%;% Utrecht University

Lecture 10. Functors and monads

Functional Programming

Utrecht University

+ Understand the concept of higher-kinded abstraction
+ Introduce two common patterns: functors and monads
+ Simplify code with monads

Chapter 12 from Hutton's book, except 12.2

Functors

map f xs applies f over all the elements of the list xs

map :: (a -> b) -> [a] -> [b]
map _ [] =[]
map f (x:xs) = f x : map f xs

> map (+1) [1,2,3]
[2,3,4]

> map even [1,2,3]
[False,True,False]

Optional values are represented with Maybe
data Maybe a = Nothing | Just a
They admit a similar map operation:

mapMay :: (a -> b) -> Maybe a -> Maybe b

Optional values are represented with Maybe
data Maybe a = Nothing | Just a
They admit a similar map operation:

mapMay :: (a -> b) -> Maybe a -> Maybe b

mapMay _ Nothing Nothing

Just (f x)

mapMay f (Just x)

mapMay applies a function over a value, only if it is present

> mapMay (+1) (Just 1)
Just 2
> mapMay (+1) Nothing
Nothing

Itis similar to the “safe dot” operator in some languages

int Total(Order o) { // o might be null
return o?.Amount * 0?.PricePerUnit;

Remember binary trees with data in the inner nodes:

data Tree a = Leaf
| Node (Tree a) a (Tree a)

dexriving Show

What does a map operation over trees look like?

Remember binary trees with data in the inner nodes:

data Tree a = Leaf
| Node (Tree a) a (Tree a)

dexriving Show
What does a map operation over trees look like?

mapTree :: (a -> b) -> Tree a -> Tree b

Remember binary trees with data in the inner nodes:

data Tree a = Leaf
| Node (Tree a) a (Tree a)

dexriving Show
What does a map operation over trees look like?
mapTree :: (a -> b) -> Tree a -> Tree b

mapTree _ Leaf
= Leaf
mapTree f (Node 1 x 1)

= Node (mapTree f 1) (f x) (mapTree f r)

mapTree also applies a function over all elements, but now contained in a binary tree

> t = Node (Node Leaf 1 Leaf) 2 Leaf

> mapTree (+1) t
Node (Node Leaf 2 Leaf) 3 Leaf

> mapTree even t
Node (Node Leaf False Leaf) True Leaf

map i (a -> b) -> [a] -> [b]
-- (a -> b) -> List a -> List b

mapTree :: (a -> b) -> Tree a -> Tree b
mapMay :: (a -> b) -> Maybe a -> Maybe b
mapT i (a ->b) ->T a ->T b

The difference lies in the type constructor
* [1 (list), Tree, or Maybe
* Those parts need to be applied to other types

A type constructor which has a “map” is called a functor

class Functor f where
fmap :: (a ->b) ->fa->fb

instance Functor [] where
-- fmap :: (a -> b) -> [a] -> [b]
fmap = map

instance Functor Maybe where
-- fmap :: (a -> b) -> Maybe a -> Maybe b
fmap = mapMay

class Functor f where
fmap :: (a ->b) ->fa->fb

* In Functor the variable f stands for a type constructor
+ A“type” which needs to be applied
* This is called higher-kinded abstraction

+ Not generally available in a programming language
+ Haskell, Scala and Rust have it
+ Java, C# and Swift don't

Suppose you have a function operating over lists

inc :: [Int] -> [Int]
inc xs = map (+1) xs

You can easily generalize it by using fmap

inc :: Functor f => f Int -> f Int

inc xs = fmap (+1) xs

Note that in this case the type of elements is fixed to Int, but the type of the structure may vary

Many Haskellers use an alias for fmap
(<%$>) = fmap

This allows writing maps in a more natural style, in which the function to apply appears before the

arguments

inc xs = (+1) <$> xs

Functions with a fixed input are also functors

* Rememberthatr -> sisalsowritten (->) r s

Question

What type should we write in the Functor instance?

Functions with a fixed input are also functors

* Rememberthatr -> sisalsowritten (->) r s
Question
What type should we write in the Functor instance?

Answer
We need something which requires a parameter

+ Thus we drop the last one from the arrow, (->) T

instance Functor ((->) r) where
-- fmap :: (a -> b) -> (r -> a) -> (r -> b)

fmap ab ra = \r -> ab (ra 1)

The map operation for functions is composition!

I0 actions form also a functor

instance Functor IO where

10 actions form also a functor

instance Functor IO where
-- fmap :: (a ->b) ->I0a ->1I0b
fmap f a = do x <- a
return (f x)

This removes the need for a lot of names

do x <- getChar ===> toUpper <$> getChar

return (toUpper x)

and it is much easier to read and follow!

Valid Functor instances should obey two laws

identity fmap id = id
distributivity over composition fmap (f.g) = fmap f . fmap g

These laws guarantee that fmap preserves the structure

Could you find an instance which respects the type of fmap but not the laws?

Could you find an instance which respects the type of fmap but not the laws?

instance Functor [] where
-- Applies the function over all elements,
-- but also reverses the list

[]
fmap f xs ++ [f x]

fmap _ [1]

fmap f (x:xs)

Could you find an instance which respects the type of fmap but not the laws?

instance Functor [] where
-- Applies the function over all elements,
-- but also reverses the list

[]
fmap f xs ++ [f x]

fmap _ [1]

fmap f (x:xs)

fmap id [1,2] [2,1]

/= [1,2] = id [1,2]

Things can go wrong in many different ways

instance Functor [] where

-- Always returns an empty list
fmap _ _ = []

fmap id [1,2] = []
/= [1,2] = id [1,2]

20

Monads

21

data ArithOp = Plus | Minus | Times | Div
data ArithExpr = Constant Integer
| Variable Char

| Op ArithOp ArithExpr ArithExpr

22

data ArithOp = Plus | Minus | Times | Div
data ArithExpr = Constant Integer

| Variable Char

| Op ArithOp ArithExpr ArithExpr

eval :: Map Char Integer -> ArithExpr
-> Maybe Integer

22

Case study: evaluation of arithmetic expressions

data ArithOp = Plus | Minus | Times | Div
data ArithExpr = Constant Integer

| Variable Char

| Op ArithOp ArithExpr ArithExpr

eval :: Map Char Integer -> ArithExpr
-> Maybe Integer

eval m (Op Plus x vy)
= case eval m x of
Nothing -> Nothing
Just x' -> case eval m y of
Nothing -> Nothing
Just y' -> Just (x' +y'")

22

data Record = Record Name Int Address

-- These three validate input from the user
validateName :: String -> Maybe Name
validateAge :: String -> Maybe Int
validateAddr :: String -> Maybe Address

-- And we want to compose them together
case validateName nm of
Nothing -> Nothing
Just nm' -> case validateAge ag of
Nothing -> Nothing
Just ag' -> case validateAddr ad of
Nothing -> Nothing 2

Itict ad' -> liict (Record nm' aa' ad')

The same pattern occurs over and over again

case maybeValue of
Nothing -> Nothing

Just x -> -- return some Maybe which uses x

24

The same pattern occurs over and over again

case maybeValue of
Nothing -> Nothing

Just x -> -- return some Maybe which uses x
Higher-order functions to the rescue!

next :: Maybe a -> (a -> Maybe b) -> Maybe b

next Nothing
next (Just x) f

Nothing
f x

24

For the arithmetic expression evaluator:

eval m (Op Plus x y)
= eval m x ‘next® (\x' ->
eval my “next® (\y' ->
Just (x' +y')))

For data validation:

validateName nm “next® (\nm' ->

validateAge ag ‘“next® (\ag' ->
validateAddr ag "next® (\ad' ->

Just (Record nm' ag' ad'))))

25

Remember the “bind” operation for input/output actions
(>>=) :: 10 a->(a->10 b) -> I0 b
Now, compare it to the next operation for Maybe

next :: Maybe a -> (a -> Maybe b) -> Maybe b

Another example of higher-kinded abstraction

26

The other basic operation for I0 was return
return :: a -> I0 a

This function embeds a pure value into the 10 world

27

The other basic operation for I0 was return
return :: a -> I0 a

This function embeds a pure value into the 10 world

Optional values provide a similar function

Just 1 a -> Maybe a

27

The other basic operation for I0 was return
return :: a -> I0 a

This function embeds a pure value into the 10 world

Optional values provide a similar function

Just 1 a -> Maybe a

Maybe it is about time to introduce a new type class...

27

A monad is a type constructor which provides the previous two operations
* Subject to some laws that we shall introduce later

+ In addition, every monad is also a functor
class Functor m => Monad m where
return :: a ->m a

(>>=) ::ma->(a->mb) ->mb

instance Monad Maybe where
return = Just

(>>=) = next

instance Monad I0 where
-- Hidden from us, mere mortals

28

The do-notation introduced for I0 works for any monad

do x1 <- al al >>= (\x1 ->
X2 <- a2 a2 >>= (\x2 ->
===>
Xn <- an an >>= (\xn ->
expr expr) ...))

Rule of thumb for writing monadic code: do not think about nested (>>=) at all, just use do

29

For the arithmetic expression evaluator:

eval m (Op Plus x y) = do x' <- eval m x
y' <- eval my
return (x' +y')

For data validation:

do nm' <- validateName nm
ag' <- validateAge ag
ad' <- validateAddr ad
return (Record nm' ag' ad')

30

What does the following code do?

f :: Maybe Int -> Maybe Int
fm=dox <-m
return 3

return (x + 1)

31

What does the following code do?

f :: Maybe Int -> Maybe Int
fm=dox <-m

return 3

return (x + 1)

Solution

Adds 1 to the value in m, if present

* return does not break evaluation

+ So it does not always return 3

31

f :: Maybe Int -> Maybe Int
fm=dox<-m

return 3

return (x + 1)

The behavior is clear by looking at the translation
* <-areturned into nested (>>=)
+ returnforMaybe is Just
fm=mb>-=\x ->
Just 3 >>= _ -> -- "gets" the 3
Just (x + 1)

32

Is the following code type correct at all?

g :: Maybe Int -> Maybe Int
gm=do x <- return 3
y <-m

return (x + vy)

33

Is the following code type correct at all?

g :: Maybe Int -> Maybe Int
gm=do x <- return 3
y <-m

return (x + vy)
And what about the following variation?

g' :: Maybe Int -> Maybe Int
g' m=do x <- Just 3
y <-m

return (x + vy)

33

Does this code compile?

h :: Maybe Int -> IO Int -> Maybe Int
h xy=do x' <-x

y <=y

return (x' +y')

34

Does this code compile?

h :: Maybe Int -> IO Int -> Maybe Int
h xy=do x' <-x
y' <-y
return (x' +y')
Solution
No, a do block works only with one monad

* The first <- and return require Maybe

* The second <- requires I0

34

The List monad

35

Let us try to write the methods from their types

return :: a -> [a]
return x = _

36

Let us try to write the methods from their types

return :: a -> [a]

return x =

We only have two options:
* Return the empty list, []

* Return the given element repeated some amount of times, [x, ...]

In this case, we settle for [x], a singleton list
« Itis the only possibility to satisfy the laws

+ But | will not show you why

37

(>>=) :: [a] -> (a -> [b]) -> [b]

xs >>=f = ..

38

(>>=) :: [a] -> (a -> [b]) -> [b]

xs >>=f = |,

1. We have a list of as and a function which operate in one

+ The natural instinct is to map one over the other

2. Butmap f xs :: [[b]],alistoflists
3. Luckily, we have concat :: [[a]]l -> [a]

xs >>= f = concat (map f xs)

39

[1,2,3] >>= \x -> do x <- [1,2,3]
[4'5:6] >>= \y o y So [41516]
return (x + vy) return (x + vy)

= -- definition of (>>=) and return
[516I7’617I817I8’9]

[1+4,1+45,1+6,2+4,2+5,2+6,3+4,3+5,3+6]

40

[1,2,3] >>= \x -> do x <- [1,2,3]
[41516] >>= \y o y So [41516]
return (x + vy) return (x + vy)

= -- definition of (>>=) and return
[516I7’617I817I8I9]

[1+4,1+45,1+6,2+4,2+5,2+6,3+4,3+5,3+6]

The list monad applies the function over all choices of elements from each list
* For that reason we call [] the search monad
+ Each variable can be thought as having more than one value assigned to it

* This is called non-determinism

41

Given three numbers z, v, z, we say that they form

« Asumtripleifx +vy = 2

- A Pythagorean triple if x> + y? = 22

triples xs computes, given a list of numbers xs, those subsets of elements which form a triple

> triples [1,2,3]
[(1,2,3),(2,1,3)]

We are going to build it using the monadic interface to lists

42

A first approximation to sum triples is:

sumTriples xs = do x <- xs

y <- Xs
z <- XS
if x +y ==z

then return (x,y,z)
else []

The value [] denotes failure while searching

* No value is produced from ranging over an empty list

[1 >>=F = [1 = xs >=_->1]]

43

This pattern is very common to perform search

guard :: Bool -> [()]
guard True = [()]
guard False = []

We do not really care of the value returned by guard
+ The important bit is that when the condition is false, we produce no more results
sumTriples xs = do x <- xs
y <- XS
z <- XS
guard (x +y == z)

return (x,y,z)

a4

Assuming we have sumTriples and pytTriples

triples :: [Int] -> [(Int, Int, Int)]
triples xs = sumTriples xs ++ pytTriples xs

Concatenation combines solutions from multiple sources

* In asearch, it works as a disjunction

45

Other monads exhibit the same pattern of failure and combination of results

class Monad m => MonadPlus m where
mzero :: m a
mplus :: ma ->ma ->ma

46

Other monads exhibit the same pattern of failure and combination of results

class Monad m => MonadPlus m where
mzero :: m a
mplus :: ma ->ma ->ma

The simplest case is Maybe: try to implement mzero and mplus!

46

Other monads exhibit the same pattern of failure and combination of results

class Monad m => MonadPlus m where
mzero :: m a

mplus :: ma ->ma ->ma
The simplest case is Maybe, with Nothing representing failure

instance MonadPlus Maybe where

mzero = Nothing

mplus (Just x) _ = Just x
mplus _ (Just y) = Just y
mplus Nothing Nothing = Nothing

47

do versus comprehensions

If I had told you to write sumTriples without imposing monadic notation, the result would have

been
[(x,y,2)
do x <- xs | x <- xs
y <- XS , Yy <- XS
Z <- XS , Z <- XS
guard (x +y == z) , X ty==121]

return (x,y,z)

do-notation and comprehensions are exactly the same!
* GHC provides monad comprehensions under a flag
+ Other languages, such as Scala, only provide comprehensions for working with monads

48

+ With higher-order functions and higher-kinded abstraction many patterns become mere
functions

+ Higher-kinded abstraction refers to making a type constructor vary, in contrast to “full” types

+ Functor generalizes the idea of “map”

* Monads encode the notion of “sequential computation”

Later in the course

* More examples of monads
+ Utility functions for monads

* Another abstraction: applicatives

49

	Functors
	Monads
	The List monad

