String into a value

• In this case, we parse it into an Int
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Summary of basic I/O actions

return :: ???

(>>=) :: ???

getChar :: ???

getLine :: ???

getArgs :: ???

putChar :: ???

putStr :: ???

putStrLn :: ???
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Summary of basic I/O actions

return :: a -> IO a

(>>=) :: IO a -> (a -> IO b) -> IO b

getChar :: IO Char

getLine :: IO String

getArgs :: IO [String]

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()
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Dealing with files

The simplest functions to work with files in Haskell

type FilePath = String

readFile :: ???

writeFile :: ???
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Dealing with files

The simplest functions to work with files in Haskell

type FilePath = String

readFile :: FilePath -> IO String

writeFile :: FilePath -> String -> IO ()

The following functions are often convenient

lines :: String -> [String] -- break at '\n'

unlines :: [String] -> String -- join lines

-- convert back and forth

show :: Show a => a -> String

read :: Read a => String -> a
38



Guess a number, bounds from file

main :: IO ()

main = do -- Read the contents of the file

config <- readFile "guess.config"

-- Get the first two lines

let l:u:_ = lines config

-- Parse the numbers and start guessing

guess (read l) (read u)

39



IO as first-class citizens
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IO actions are first-class

In the same way as you do with functions

• An IO action can be an argument or result of a function

• IO actions can be put in a list or other container

map (\name -> putStrLn ("Hello, " ++ name))

["Mary", "John"] :: [IO ()]
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Building versus execution of IO actions

map (\name -> putStrLn ("Hello, " ++ name))

["Mary", "John"] :: [IO ()]

Running this code prints nothing to the screen

• We say that it builds the IO actions: describes what needs to be done but does not do it yet

To obtain the side-effects, you need to execute the actions

• At the interpreter prompt

• In a do block which is ultimately called by main

• An executed action always has a IO T type
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Execute a list of actions

sequence_ as performs the side-effects of a list of actions

1. Define the type

sequence_ :: [IO a] -> IO ()

2. Enumerate the cases

sequence_ [] = _

sequence_ (a:as) = _

3. Define the cases

sequence_ [] = return ()

sequence_ (a:as) = do a

sequence_ as
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Execute a list of actions

We have all the ingredients to greet a list of people

greet :: [String] -> IO ()

greet = sequence_

. map (\name -> putStrLn ("Hello, " ++ name))

This combination is very common, so the library defines

mapM_ :: (a -> IO b) -> [a] -> IO ()

greet = mapM_ (\name -> putStrLn ("Hello, " ++ name))
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Execute a list of actions

By just flipping the order of arguments, we can write “imperative-looking” code

forM_ :: [a] -> (a -> IO b) -> IO ()

forM_ = flip mapM_

greet names = forM_ names $ \name ->

putStrLn ("Hello, " ++ name)
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Answer to a yes-no questions

poseQuestion q prints a question to the screen, obtains a y or n input from the user and returns

it as a Boolean

poseQuestion :: String -> IO Bool

poseQuestion q

= do putStr q

putStrLn "Answer (y) or (n)"

(k:_) <- getLine

case k of

'y' -> return True

'n' -> return False

_ -> do putStrLn "Answer (y) or (n)"

poseQuestion q
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Gathering all answers

Once again, if we map over the list the actions are inside

map poseQuestion qs :: [IO Bool]

sequence_ does not work, since it throws away the result

sequence :: [IO a] -> IO [a]

...
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Gathering all answers

Once again, if we map over the list the actions are inside

map poseQuestion qs :: [IO Bool]

sequence_ does not work, since it throws away the result

sequence :: [IO a] -> IO [a]

sequence [] = return []

sequence (a:as) = do r <- a

rs <- sequence as

return (r:rs)
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Gathering all answers

Now we can gather answers to all questions at once

poseQuestions :: [String] -> IO [Bool]

poseQuestions = sequence . map poseQuestion

We have non-forgetful versions of the previous functions

mapM :: (a -> IO b) -> [a] -> IO [b]

forM :: [a] -> (a -> IO b) -> IO [b]

Naming convention: a function which ends in _ throws away information
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Lifting

liftM2 :: (a -> b -> c)

-> IO a -> IO b -> IO c
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Lifting

liftM2 :: (a -> b -> c)

-> IO a -> IO b -> IO c

liftM2 f ia ib = do

a <- ia

b <- ib

return (f a b)
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Randomness
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Random generation

Random generation is provided by the System.Randommodule of the random package

class Random a where

randomR :: RandomGen g => (a, a) -> g -> (a, g)

random :: RandomGen g => g -> (a, g)

• a is the type of value you want to generate

• g is the type of random generators

• Usually, random generators keep some additional information called the seed
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Generating several random numbers

If you want to generate several values, you need to keep track of the seed yourself

generateTwoNumbers :: RandomGen g

=> g -> ((Int, Int), g)

generateTwoNumbers g

= ...
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Generating several random numbers

If you want to generate several values, you need to keep track of the seed yourself

generateTwoNumbers :: RandomGen g

=> g -> ((Int, Int), g)

generateTwoNumbers g

= let (v1, g1) = random g

(v2, g2) = random g1 -- Use new seed

in ((v1, v2), g2) -- Return last seed
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Obtaining the seed

An initial value for the generator needs external input

• We have RandomGen instance StdGen

• The following function takes care of obtaining a new seed, performing random generation and

updating the seed at the end

getStdRandom :: (StdGen -> (a, StdGen)) -> IO a

• Note the use of a higher-order function to encapsulate the part of the program which needs

randomness

Because of their ubiquity, the following functions are provided

randomRIO = getStdRandom . randomR

randomIO = getStdRandom random
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Summary

• Introduced purity/referential transparency and constrasted with impurity/side-effects

• Actions with side-effects which return a value of type a are represented by IO a

• Pure and impure parts are perfectly delineated

• a -> IO b are ”impure functions from a to b

• The main in a Haskell program has type IO ()

• To sequence IO actions, use do-notation

• Under the hood it translates to nested (>>=) (bind)

• IO actions are first-class citizens
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