

Lecture 10. Functors and monads

Functional Programming

Utrecht University

1

- Understand the concept of *higher-kinded* abstraction
- Introduce two common patterns: *functors* and *monads*
- Simplify code with monads

Chapter 12 from Hutton's book, except 12.2

Functors

map f xs applies f over all the elements of the list xs

```
map :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]map [ ] = [ ]map f(x:xs) = f(x : map f xs)> map (+1) [1,2,3][2,3,4]
> map even [1,2,3]
[False,True,False]
```
Optional values are represented with Maybe

```
data Maybe a = Nothing | Just a
```
They admit a similar map operation:

```
mapMay :: (a \rightarrow b) -> Maybe a -> Maybe b
```
Optional values are represented with Maybe

```
data Maybe a = Nothing | Just a
```
They admit a similar map operation:

```
mapMay :: (a \rightarrow b) \rightarrow Maybe a \rightarrow Maybe b
```

```
mapMay _ Nothing = Nothing
mapMay f (Just x) = Just (f x)
```
mapMay applies a function over a value, only if it is present

```
> mapMay (+1) (Just 1)
```
Just 2

```
> mapMay (+1) Nothing
```
Nothing

}

It is similar to the "safe dot" operator in some languages

```
int Total(Order o) { // o might be null
   return o?.Amount * o?.PricePerUnit;
```
Map over binary trees

Remember binary trees with data in the inner nodes:

```
data Tree a = Leaf
              Node (Tree a) a (Tree a)
            deriving Show
```
What does a map operation over trees look like?

Map over binary trees

Remember binary trees with data in the inner nodes:

```
data Tree a = Leaf
              Node (Tree a) a (Tree a)
            deriving Show
```
What does a map operation over trees look like?

```
mapTree :: (a \rightarrow b) \rightarrow Tree a \rightarrow Tree b
```
Map over binary trees

Remember binary trees with data in the inner nodes:

```
data Tree a = Leaf
              | Node (Tree a) a (Tree a)
            deriving Show
```
What does a map operation over trees look like?

```
mapTree :: (a \rightarrow b) \rightarrow Tree a \rightarrow Tree bmapTree _ Leaf
  = Leaf
mapTree f (Node l \times r)
  = Node (mapTree f 1) (f x) (mapTree f r)
```
mapTree also applies a function over all elements, but now contained in a binary tree

```
> t = Node (Node Leaf 1 Leaf) 2 Leaf
> mapTree (+1) t
Node (Node Leaf 2 Leaf) 3 Leaf
> mapTree even t
```
Node (Node Leaf False Leaf) True Leaf

mapT :: $(a -> b) -> T$ a $-> T$ b

The difference lies in the *type constructor*

- [] (list), Tree, or Maybe
- Those parts need to be applied to other types

Functors

A type *constructor* which has a "map" is called a **functor**

```
class Functor f where
```
fmap :: $(a \rightarrow b) \rightarrow f a \rightarrow f b$

instance Functor [] **where**

 $--$ fmap :: $(a \rightarrow b) \rightarrow [a] \rightarrow [b]$ $fmap = map$

instance Functor Maybe **where**

```
-- fmap :: (a \rightarrow b) \rightarrow Maybe a -> Maybe b
fmap = map
```
class Functor f **where**

fmap :: $(a \rightarrow b) \rightarrow f a \rightarrow f b$

- In Functor the variable f stands for a type constructor
	- A "type" which needs to be applied
- This is called **higher-kinded** abstraction
	- Not generally available in a programming language
	- Haskell, Scala and Rust have it
	- Java, C# and Swift don't

Suppose you have a function operating over lists

```
inc :: [Int] -> [Int]
inc xs = map (+1) xs
```
You can easily generalize it by using fmap

```
inc \cdot: Functor f \Rightarrow f Int -> f Int
inc xs = fmap (+1) xs
```
Note that in this case the type of *elements* is fixed to Int, but the type of the *structure* may vary

Many Haskellers use an alias for fmap

 $($\$>$) = fmap$

This allows writing maps in a more natural style, in which the function to apply appears before the arguments

inc $xs = (+1) < s > xs$

Functions with a fixed input are also functors

• Remember that $r \rightarrow s$ is also written $(-)$ $r \rightarrow s$

Question

What type should we write in the Functor instance?

Functions with a fixed input are also functors

• Remember that $r \rightarrow s$ is also written (->) $r \cdot s$

Question

What type should we write in the Functor instance?

Answer

We need something which requires a parameter

• Thus we drop the last one from the arrow, $(-)$ r

instance Functor ((->) r) **where**

```
-- fmap :: (a \rightarrow b) -> (r \rightarrow a) -> (r \rightarrow b)fmap ab ra = \rceil -> ab (ra r)
```
The map operation for functions is composition!

IO actions form also a functor

instance Functor IO **where**

...

IO actions form also a functor

instance Functor IO **where**

 $--$ fmap :: $(a \rightarrow b) \rightarrow I0 a \rightarrow I0 b$ fmap f $a = do \times < -a$ return (f x)

This removes the need for a lot of names

```
do x \leq -q getChar ==-> toUpper \leq \frac{1}{2} getChar
   return (toUpper x)
```
and it is much easier to read and follow!

Valid Functor instances should obey two laws

These laws guarantee that fmap preserves the structure

Could you find an instance which respects the type of fmap but not the laws?

Could you find an instance which respects the type of fmap but not the laws?

instance Functor [] **where**

- -- Applies the function over all elements,
- -- but also reverses the list

```
fmap [ ] = [ ]fmap f (x:xs) = fmap f xs + [f x]
```
Could you find an instance which respects the type of fmap but not the laws?

instance Functor [] **where**

-- Applies the function over all elements,

-- but also reverses the list

```
fmap [ ] = [ ]
```

```
fmap f (x:xs) = fmap f xs ++ [f x]
```

```
fmap id [1,2] = [2,1]/ = [1,2] = id [1,2]
```
Things can go wrong in many different ways

instance Functor [] **where**

```
-- Always returns an empty list
  fmap = []
fmap id [1,2] = []
             /=[1,2] = id [1,2]
```
Monads

Case study: evaluation of arithmetic expressions

```
data ArithOp = Plus | Minus | Times | Div
data ArithExpr = Constant Integer
                | Variable Char
               | Op ArithOp ArithExpr ArithExpr
```
Case study: evaluation of arithmetic expressions

```
data ArithOp = Plus | Minus | Times | Div
data ArithExpr = Constant Integer
                | Variable Char
               | Op ArithOp ArithExpr ArithExpr
eval :: Map Char Integer -> ArithExpr
```

```
-> Maybe Integer
```
Case study: evaluation of arithmetic expressions

```
data ArithOp = Plus | Minus | Times | Div
data ArithExpr = Constant Integer
                | Variable Char
                | Op ArithOp ArithExpr ArithExpr
eval :: Map Char Integer -> ArithExpr
     -> Maybe Integer
eval m (Op Plus x y)
  = case eval m x of
      Nothing -> Nothing
      Just x' -> case eval m y of
                   Nothing -> Nothing
                   Just y' \rightarrow Just (x' + y')
```
Validation of data

data Record = Record Name Int Address

-- These three validate input from the user validateName :: String -> Maybe Name validateAge :: String -> Maybe Int validateAddr :: String -> Maybe Address

```
-- And we want to compose them together
case validateName nm of
  Nothing -> Nothing
  Just nm' -> case validateAge ag of
    Nothing -> Nothing
    Just ag' -> case validateAddr ad of
      Nothing -> Nothing
      list ad' -> list (Record nm' ag' ad')
```
The same pattern occurs over and over again

case maybeValue **of** Nothing -> Nothing Just x -> -- return some Maybe which uses x The same pattern occurs over and over again

```
case maybeValue of
  Nothing -> Nothing
  Just x \rightarrow - return some Maybe which uses x
```
Higher-order functions to the rescue!

```
next :: Maybe a \rightarrow (a \rightarrow Maybe b) -> Maybe b
next Nothing = Nothing
next (Just x) f = f x
```
Shorter code for the examples

For the arithmetic expression evaluator:

```
eval m (Op Plus x y)
  = eval m x `next` (\x' ->
     eval m \vee `next` (\vee)' ->
      Just (x' + y') ) )
```
For data validation:

```
validateName nm `next` (\nm' ->
 validateAge ag `next` (\ag' ->
 validateAddr ag `next` (\ad' ->
  Just (Record nm' ag' ad') )))
```
Remember the "bind" operation for input/output actions

 $(\gg=)$:: IO a -> (a -> IO b) -> IO b

Now, compare it to the next operation for Maybe

```
next :: Maybe a \rightarrow (a \rightarrow Maybe b) \rightarrow Maybe b
```
Another example of *higher-kinded abstraction*

The other basic operation for IO was return

return :: a -> IO a

This function embeds a pure value into the IO world

The other basic operation for IO was return

return :: a -> IO a

This function embeds a pure value into the IO world

Optional values provide a similar function

Just :: a -> Maybe a

The other basic operation for IO was return

```
return :: a -> IO a
```
This function embeds a pure value into the IO world

Optional values provide a similar function

```
Just :: a -> Maybe a
```
Maybe it is about time to introduce a new type class…

(>>=) + return = monad

A **monad** is a type constructor which provides the previous two operations

- Subject to some laws that we shall introduce later
- In addition, every monad is also a functor

```
class Functor m => Monad m where
 return :: a -> m a
  (\gg)=) :: m a -> (a \to m b) -> m b
```
instance Monad Maybe **where**

return = Just

 $(\gg)=$ = next

instance Monad IO **where**

-- Hidden from us, mere mortals

The do-notation introduced for IO works for any monad

Rule of thumb for writing monadic code: do not think about nested (>>=) at all, just use do

For the arithmetic expression evaluator:

```
eval m (Op Plus x y) = do x' < - eval m xy' <- eval m yreturn (x' + y')
```
For data validation:

do nm' <- validateName nm ag' <- validateAge ag ad' <- validateAddr ad return (Record nm' ag' ad') What does the following code do?

```
f :: Maybe Int -> Maybe Int
f m = do x \leq -mreturn 3
         return (x + 1)
```
What does the following code do?

```
f :: Maybe Int -> Maybe Int
f m = do x \leq -mreturn 3
         return (x + 1)
```
Solution

Adds 1 to the value in m, if present

- return does **not** break evaluation
- So it does not always return 3

```
f :: Maybe Int -> Maybe Int
f m = do x \leq -mreturn 3
         return (x + 1)
```
The behavior is clear by looking at the translation

- \cdot <- are turned into nested (>>=)
- return for Maybe is Just

```
f m = m \gg = \sqrt{x} ->
           Just 3 \gg = \sum_{n=1}^{\infty} 3 -> -- "gets" the 3
              Just (x + 1)
```
Tricky monadic questions

Is the following code type correct at all?

```
g :: Maybe Int -> Maybe Int
g m = do x <- return 3
         y \le -mreturn (x + y)
```
Tricky monadic questions

Is the following code type correct at all?

```
g :: Maybe Int -> Maybe Int
g m = do x <- return 3
         y \le -mreturn (x + y)
```
And what about the following variation?

```
g' :: Maybe Int -> Maybe Int
g' m = do x <- Just 3
          y \le -mreturn (x + y)
```
Does this code compile?

h :: Maybe Int -> IO Int -> Maybe Int h $x \ y =$ **do** $x' \leq -x$ $y' \le -y$ return $(x' + y')$

Does this code compile?

h :: Maybe Int -> IO Int -> Maybe Int h $x \ y =$ **do** $x' \leq -x$ $y' < -y$ return $(x' + y')$

Solution

No, a do block works only with *one* monad

- The first <- and return require Maybe
- The second <- requires IO

The List monad

Let us try to write the methods from their types

```
return :: a -> [a]
return x =
```
Building the Monad [] instance

Let us try to write the methods from their types

```
return :: a -> [a]
return x =
```
We only have two options:

- Return the empty list, []
- Return the given element repeated some amount of times, $[x, \ldots]$

In this case, we settle for $[x]$, a singleton list

- It is the only possibility to satisfy the laws
	- But I will not show you why

 $(\Rightarrow)=)$:: [a] -> (a -> [b]) -> [b] $xs \gg = f = ...$

```
(\Rightarrow)=) :: [a] -> (a -> [b]) -> [b]
xs \gg = f = ...
```
- 1. We have a list of as and a function which operate in one
	- The natural instinct is to map one over the other
- 2. But map $f(x)$: $[f(b)]$, a list of lists
- 3. Luckily, we have concat :: $\lceil \lceil a \rceil \rceil$ -> $\lceil a \rceil$

```
xs \gg = f = concat (map f xs)
```

```
[1,2,3] \gg = \{x \rightarrow do x \leftarrow [1,2,3][4,5,6] \Rightarrow \forall y \Rightarrow y <- [4,5,6]return (x + y) return (x + y)= -- definition of (>>=) and return
[5,6,7,6,7,8,7,8,9]
=
```
[1+4,1+5,1+6,2+4,2+5,2+6,3+4,3+5,3+6]

Lists model search and non-determinism

```
[1,2,3] \gg = \chi \rightarrow do x \leftarrow [1,2,3][4,5,6] \gg = \sqrt{v} \rightarrow y \leftarrow [4,5,6]return (x + y) return (x + y)= -- definition of (>>=) and return
[5,6,7,6,7,8,7,8,9]
=
[1+4,1+5,1+6,2+4,2+5,2+6,3+4,3+5,3+6]
```
The list monad applies the function over all choices of elements from each list

- For that reason we call [] the **search** monad
- Each variable can be thought as having more than one value assigned to it
	- This is called **non-determinism**

Given three numbers *x*, *y*, *z*, we say that they form

- A *sum triple* if $x + y = z$
- A Pythagorean triple if $x^2 + y^2 = z^2$

triples xs computes, given a list of numbers xs, those subsets of elements which form a triple

```
> triples [1,2,3][(1,2,3), (2,1,3)]
```
We are going to build it using the monadic interface to lists

Cooking sumTriple

A first approximation to sum triples is:

```
sumTriples xs = do x <- xs
                   y \le -xZ \le - XSif x + y == zthen return (x,y,z)
                       else []
```
The value [] denotes failure while searching

• No value is produced from ranging over an empty list

 $[$] >>= f = $[$] = χ S >>= \ -> $[$]

Introducing guard

This pattern is very common to perform search

```
quard :: Bool \rightarrow [(1]quard True = [(1)]guard False = []
```
We do not really care of the value returned by guard

• The important bit is that when the condition is false, we produce no more results

```
sumTriples xs = do x <- xs
                   y \le -xs
                   z \le -xquard (x + y == z)return (x,y,z)
```
Assuming we have sumTriples and pytTriples

```
triples :: [Int] -> [(Int, Int, Int)]triples xs = sumTriples xs ++ pytTriples xs
```
Concatenation combines solutions from multiple sources

• In a search, it works as a disjunction

Other monads exhibit the same pattern of failure and combination of results

class Monad m => MonadPlus m **where** mzero :: m a mplus :: m a -> m a -> m a

Other monads exhibit the same pattern of failure and combination of results

class Monad m => MonadPlus m **where** mzero :: m a mplus :: $m a$ -> $m a$ -> $m a$

The simplest case is Maybe: try to implement mzero and mplus!

Other monads exhibit the same pattern of failure and combination of results

class Monad m => MonadPlus m **where** mzero :: m a mplus :: m a -> m a -> m a

The simplest case is Maybe, with Nothing representing failure

instance MonadPlus Maybe **where**

```
mzero = Nothing
mplus (Just x) = Just x
mplus (\text{Just } y) = \text{Just } ymplus Nothing Nothing = Nothing
```
do versus comprehensions

If I had told you to write sumTriples without imposing monadic notation, the result would have been

 $[X, Y, Z]$ **do** $x \leq -x s$ | $x \leq -x s$ $V \leq - XS$, $V \leq - XS$ z <- xs , z <- xs quard $(x + y == z)$, $x + y == z$] return (x,y,z)

do-notation and comprehensions are exactly the same!

- GHC provides *monad comprehensions* under a flag
- Other languages, such as Scala, only provide comprehensions for working with monads

Summary

- With higher-order functions and higher-kinded abstraction many patterns become mere functions
	- Higher-kinded abstraction refers to making a type constructor vary, in contrast to "full" types
- Functor generalizes the idea of "map"
- Monads encode the notion of "sequential computation"

Later in the course

- More examples of monads
- Utility functions for monads
- Another abstraction: applicatives