%% Utrecht University

Lazy evaluation

Functional Programming

Utrecht University

Haskell can be defined with four adjectives

* Functional

Haskell can be defined with four adjectives

* Functional

+ Statically typed
* Pure

* Lazy

Haskell can be defined with four adjectives

* Functional
+ Statically typed
* Pure

* Lazy

* Understand the lazy evaluation strategy

+ As opposed to strict evaluation

+ Understand why lazyness is useful

» Work with infinite structures

+ Learn about laziness pitfalls

+ Force evaluation using seq

square :: Integer -> Integer

square x = X * X

square (1 + 2)
= -- magic happens in the computer
9

How do we reach that final value?

In most programming languages:
1. Evaluate the arguments completely
2. Evaluate the function call

square (1 + 2)
= -- evaluate arguments

square 3

-- go into the function body
8 % g

Arguments are replaced as-is in the function body

square (1 + 2)

= -- go into the function body

(1 +2) *(1+2)

= -- we need the value of (1 + 2) to continue
3% (1 +2)

3*3

In the case of square, non-strict evaluation is worse

Is this always the case?

In the case of square, non-strict evaluation is worse

Is this always the case?

const x y = x -- forget about y

-- Call-by-value -- Call-by-name
const 5 (1 + 2) const 5 (1 + 2)
const 5 3 5

5

square (1 + 2)

(1 +2) * (1+2)

Why redo the work for (1 + 2)?

square (1 + 2)

(1 +2) * (1+2)

Why redo the work for (1 + 2)?
We can share the evaluated result

square (1 + 2)

A*A
1 (1 + 2)

Haskell uses a lazy evaluation strategy
+ Expressions are not evaluated until needed
+ Duplicate expressions are shared

Lazy evaluation never requires more steps than call-by-value

Each of those not-evaluated expressions is called a thunk

Is it possible to get different outcomes using different evaluation strategies?

Is it possible to get different outcomes using different evaluation strategies?

No and Yes

* No:

Theorem [Church-Rosser Theorem]

For terminating programs all evaluation strategies produce the same result value.

* No:

Theorem [Church-Rosser Theorem]

For terminating programs all evaluation strategies produce the same result value.

* Yes:

* No:

Theorem [Church-Rosser Theorem]

For terminating programs all evaluation strategies produce the same result value.

* Yes:

1. Holds only for terminating programs.

+ What about infinite loops?
+ What about exceptions?

* No:

Theorem [Church-Rosser Theorem]

For terminating programs all evaluation strategies produce the same result value.

* Yes:

1. Holds only for terminating programs.
+ What about infinite loops?
+ What about exceptions?

2. Performance might be different.

+ As square and const show

loop x = loop x
* This is a well-typed program

* But loop 3 never terminates

loop x = loop x
* This is a well-typed program

* But loop 3 never terminates

Question: What does 'const 5 (loop 3)' evaluate to?

loop x = loop x
* This is a well-typed program

* But loop 3 never terminates
Question: What does 'const 5 (loop 3)' evaluate to?

-- Eager -- Lazy

const 5 (loop 3) const 5 (loop 3)

const 5 (loop 3) 5

Lazy evaluation terminates more often than eager evaluation.

Question: Why is this useful?

(&&) :: Bool -> Bool -> Bool
False && _

True && x = X

False

+ In eager languages, x && Yy evaluates both conditions
+ But if the first one fails, why bother?
+ C/Java/C# include a built-in short-circuit conjunction
+ In Haskell, x && y only evaluates the second argument if the first one is True

+ False &% (loop True) terminates

if_ :: Bool -> a ->a -> a

if_ True t _ =t

if_ False _ e

e

+ In eager languages, if_ evaluates both branches
+ Inlazy languages, only the one being selected

if_ :: Bool -> a ->a -> a
t

if_ True t _

if_ False _ e e

+ In eager languages, if_ evaluates both branches
+ Inlazy languages, only the one being selected

For that reason,
+ In eager languages, if has to be built-in

+ Inlazy languages, you can build your own control structures

+ Lazyness allows for easier separation of concerns.

data Operation = Sum | Product

apply 11 Operation -> [Int] -> Int
apply op xs = case op of
Sum -> sumResult

Product -> productResult

where
sumResult = sum Xs
productResult = product xs

* Lazyness allows for easier separation of concerns.
minAndMax . 0rd a => a -> [a] -> (a,a)

minAndMax d = foldr (\x (mi,ma) -> (x "min® mi, x "'max ma)) (d,d)

minimum' :: 0rd a => a -> [a] -> a

minimum' d = fst . minAndMax d

An infinite list of ones:

ones :: [Integer]

ones = 1 : ones
ones is infinite, but everything works fine if we only work with a finite part

take 2 ones
take 2 (1 : ones)

1 : take 1 ones

1 : take 1 (1 : ones)
1 : 1 : take 0 ones
1:1:[1

To build an infinite list of numbers, we use recursion

* This kind of recursion is trickier than the usual one

nats :: [Integer]

nats = @ : map (+1) nats

take 2 nats
= take 2 (0 : map (+1) nats)
=0 : take 1 (map (+1) nats)
: take 1 (map (+1) (@ : map (+1) nats))
: take 1 (1 : map (+1) (map (+1) nats))
1 : take @ (map (+1) (map (+1) nats))
1]

20

Remember the usual definition of fib,

fib 0 = 0
fib 1 =1
fib n = fib (n-1) + fib (n-2)

21

Remember the usual definition of fib,

fib 0 = 0
fib 1 =1
fib n = fib (n-1) + fib (n-2)

Here is a list containing all Fibonacci numbers:
fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

fib :: Integer -> Integer
fib n = fibs !'! n -- Take the n-th element

21

22

22

22

A list of all prime numbers: Sieve of Erastosthenes

An algorithm to compute the list of all primes

* Already known in Ancient Greece

1. Lay all numbers in a list starting with 2
2. Take the first next number p in the list

3. Remove all the multiples of p from the list

« 2p, 3p, 4p...
+ Alternatively, remove n if the remainder with pis 0

4. Go back to step 2 with the first remaining number

23

1. Lay all numbers in a list starting with 2
primes :: [Integer]
primes = sieve [2 ..] -- an infinite list

24

1. Lay all numbers in a list starting with 2
primes :: [Integer]
primes = sieve [2 ..] -- an infinite list

2. Take the first number p in the list
sieve (p:ns) = p :

3. Remove n if the remainder with p is 0

4. Go back to step 2 with the first remaining number
sieve (p:ns)

=p : sieve [n | n <- ns, n ‘mod” p /= 0]

24

How does Haskell know how much to evaluate?
+ By default, everything is kept in a thunk
+ When we have a case distinction, we evaluate enough to distinguish which branch to follow

take 0 _
take _ []
take n (x:xs)

[]
[]
X : take (n-1) xs

* If the number is @ we do not need the list at all

+ Otherwise, we need to distinguish [] from x:xs

25

Weak Head Normal Form

An expression is in weak head normal form (WHNF) if it is:
* A constructor with (possibly non-evaluated) data inside
e TrueorJust (1 + 2)
+ An anonymous function

+ The body might be in any form
« \X -> x + lor\x -> if_ True x X

+ A function applied to too few arguments

* map minimum

Every time we need to distinguish the branch to follow the expression is evaluated until its WHNF

26

Which of these expressions are in WHNF?

zip [1..]

Node Leaf 4 (fmap (+1) Leaf)

map (X:) Xs

height (Node Leaf 'a' (Node Leaf 'b' Leaf))
_b->b

map (\x -> x + 1) [1..5]

(x + 1) : foldr (:) [] [1..5]

N s BN S

27

Which of these expressions are in WHNF?

zip [1..]

Node Leaf 4 (fmap (+1) Leaf)

map (X:) Xs

height (Node Leaf 'a' (Node Leaf 'b' Leaf))
_b->b

map (\x -> x + 1) [1..5]

(x + 1) : foldr (:) [] [1..5]

N s BN S

answer: 1,2,5,7

27

Note the difference between these two functions

loop 2 + 3
= -- definition of loop
loop 2 + 3

= -- never-ending sequence

const 3 (loop 2)

= -- definition of const
3
-- and that's it!

28

A function is strict on one argument if the result of the function is non-terminating given a
non-terminating value for that argument
« (+) is strict on its first and second arguments

+ const is not strict on its second argument, but strict on the first

We represent non-termination by | or undefined
+ We also call L a diverging computation
« fisstrictif f L = L

29

What is the result of these expressions?

(\x -> x) True

(\x -> x) undefined

(\x -> @) undefined

(\x -> undefined) 0

(\x f -> f x) undefined
undefined undefined

length (map undefined [1,2])

SN s W s

30

What is the result of these expressions?

1. (\x -> x) True = True

2. (\x -> x) undefined = undefined

3. (\x -> 0) undefined =0

4, (\x -> undefined) 0 = undefined

5. (\x f -> f x) undefined = \f -> f undefined
6. undefined undefined = undefined

7. length (map undefined [1,2]) = 2

30

Lazy Evaluation vs Performance

31

From a long, long time ago...

foldl _ v []
foldl f v (x:xs)

v
foldl f (f v x) xs

32

From a long, long time ago...

foldl _ v []
foldl f v (x:xs)

v
foldl f (f v x) xs

foldl (+) @ [1,2,3]

32

From a long, long time ago...

foldl _ v [] = v
foldl f v (x:xs) foldl f (f v x) xs

foldl (+) @ [1,2,3]

foldl (+) (@ + 1) [2,3]

foldl (+) ((@ + 1) + 2) [3]
foldl (+) (((0 + 1) + 2) + 3) []
((0+1) +2) +3

32

foldl (+) @ [1,2,3]
=((0+1) +2)+3

Question: What is the problem with this?

33

foldl (+) @ [1,2,3]
=((0+1) +2)+3

Question: What is the problem with this?

+ Each of the additions is kept in a thunk

* Some memory need to be reserved!

33

Case study: foldl

0.0 2.0

4.0

6.0

8.0

seconds

B (159)sum2/Main.CAF

B (158)main/Main.CAF

34

Space leak = data structure which grows bigger, or lives longer than expected
+ More memory in use means more Garbage Collection
+ As a result, performance decreases

The most common source of space leaks are thunks
* Thunks are essential for lazy evaluation

+ But they also take some amount of memory

35

Garbage collection

* Thunks are managed by the run-time system
+ They are created when you need a value
+ But are not reclaimed right after evaluation
+ Haskell uses garbage collection (GC)
+ Every now and them Haskell takes back all the memory used by thunks which are not needed
anymore
* Pro: we do not need to care about memory
+ Con: GC takes time, so lags can occur
* Most modern languages nowadays use GC

* Java, Scala, C#, Ruby, Python...
+ Swift uses Automatic Reference Counting (ARC)

36

We want to reduce memory usage and speed up the computation.

We force additions before going on

foldl (+) @ [1,2,3]
= foldl (+) (0 + 1) [2,3]
= foldl (+) 1 [2,3]
= foldl (+) (1 + 2) [3]
= foldl (+) 3 [3]
= foldl (+) (3 + 3) []
= foldl (+) 6 []
=6

37

Haskell has a primitive operation to force
seq :: a ->b ->b

A call of the form seq x y
+ First evaluates x up to WHNF
+ Then it proceeds normally to compute y

Usually, y depends on x somehow

38

We can write a new version of foldl which forces the accumulated value before recursion is
unfolded

foldl' _ v []
foldl' f v (x:xs)

v
let z = f v x

in z “seq’ foldl' f z xs

This version solves the problem with addition

39

Case study: foldl

0.0

0.2

0.4

0.6

seconds

B (104)GHC Handle.CAF

B (152)Main.CAF

40

Most of the times we use seq to force an argument to a function, that is, strict application

($!) :: (@ -=>b) ->a ->b
f $! x =x “seq” f x

Because of sharing, x is evaluated only once

41

What is the result of these expressions?

(\x -> @) $! undefined

seq (undefined, undefined) @

snd $! (undefined, undefined)

(\x -> 0) $! (\x -> undefined)
undefined $! undefined

length $! map undefined [1,2]

seq (undefined + undefined) @

seq (foldr undefined undefined) @

W e Nk WD =

seq (1 : undefined) ©

42

More (tricky) questions

What is the result of these expressions?

ONNCOIS IO N U

(\x -> @) $! undefined = undefined

seq (undefined, undefined) @ = @

snd $! (undefined, undefined) = undefined
(\x -> 0) $! (\x -> undefined) = 0
undefined $! undefined = undefined

length $! map undefined [1,2] 2
undefined

seq (undefined + undefined) @
seq (foldr undefined undefined) 0 = ©
seq (1 : undefined) @ = @

seq only evaluates up to WHNF

42

fib 0 = 0
fib 1 =1
fib n = fib (n-1) + fib (n-2)

What happens when we ask for fib 5?

43

a4

Local memoization (aka Dynamic Programming)

Idea: remember the result for function calls
+ We build a list of partial results

+ Sharing takes care of evaluating only once

memo_fib n = go n

where go i = fibs !! i
fibs = map fib [0 ..]
fib 0 = 0
fib 1 =1
fib n = go (n-1) + go (n-2)

You can get even faster by using a better data structure

+ For example, IntMap from containers

45

+ Laziness = evaluate only as much as needed

+ As opposed to the more common eager evaluation
+ Evaluation is guided by pattern matching

* We need WHNF to choose a branch

+ Some arguments may not even be evaluated
+ Laziness is tricky when it fails

+ Too many thunks lead to a space leak
+ seq is used to force evaluation

46

	Lazy Evaluation vs Performance

