
Lecture 9. Input and output

Functional Programming

Utrecht University

1

Big picture

• This course: typed, purely functional programming

• Today: purity and impurity

2

Goals

• Learn the difference between pure and impure

• Interact with the outside world in Haskell

• Input/output

• Random generation

• Introduce do- and monadic notation through an example

Chapter 10 from Hutton’s book

3

Interactive programs

• In the old days, all programs were batch programs

• Introduce the program and input, sit and drink tea/coffee for hours, and get the output

• Programs were isolated from each other

• The part of Haskell your have learnt up to now

• In this modern era, programs are interactive

• Respond to user input, more like a dialogue

• From the perspective of a program, it needs to communicate with an outside world

• Examples?

• Today: how we model this in Haskell!

• examples?

4

Interactive programs

• In the old days, all programs were batch programs

• Introduce the program and input, sit and drink tea/coffee for hours, and get the output

• Programs were isolated from each other

• The part of Haskell your have learnt up to now

• In this modern era, programs are interactive

• Respond to user input, more like a dialogue

• From the perspective of a program, it needs to communicate with an outside world

• Examples?

• Today: how we model this in Haskell!

• examples?

4

Interactive programs

• In the old days, all programs were batch programs

• Introduce the program and input, sit and drink tea/coffee for hours, and get the output

• Programs were isolated from each other

• The part of Haskell your have learnt up to now

• In this modern era, programs are interactive

• Respond to user input, more like a dialogue

• From the perspective of a program, it needs to communicate with an outside world

• Examples?

• Today: how we model this in Haskell!

• examples?

4

Purity = referential transparency

Referential transparency = you can always substitute a term by its definition without change in

the meaning

• Inlining:

let x = e in ... x ... x ...

is by definition equivalent to:

(\x -> ... x ... x ...) e

is by definition equivalent to:

... x ... x ... where x = e

is (because we may inline) equivalent to:

... e ... e ...

5

Purity = referential transparency

Referential transparency = you can always substitute a term by its definition without change in

the meaning

• Inlining:

let x = e in ... x ... x ...

is by definition equivalent to:

(\x -> ... x ... x ...) e

is by definition equivalent to:

... x ... x ... where x = e

is (because we may inline) equivalent to:

... e ... e ...

5

Referential transparency

A concrete example:

reverse xs ++ xs

where xs = filter p ys

is equivalent to:

reverse (filter p ys) ++ filter p ys

Note that the second version duplicates work, but we are speaking here about themeaning of the

expression, not its efficiency

6

Referential transparency

A concrete example:

reverse xs ++ xs

where xs = filter p ys

is equivalent to:

reverse (filter p ys) ++ filter p ys

Note that the second version duplicates work, but we are speaking here about themeaning of the

expression, not its efficiency

6

Referential transparency: why care?

• Copying/duplication (contraction)

let x1 = e; x2 = e in t

is always equivalent to:

let x1 = e in t[x1/x2]

• Discarding (weakening)

let x = e in t

if t does not mention x, is equivalent to :

t

• Commuting/reordering (exchange)

let x1 = e1; x2 = e2 in t

is always equivalent to:

let x2 = e2; x1 = e1 in t

7

Referential transparency: why care?

• Copying/duplication (contraction)

let x1 = e; x2 = e in t

is always equivalent to:

let x1 = e in t[x1/x2]

• Discarding (weakening)

let x = e in t

if t does not mention x, is equivalent to :

t

• Commuting/reordering (exchange)

let x1 = e1; x2 = e2 in t

is always equivalent to:

let x2 = e2; x1 = e1 in t

7

Referential transparency: why care?

• Copying/duplication (contraction)

let x1 = e; x2 = e in t

is always equivalent to:

let x1 = e in t[x1/x2]

• Discarding (weakening)

let x = e in t

if t does not mention x, is equivalent to :

t

• Commuting/reordering (exchange)

let x1 = e1; x2 = e2 in t

is always equivalent to:

let x2 = e2; x1 = e1 in t

7

Referential transparency: why care?

• Copying/duplication (contraction)

let x1 = e; x2 = e in t

is always equivalent to:

let x1 = e in t[x1/x2]

• Discarding (weakening)

let x = e in t

if t does not mention x, is equivalent to :

t

• Commuting/reordering (exchange)

let x1 = e1; x2 = e2 in t

is always equivalent to:

let x2 = e2; x1 = e1 in t

7

Referential transparency

• Referential transparency decouples the meaning of the program from the order of evaluation

• Inlining or duplicating does not change the program

• This has practical advantages:

• The compiler can reorder your program for efficiency

• Expressions are only evaluated (once) when really needed

• This is called lazy evaluation

• Paralellism becomes much easier

8

Referential transparency

• Referential transparency decouples the meaning of the program from the order of evaluation

• Inlining or duplicating does not change the program

• This has practical advantages:

• The compiler can reorder your program for efficiency

• Expressions are only evaluated (once) when really needed

• This is called lazy evaluation

• Paralellism becomes much easier

8

Side-effects

Interaction with the world in not referentially transparent!

Any examples?

Suppose that getChar :: Char retrieves the next key stroke from the user

Why is

let k = getChar in k == k

not referentially transparent?

9

Side-effects

Interaction with the world in not referentially transparent!

Any examples?

Suppose that getChar :: Char retrieves the next key stroke from the user

Why is

let k = getChar in k == k

not referentially transparent?

9

Side-effects

Interaction with the world in not referentially transparent!

Any examples?

Suppose that getChar :: Char retrieves the next key stroke from the user

let k = getChar in k == k

is always True, whereas this is not the case with

getChar == getChar

We say that getChar is a side-effectful action

• getChar is also called an impure function

10

Side-effects

• Many other actions have side-effects (why?)

• Printing to the screen

• Generate a random number

• Communicate through a network

• Talk to a database

• Intuitively, these actions influence the outside world

• Key properties: we cannot dicard/duplicate/exchange the world

• And thus we cannot substitute for free

11

Haskell typing of code with IO/side-effects

getChar :: IO Char

getLine :: IO String

getArgs :: IO [String]

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

.

.

. 12

Haskell typing of code with IO/side-effects

return :: a -> IO a

(>>=) :: IO a -> (a -> IO b) -> IO b -- may not inline!

-- gives us 2nd, non-referentially transparent assignment!

getChar :: IO Char

getLine :: IO String

getArgs :: IO [String]

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

.

.

. 13

How IO is implemented

14

Modelling output

Following this idea, we model an action by a function which changes the world

type IOCom = World -> World -- IO ()

Using IOCom we can give a type to putChar

putChar :: Char -> IOCom

putChar c world = ... -- details hidden

How should we think of World and putChar?

15

Modelling output

Following this idea, we model an action by a function which changes the world

type IOCom = World -> World -- IO ()

Using IOCom we can give a type to putChar

putChar :: Char -> IOCom

putChar c world = ... -- details hidden

How should we think of World and putChar?

15

Combining output actions

Executing two actions in sequence is plain composition

putAB :: IOCom

putAB world = putChar 'b' (putChar 'a' world)

-- or using composition

putAB = putChar 'b' . putChar 'a'

16

putStr, first version

putStr s prints the whole string to the screen

putStr :: String -> IOCom

putStr [] = id -- keep the world as it is

putStr (c:cs) = putStr cs . putChar c

putStrLn s does the same, with a newline at the end

putStrLn s = putChar '\n' . putStr s

17

Modelling input

Our IOCom type is not suitable for getChar. Why not? Fix?

• Solution: pair the output value with the new world

type IO a = World -> (a, World)

getChar :: IO Char

getChar = ... -- details hidden

What is now the return type of putChar?

• We use the empty tuple as a dummy value

putChar :: Char -> IO ()

18

Modelling input

Our IOCom type is not suitable for getChar. Why not? Fix?

• Solution: pair the output value with the new world

type IO a = World -> (a, World)

getChar :: IO Char

getChar = ... -- details hidden

What is now the return type of putChar?

• We use the empty tuple as a dummy value

putChar :: Char -> IO ()

18

Modelling input

Our IOCom type is not suitable for getChar. Why not? Fix?

• Solution: pair the output value with the new world

type IO a = World -> (a, World)

getChar :: IO Char

getChar = ... -- details hidden

What is now the return type of putChar?

• We use the empty tuple as a dummy value

putChar :: Char -> IO ()

18

Combining input and output

Suppose that we want to echo a character

echo = putChar getChar

• Couldn't match expected type ‘Char’

with actual type ‘IO Char’

19

Combining input and output

Let’s try again with function composition

echo = putChar . getChar

• Couldn't match expected type ‘IO b’

with actual type ‘Char -> IO ()’

getChar :: IO Char

-- World -> (Char, World)

putChar :: Char -> IO ()

-- Char -> World -> ((), World)

(.) :: (b -> c) -> (a -> b) -> a -> c

Types do not fit, since b should be both (Char, World) – from getChar – and Char – from

putChar

20

Solution: bind

(>>=) – pronounced “bind” – takes care of threading the world around

(>>=) :: IO a -> (a -> IO b) -> IO b

(f >>= g) w = ...

Based on the output of the first action, we choose which action to perform next

echo = getChar >>= \c -> putChar c

-- also getChar >>= putChar

21

Solution: bind

(>>=) – pronounced “bind” – takes care of threading the world around

(>>=) :: IO a -> (a -> IO b) -> IO b

(f >>= g) w = g a' w' where

(a', w') = f w

Based on the output of the first action, we choose which action to perform next

echo = getChar >>= \c -> putChar c

-- also getChar >>= putChar

22

Uppercase input

We want to build a getUpper function which returns the uppercase version of the last keystroke

getChar :: IO Char

toUpper :: Char -> Char

getUpper = getChar >>= \c -> toUpper c

• Couldn't match expected type ‘IO Char’

with actual type ‘Char’

23

Uppercase input

We need a way to embed pure computations, like toUpper, in the impure world

return :: a -> IO a

return a = ...

Warning! return is indeed a very confusing name

• Does not “break” the flow of the function

• A more apt synonym is available, pure

getUpper = getChar >>= \c -> return (toUpper c)

-- getChar >>= return . toUpper

24

Uppercase input

We need a way to embed pure computations, like toUpper, in the impure world

return :: a -> IO a

return a = \w -> (a, w)

Warning! return is indeed a very confusing name

• Does not “break” the flow of the function

• A more apt synonym is available, pure

getUpper = getChar >>= \c -> return (toUpper c)

-- getChar >>= return . toUpper

25

Preserving purity

There is no bridge back from the impure to the pure world

backFromHell :: IO a -> a

Why?

In this way we ensure that the outside world never “infects” pure expressions

• Referential transparency is preserved

26

Preserving purity

There is no bridge back from the impure to the pure world

backFromHell :: IO a -> a

Why?

In this way we ensure that the outside world never “infects” pure expressions

• Referential transparency is preserved

26

IO is abstract: never see World

27

Mixing IO and recursion

When dealing with IO, we cannot directly pattern match

• We often use case expressions after (>>=)

mystery :: IO String

mystery = getChar >>= (\c ->

case c of

'\n' -> return []

_ -> mystery >>= (\rest ->

return (c : rest)

)

)

What does this code do?

Working directly with (>>=) is very cumbersome!

28

Mixing IO and recursion

When dealing with IO, we cannot directly pattern match

• We often use case expressions after (>>=)

mystery :: IO String

mystery = getChar >>= (\c ->

case c of

'\n' -> return []

_ -> mystery >>= (\rest ->

return (c : rest)

)

)

What does this code do?

Working directly with (>>=) is very cumbersome!

28

do-notation

Luckily, Haskell has specific notation for IO

getLine = do c <- getChar

case c of

'\n' -> return []

_ -> do rest <- getLine

return (c : rest)

Blocks for IO start with the keyword do

• <- gives a name to the result of an IO action

• The notation was chosen to “look imperative”

• <- is not referentially transparent!

29

Cooking putStr

Let us write putStr with the new combinators

putStr :: String -> IO ()

putStr [] = return ()

putStr (c:cs) = putChar c >>= (_ -> putStr cs)

What is happening is much clearer with do-notation

putStr :: String -> IO ()

putStr [] = return ()

putStr (c:cs) = do putChar c

putStr cs

30

Cooking putStr

Let us write putStr with the new combinators

putStr :: String -> IO ()

putStr [] = return ()

putStr (c:cs) = putChar c >>= (_ -> putStr cs)

What is happening is much clearer with do-notation

putStr :: String -> IO ()

putStr [] = return ()

putStr (c:cs) = do putChar c

putStr cs

30

Cooking putStr

Let us write putStr with the new combinators

putStr :: String -> IO ()

putStr [] = return ()

putStr (c:cs) = putChar c >>= (_ -> putStr cs)

What is happening is much clearer with do-notation

putStr :: String -> IO ()

putStr [] = return ()

putStr (c:cs) = do putChar c

putStr cs

30

do-notation, in general

A general do block is translated as nested (>>=)

do x1 <- a1 a1 >>= (\x1 ->

x2 <- a2 a2 >>= (\x2 ->

... ===> ...

xn <- an an >>= (\xn ->

expr expr) ...))

In addition, if you don’t care about a value, you can write simply ai instead of _ <- ai

Rule of thumb: do not think about (>>=) at all, just use do

31

Guess a number

Pick a number between 1 and 100.

Is it 50? (g = greater, l = less, c = correct)

g

Is it 75? (g = greater, l = less, c = correct)

l

Is it 62? (g = greater, l = less, c = correct)

g

Is it 68? (g = greater, l = less, c = correct)

l

Is it 65? (g = greater, l = less, c = correct)

c

Guessed

32

Guess a number

We do binary search over the list of numbers

• At each step, we pick the middle value as a guess

guess :: Int -> Int -> IO ()

guess l u

= do let m = l + ((u - l) `div` 2)

putStr ("Is it " ++ show m ++ "?")

putStrLn "(g = greater, l = less, c = correct)"

k <- getChar

case k of

'g' -> guess (m + 1) u

'l' -> guess l (m - 1)

'c' -> putStrLn "Guessed"

_ -> do putStrLn "Press type g/l/c!"

guess l u 33

Guess a number, main program

When an executable written in Haskell starts, the main function is called

• main always has type IO ()

main :: IO ()

main = do (l:u:_) <- getArgs

guess (read l) (read u)

• getArgs :: IO [String] obtains program arguments

• read :: Read a => String -> a

• Parses a String into a value

• In this case, we parse it into an Int

34

Summary of basic I/O actions

return :: ???

(>>=) :: ???

getChar :: ???

getLine :: ???

getArgs :: ???

putChar :: ???

putStr :: ???

putStrLn :: ???

35

Summary of basic I/O actions

return :: a -> IO a

(>>=) :: IO a -> (a -> IO b) -> IO b

getChar :: IO Char

getLine :: IO String

getArgs :: IO [String]

putChar :: Char -> IO ()

putStr :: String -> IO ()

putStrLn :: String -> IO ()

36

Dealing with files

The simplest functions to work with files in Haskell

type FilePath = String

readFile :: ???

writeFile :: ???

37

Dealing with files

The simplest functions to work with files in Haskell

type FilePath = String

readFile :: FilePath -> IO String

writeFile :: FilePath -> String -> IO ()

The following functions are often convenient

lines :: String -> [String] -- break at '\n'

unlines :: [String] -> String -- join lines

-- convert back and forth

show :: Show a => a -> String

read :: Read a => String -> a
38

Guess a number, bounds from file

main :: IO ()

main = do -- Read the contents of the file

config <- readFile "guess.config"

-- Get the first two lines

let l:u:_ = lines config

-- Parse the numbers and start guessing

guess (read l) (read u)

39

IO as first-class citizens

40

IO actions are first-class

In the same way as you do with functions

• An IO action can be an argument or result of a function

• IO actions can be put in a list or other container

map (\name -> putStrLn ("Hello, " ++ name))

["Mary", "John"] :: [IO ()]

41

Building versus execution of IO actions

map (\name -> putStrLn ("Hello, " ++ name))

["Mary", "John"] :: [IO ()]

Running this code prints nothing to the screen

• We say that it builds the IO actions: describes what needs to be done but does not do it yet

To obtain the side-effects, you need to execute the actions

• At the interpreter prompt

• In a do block which is ultimately called by main

• An executed action always has a IO T type

42

Execute a list of actions

sequence_ as performs the side-effects of a list of actions

1. Define the type

sequence_ :: [IO a] -> IO ()

2. Enumerate the cases

sequence_ [] = _

sequence_ (a:as) = _

3. Define the cases

sequence_ [] = return ()

sequence_ (a:as) = do a

sequence_ as

43

Execute a list of actions

sequence_ as performs the side-effects of a list of actions

1. Define the type

sequence_ :: [IO a] -> IO ()

2. Enumerate the cases

sequence_ [] = _

sequence_ (a:as) = _

3. Define the cases

sequence_ [] = return ()

sequence_ (a:as) = do a

sequence_ as

43

Execute a list of actions

sequence_ as performs the side-effects of a list of actions

1. Define the type

sequence_ :: [IO a] -> IO ()

2. Enumerate the cases

sequence_ [] = _

sequence_ (a:as) = _

3. Define the cases

sequence_ [] = return ()

sequence_ (a:as) = do a

sequence_ as

43

Execute a list of actions

We have all the ingredients to greet a list of people

greet :: [String] -> IO ()

greet = sequence_

. map (\name -> putStrLn ("Hello, " ++ name))

This combination is very common, so the library defines

mapM_ :: (a -> IO b) -> [a] -> IO ()

greet = mapM_ (\name -> putStrLn ("Hello, " ++ name))

44

Execute a list of actions

We have all the ingredients to greet a list of people

greet :: [String] -> IO ()

greet = sequence_

. map (\name -> putStrLn ("Hello, " ++ name))

This combination is very common, so the library defines

mapM_ :: (a -> IO b) -> [a] -> IO ()

greet = mapM_ (\name -> putStrLn ("Hello, " ++ name))

44

Execute a list of actions

By just flipping the order of arguments, we can write “imperative-looking” code

forM_ :: [a] -> (a -> IO b) -> IO ()

forM_ = flip mapM_

greet names = forM_ names $ \name ->

putStrLn ("Hello, " ++ name)

45

Answer to a yes-no questions

poseQuestion q prints a question to the screen, obtains a y or n input from the user and returns

it as a Boolean

poseQuestion :: String -> IO Bool

poseQuestion q

= do putStr q

putStrLn "Answer (y) or (n)"

(k:_) <- getLine

case k of

'y' -> return True

'n' -> return False

_ -> do putStrLn "Answer (y) or (n)"

poseQuestion q

46

Gathering all answers

Once again, if we map over the list the actions are inside

map poseQuestion qs :: [IO Bool]

sequence_ does not work, since it throws away the result

sequence :: [IO a] -> IO [a]

...

47

Gathering all answers

Once again, if we map over the list the actions are inside

map poseQuestion qs :: [IO Bool]

sequence_ does not work, since it throws away the result

sequence :: [IO a] -> IO [a]

sequence [] = return []

sequence (a:as) = do r <- a

rs <- sequence as

return (r:rs)

48

Gathering all answers

Now we can gather answers to all questions at once

poseQuestions :: [String] -> IO [Bool]

poseQuestions = sequence . map poseQuestion

We have non-forgetful versions of the previous functions

mapM :: (a -> IO b) -> [a] -> IO [b]

forM :: [a] -> (a -> IO b) -> IO [b]

Naming convention: a function which ends in _ throws away information

49

Lifting

liftM2 :: (a -> b -> c)

-> IO a -> IO b -> IO c

50

Lifting

liftM2 :: (a -> b -> c)

-> IO a -> IO b -> IO c

liftM2 f ia ib = do

a <- ia

b <- ib

return (f a b)

51

Randomness

52

Random generation

Random generation is provided by the System.Randommodule of the random package

class Random a where

randomR :: RandomGen g => (a, a) -> g -> (a, g)

random :: RandomGen g => g -> (a, g)

• a is the type of value you want to generate

• g is the type of random generators

• Usually, random generators keep some additional information called the seed

53

Generating several random numbers

If you want to generate several values, you need to keep track of the seed yourself

generateTwoNumbers :: RandomGen g

=> g -> ((Int, Int), g)

generateTwoNumbers g

= ...

54

Generating several random numbers

If you want to generate several values, you need to keep track of the seed yourself

generateTwoNumbers :: RandomGen g

=> g -> ((Int, Int), g)

generateTwoNumbers g

= let (v1, g1) = random g

(v2, g2) = random g1 -- Use new seed

in ((v1, v2), g2) -- Return last seed

55

Obtaining the seed

An initial value for the generator needs external input

• We have RandomGen instance StdGen

• The following function takes care of obtaining a new seed, performing random generation and

updating the seed at the end

getStdRandom :: (StdGen -> (a, StdGen)) -> IO a

• Note the use of a higher-order function to encapsulate the part of the program which needs

randomness

Because of their ubiquity, the following functions are provided

randomRIO = getStdRandom . randomR

randomIO = getStdRandom random

56

Summary

• Introduced purity/referential transparency and constrasted with impurity/side-effects

• Actions with side-effects which return a value of type a are represented by IO a

• Pure and impure parts are perfectly delineated

• a -> IO b are ”impure functions from a to b

• The main in a Haskell program has type IO ()

• To sequence IO actions, use do-notation

• Under the hood it translates to nested (>>=) (bind)

• IO actions are first-class citizens

57

Summary

• Introduced purity/referential transparency and constrasted with impurity/side-effects

• Actions with side-effects which return a value of type a are represented by IO a

• Pure and impure parts are perfectly delineated

• a -> IO b are ”impure functions from a to b

• The main in a Haskell program has type IO ()

• To sequence IO actions, use do-notation

• Under the hood it translates to nested (>>=) (bind)

• IO actions are first-class citizens

57

Summary

• Introduced purity/referential transparency and constrasted with impurity/side-effects

• Actions with side-effects which return a value of type a are represented by IO a

• Pure and impure parts are perfectly delineated

• a -> IO b are ”impure functions from a to b

• The main in a Haskell program has type IO ()

• To sequence IO actions, use do-notation

• Under the hood it translates to nested (>>=) (bind)

• IO actions are first-class citizens

57

Summary

• Introduced purity/referential transparency and constrasted with impurity/side-effects

• Actions with side-effects which return a value of type a are represented by IO a

• Pure and impure parts are perfectly delineated

• a -> IO b are ”impure functions from a to b

• The main in a Haskell program has type IO ()

• To sequence IO actions, use do-notation

• Under the hood it translates to nested (>>=) (bind)

• IO actions are first-class citizens

57

	How IO is implemented
	IO is abstract: never see World
	IO as first-class citizens
	Randomness

