

#### Lecture 10. Functors and monads

**Functional Programming** 

**Utrecht University** 

1

#### Goals

- Understand the concept of *higher-kinded* abstraction
- Introduce two common patterns: functors and monads
- Simplify code with monads

Chapter 12 from Hutton's book, except 12.2

## **Functors**

## **Map over lists**

```
map f xs applies f over all the elements of the list xs
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs
> map (+1) [1,2,3]
[2,3,4]
> map even [1,2,3]
[False, True, False]
```

### Map over optional values

Optional values are represented with Maybe

They admit a similar map operation:

$$mapMay :: (a \rightarrow b) \rightarrow Maybe a \rightarrow Maybe b$$

## Map over optional values

Optional values are represented with Maybe

```
data Maybe a = Nothing | Just a
```

They admit a similar map operation:

```
mapMay :: (a -> b) -> Maybe a -> Maybe b
mapMay _ Nothing = Nothing
mapMay f (Just x) = Just (f x)
```

### Map over optional values

mapMay applies a function over a value, only if it is present

```
> mapMay (+1) (Just 1)
Just 2
> mapMay (+1) Nothing
Nothing
It is similar to the "safe dot" operator in some languages
int Total(Order o) { // o might be null
    return o?.Amount * o?.PricePerUnit;
```

Remember binary trees with data in the inner nodes:

What does a map operation over trees look like?

Remember binary trees with data in the inner nodes:

What does a map operation over trees look like?

```
mapTree :: (a -> b) -> Tree a -> Tree b
```

Remember binary trees with data in the inner nodes:

What does a map operation over trees look like?

mapTree also applies a function over all elements, but now contained in a binary tree

```
> t = Node (Node Leaf 1 Leaf) 2 Leaf
> mapTree (+1) t
Node (Node Leaf 2 Leaf) 3 Leaf
> mapTree even t
Node (Node Leaf False Leaf) True Leaf
```

## Maps have similar types

The difference lies in the *type constructor* 

- [] (list), Tree, or Maybe
- Those parts need to be applied to other types

#### **Functors**

A type *constructor* which has a "map" is called a **functor** 

```
class Functor f where
  fmap :: (a -> b) -> f a -> f b
instance Functor [] where
  -- fmap :: (a -> b) -> [a] -> [b]
  fmap = map
instance Functor Maybe where
  -- fmap :: (a -> b) -> Maybe a -> Maybe b
  fmap = mapMay
```

### **Higher-kinded abstraction**

#### class Functor f where

- In Functor the variable f stands for a type constructor
  - · A "type" which needs to be applied
- This is called **higher-kinded** abstraction
  - · Not generally available in a programming language
  - · Haskell, Scala and Rust have it
  - Java, C# and Swift don't

## **Functors generalize maps**

Suppose you have a function operating over lists

```
inc :: [Int] -> [Int]
inc xs = map (+1) xs
```

You can easily generalize it by using fmap

```
inc :: Functor f => f Int -> f Int
inc xs = fmap (+1) xs
```

Note that in this case the type of *elements* is fixed to Int, but the type of the *structure* may vary

## (<\$>) instead of fmap

Many Haskellers use an alias for fmap

$$(<$>) = fmap$$

This allows writing maps in a more natural style, in which the function to apply appears before the arguments

inc 
$$xs = (+1) < > xs$$

Functions with a fixed input are also functors

• Remember that  $r \rightarrow s$  is also written (->) r s

#### Question

What type should we write in the Functor instance?

Functions with a fixed input are also functors

• Remember that  $r \rightarrow s$  is also written (->) r s

#### Question

What type should we write in the Functor instance?

#### **Answer**

We need something which requires a parameter

• Thus we drop the last one from the arrow, ( ->)  $\, r \,$ 

```
instance Functor ((->) r) where
  -- fmap :: (a -> b) -> (r -> a) -> (r -> b)
fmap ab ra = \r -> ab (ra r)
```

The map operation for functions is composition!

IO actions form also a functor

instance Functor IO where

. . .

IO actions form also a functor

#### instance Functor IO where

```
-- fmap :: (a -> b) -> IO a -> IO b
fmap f a = do x <- a
return (f x)
```

This removes the need for a lot of names

```
do x <- getChar ===> toUpper <$> getChar
  return (toUpper x)
```

and it is much easier to read and follow!

#### **Functor laws**

Valid Functor instances should obey two laws

```
identity fmap id = id
distributivity over composition fmap (f.g) = fmap f . fmap g
```

These laws guarantee that fmap preserves the structure

#### A wrong Functor

Could you find an instance which respects the type of fmap but not the laws?

### **A wrong Functor**

Could you find an instance which respects the type of fmap but not the laws?

```
instance Functor [] where
   -- Applies the function over all elements,
   -- but also reverses the list
   fmap _ [] = []
   fmap f (x:xs) = fmap f xs ++ [f x]
```

#### A wrong Functor

### Could you find an instance which respects the type of fmap but not the laws?

## **Another wrong Functor**

Things can go wrong in many different ways

# **Monads**

## **Case study: evaluation of arithmetic expressions**

## Case study: evaluation of arithmetic expressions

# Case study: evaluation of arithmetic expressions

. . .

```
data ArithOp = Plus | Minus | Times | Div
data ArithExpr = Constant Integer
                 Variable Char
                Op ArithOp ArithExpr ArithExpr
eval :: Map Char Integer -> ArithExpr
     -> Maybe Integer
eval m (Op Plus x y)
  = case eval m x of
      Nothing -> Nothing
      Just x' -> case eval m y of
                   Nothing -> Nothing
                   Just y' \rightarrow Just (x' + y')
```

22

#### Validation of data

data Record = Record Name Int Address

```
-- These three validate input from the user
validateName :: String -> Maybe Name
validateAge :: String -> Maybe Int
validateAddr :: String -> Maybe Address
-- And we want to compose them together
case validateName nm of
  Nothing -> Nothing
  Just nm' -> case validateAge ag of
    Nothing -> Nothing
    Just ag' -> case validateAddr ad of
      Nothing -> Nothing
      lust ad' -> lust (Record nm' ad' ad')
```

#### **Looking for similarities**

The same pattern occurs over and over again

```
case maybeValue of
  Nothing -> Nothing
  Just x -> -- return some Maybe which uses x
```

### **Looking for similarities**

The same pattern occurs over and over again

```
case maybeValue of
  Nothing -> Nothing
  Just x -> -- return some Maybe which uses x

Higher-order functions to the rescue!

next :: Maybe a -> (a -> Maybe b) -> Maybe b

next Nothing _ = Nothing

next (Just x) f = f x
```

## **Shorter code for the examples**

For the arithmetic expression evaluator:

```
eval m (Op Plus x y)
  = eval m x `next` (\x' ->
     eval m v `next` (\v' ->
      Just (x' + y') ) )
For data validation:
validateName nm `next` (\nm' ->
 validateAge ag `next` (\ag' ->
  validateAddr ag `next` (\ad' ->
   Just (Record nm' ag' ad') )))
```

#### Does it sound familiar?

Remember the "bind" operation for input/output actions

$$(>>=)$$
 :: IO a -> (a -> IO b) -> IO b

Now, compare it to the next operation for Maybe

Another example of higher-kinded abstraction

#### return for optional values

The other basic operation for IO was return

return :: a -> IO a

This function embeds a pure value into the IO world

### return for optional values

The other basic operation for IO was return

return :: a -> **IO** a

This function embeds a pure value into the IO world

Optional values provide a similar function

Just :: a -> Maybe a

### return for optional values

The other basic operation for IO was return

return :: a -> **IO** a

This function embeds a pure value into the IO world

Optional values provide a similar function

Just :: a -> Maybe a

Maybe it is about time to introduce a new type class...

### (>>=) + return = monad

A **monad** is a type constructor which provides the previous two operations

- Subject to some laws that we shall introduce later
- In addition, every monad is also a functor

#### class Functor m => Monad m where

```
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
```

#### instance Monad Maybe where

```
return = Just
(>>=) = next
```

#### instance Monad IO where

```
-- Hidden from us, mere mortals
```

### do-notation for generic monads

The do-notation introduced for IO works for any monad

Rule of thumb for writing monadic code: do not think about nested (>>=) at all, just use do

## Shorter (and nicer) code for the examples

For the arithmetic expression evaluator:

For data validation:

```
do nm' <- validateName nm
   ag' <- validateAge ag
   ad' <- validateAddr ad
   return (Record nm' ag' ad')</pre>
```

What does the following code do?

What does the following code do?

```
f :: Maybe Int -> Maybe Int
f m = do x <- m
    return 3
    return (x + 1)</pre>
```

#### Solution

Adds 1 to the value in m, if present

- return does **not** break evaluation
- So it does not always return 3

```
f :: Maybe Int -> Maybe Int
f m = do \times < - m
           return 3
           return (x + 1)
The behavior is clear by looking at the translation
   <- are turned into nested (>>=)
   • return for Maybe is Just
f m = m >>= \xspace \xspace \xspace >>
         Just 3 >>= \_ -> -- "gets" the 3
            Just (x + 1)
```

Is the following code type correct at all?

Is the following code type correct at all?

And what about the following variation?

Does this code compile?

Does this code compile?

#### Solution

No, a do block works only with one monad

- The first <- and return require Maybe
- The second <- requires I0</li>

# The List monad

Let us try to write the methods from their types

```
return :: a -> [a]
return x = _
```

Let us try to write the methods from their types

```
return :: a -> [a]
return x = _
```

We only have two options:

- Return the empty list, []
- Return the given element repeated some amount of times, [x, ...]

In this case, we settle for [x], a singleton list

- It is the only possibility to satisfy the laws
  - · But I will not show you why

```
(>>=) :: [a] -> (a -> [b]) -> [b] xs >>= f = ...
```

```
(>>=) :: [a] -> (a -> [b]) -> [b]
xs >>= f = ...
```

- 1. We have a list of as and a function which operate in one
  - The natural instinct is to map one over the other
- 2. But map f xs :: [[b]], a list of lists
- 3. Luckily, we have concat :: [[a]] -> [a]

#### What does the List monad model?

```
[1,2,3] >>= \x -> do x <- [1,2,3]
[4,5,6] >>= \y -> y <- [4,5,6]
return (x + y) return (x + y)
= -- definition of (>>=) and return
[5,6,7,6,7,8,7,8,9]
=
[1+4,1+5,1+6,2+4,2+5,2+6,3+4,3+5,3+6]
```

#### Lists model search and non-determinism

```
[1,2,3] >>= \x -> do x <- [1,2,3]
  [4,5,6] >>= \y -> y <- [4,5,6]
  return (x + y) return (x + y)
= -- definition of (>>=) and return
[5,6,7,6,7,8,7,8,9]
=
[1+4,1+5,1+6,2+4,2+5,2+6,3+4,3+5,3+6]
```

The list monad applies the function over all choices of elements from each list

- For that reason we call [] the **search** monad
- Each variable can be thought as having more than one value assigned to it
  - This is called **non-determinism**

## **Case study: sum and Pythagorean triples**

Given three numbers x, y, z, we say that they form

- A sum triple if x + y = z
- A Pythagorean triple if  $x^2 + y^2 = z^2$

triples xs computes, given a list of numbers xs, those subsets of elements which form a triple

We are going to build it using the monadic interface to lists

## Cooking sumTriple

A first approximation to sum triples is:

The value [] denotes failure while searching

No value is produced from ranging over an empty list

$$[] >>= f = [] = xs >>= \_ -> []$$

## **Introducing guard**

This pattern is very common to perform search

```
guard :: Bool -> [()]
guard True = [()]
guard False = []
```

We do not really care of the value returned by guard

• The important bit is that when the condition is false, we produce no more results

## **Cooking triples**

Assuming we have sumTriples and pytTriples

```
triples :: [Int] -> [(Int, Int, Int)]
triples xs = sumTriples xs ++ pytTriples xs
```

Concatenation combines solutions from multiple sources

• In a search, it works as a disjunction

#### **Monads with failure**

Other monads exhibit the same pattern of failure and combination of results

```
class Monad m => MonadPlus m where
  mzero :: m a
  mplus :: m a -> m a -> m a
```

#### **Monads with failure**

Other monads exhibit the same pattern of failure and combination of results

```
class Monad m => MonadPlus m where
  mzero :: m a
  mplus :: m a -> m a -> m a
```

The simplest case is Maybe: try to implement mzero and mplus!

#### Monads with failure

Other monads exhibit the same pattern of failure and combination of results

```
class Monad m => MonadPlus m where
  mzero :: m a
  mplus :: m a -> m a -> m a
```

The simplest case is Maybe, with Nothing representing failure

### instance MonadPlus Maybe where

```
mzero = Nothing
mplus (Just x) _ = Just x
mplus _ (Just y) = Just y
mplus Nothing Nothing = Nothing
```

## do versus comprehensions

If I had told you to write sumTriples without imposing monadic notation, the result would have been

```
[ (x,y,z)

do x <- xs

y <- xs

z <- xs

guard (x + y == z)

return (x,y,z)

[ (x,y,z)

  | x <- xs

  | x <- xs

  | x <- xs

  | x <- xs

  | x <- xs
```

do-notation and comprehensions are exactly the same!

- GHC provides monad comprehensions under a flag
- Other languages, such as Scala, only provide comprehensions for working with monads

### **Summary**

- With higher-order functions and higher-kinded abstraction many patterns become mere functions
  - Higher-kinded abstraction refers to making a type constructor vary, in contrast to "full" types
- Functor generalizes the idea of "map"
- Monads encode the notion of "sequential computation"

#### Later in the course

- More examples of monads
- Utility functions for monads
- Another abstraction: applicatives