%;% Utrecht University

Property Testing with QuickCheck

Functional Programming

Utrecht University

* Gain confidence in the correctness of your program
* Show that common cases work correctly

* Show that corner cases work correctly

* Gain confidence in the correctness of your program
* Show that common cases work correctly

* Show that corner cases work correctly

Testing cannot prove the absence of bugs

+ When it satisfies the specification

+ When it satisfies the specification

* What is a specification?
+ How to establish a relation between the specification and the implementation?

+ What about bugs in the specification?

More in Software Testing and Verification, period 4

Property Testing using QuickCheck

QuickCheck, an automated testing library/tool for Haskell

+ Describe properties as Haskell programs using an embedded domain-specific language
(EDSL)

+ Automatic datatype-driven random test case generation

+ Extensible, e.g. test case generators can be adapted

+ A default generator for list generates any list, but you may want only sorted lists

Case study: insertion sort

sort :: [Int] -> [Int]
sort [] = []

sort (x:xs) = insert x xs

insert :: Int -> [Int] -> [Int]

[x]
insert x (y:ys) | x <=y = X ! Yys

insert x []

otherwise : insert x ys
y y

Let's try to debug it using QuickCheck

A good specification is
*+ as precise as necessary
* but no more precise than necessary

A good specification for a particular problem, such as sorting, should:
1. distinguish sorting from all other operations on lists,
2. without forcing us to use a particular sorting algorithm

Certainly, sorting a list should not change its length

sortPreservesLength :: [Int] -> Bool
sortPreservesLength xs =
length (sort xs) == length xs

Certainly, sorting a list should not change its length

sortPreservesLength :: [Int] -> Bool
sortPreservesLength xs =
length (sort xs) == length xs

We can test by invoking the function
> quickCheck sortPreserveslLength
Failed! Falsifiable, after 4 tests:

[0,3]

QuickCheck gives back a counterexample

sort :: [Int] -> [Int]
sort [] = []

sort (x:xs) = insert x xs

insert :: Int -> [Int] -> [Int]

[x]
insert x (y:ys) | x <=y = X : ys

insert x []

| otherwise y : insert x ys

Which branch does not preserve the list length?

> quickCheck sortPreserveslLength
OK, passed 100 tests.

Looks better. But have we tested enough?

sortPreservesLength :: [Int] -> Bool
sortPreserveslLength xs =
length (sort xs) == length xs

idPreserveslLength :: [Int] -> Bool
idPreservesLength xs =
length (id xs) == length xs

sortPreservesLength :: [Int] -> Bool
sortPreserveslLength xs =
length (sort xs) == length xs

idPreserveslLength :: [Int] -> Bool
idPreservesLength xs =
length (id xs) == length xs

> quickCheck idPreserveslLength
OK, passed 100 tests.

So we need to refine our specification

preserves :: Eq b= (a ->a) -> (a ->b) ->a -> Bool
(algo “preserves’ prop) x = prop (algo x) == prop x

preserves :: Eq b= (a ->a) -> (a ->b) ->a -> Bool
(algo “preserves’ prop) x = prop (algo x) == prop x
sortPreserveslLength = sort “preserves' length

idPreservesLength id “preserves® length

We can define a predicate that checks if a list is sorted:

isSorted ;. [Int] -> Bool
isSorted [] = True
isSorted [x] = True

isSorted (x:y:xs) = x <y && isSorted (y:xs)

And use this to check that sorting a list produces a list that isSorted

sortEnsuresSorted ;. [Int] -> Bool

sortEnsuresSorted xs = isSorted (sort xs)

> quickCheck sortEnsuresSorted
Falsifiable, after 5 tests:
[5,0,-2]

> sort [5,0,-2]

[0,-2,5]

We're still not quite there...

What's wrong now?

sort o [Int] -> [Int]
sort [] [1

insert x xs

sort (x:xs)

insert :: Int -> [Int] -> [Int]

What's wrong now?

sort o [Int] -> [Int]
sort [] [1

insert x xs

sort (x:xs)

insert :: Int -> [Int] -> [Int]

We are not recursively sorting the tail in sort!

> quickCheck sortEnsuresSorted
Falsifiable, after 7 tests:
[4,2,2]

> sort [4,2,2]

[2,2,4]

This is correct. What is wrong?

> quickCheck sortEnsuresSorted
Falsifiable, after 7 tests:
[4,2,2]

> sort [4,2,2]

[2,2,4]

This is correct. What is wrong?

> isSorted [2,2,4]
False

The isSorted specification reads:

sorted :: [Int] -> Bool
sorted []
sorted (x:[])
sorted (x:y:ys)

True

True

X <y &% sorted (y : ys)

Why does it return False? How can we fix it?

Is sorting specified completely by saying that
+ sorting preserves the length of the input list,

* the resulting list is sorted?

Is sorting specified completely by saying that
+ sorting preserves the length of the input list,

* the resulting list is sorted?
Not really...

evilNoSort :: [Int] -> [Int]
evilNoSort xs = replicate (length xs) 1

This function fulfills both specifications, but does not sort

permutes :: ([Int] -> [Int]) -> [Int] -> Bool
permutes f xs = f xs “elem’ permutations xs

sortPermutes :: [Int] -> Bool

sortPermutes xs = sort “permutes’ Xxs
This completely specifies sorting and our algorithm passes the corresponding tests:

sorts 0 ([Int] -> [Int]) -> [Int] -> Bool
sorts alg xs = and [alg ‘permutes’ Xxs

, alg “preserves’ length

, sorted (alg xs)

]

Are we now done?

This completely specifies sorting and our algorithm passes the corresponding tests:

sorts 0 ([Int] -> [Int]) -> [Int] -> Bool
sorts alg xs = and [alg ‘permutes’ xs

, sorted (alg xs)

1

20

QuickCheck in general

21

The type of is an overloaded type:

quickCheck :: Testable prop => prop -> IO ()

* The argument of is a property of type prop
* The only restriction on the type is that it is in the Testable type class.
+ When executed, prints the results of the test to the screen - hence the I0 () result type.

22

Which properties are Testable?

So far, all our properties have been of type:

sortPreserveslLength :: [Int] -> Bool
sortEnsuresSorted :: [Int] -> Bool
sortPermutes :: [Int] -> Bool

When used on such properties, QuickCheck generates random integer lists:
+ If the resultis True for 100 cases, this success is reported in a message

* Ifthe resultis False for a test case, the input triggering the failure is printed

23

A property without arguments is also possible:

lengthEmpty :: Bool
lengthEmpty = length [] ==

wrong :: Bool

wrong = False

> quickCheck lengthEmpty
OK, passed 100 tests.

> quickCheck wrong
Falsifiable, after 0 tests.

QuickCheck subsumes unit tests

24

Other example properties

appendLength :: [Int] -> [Int] -> Bool
appendLength xs ys =
length xs + length ys == length (xs ++ ys)

plusIsCommutative :: Int -> Int -> Bool

plusIsCommutative mn =m + n ==n + m

takeDrop :: Int -> [Int] -> Bool

takeDrop n xs = take n xs ++ drop n Xxs == Xs

dropTwice :: Int -> Int -> [Int] -> Bool
dropTwice m n Xxs =

drop m (drop n xs) == drop (m + n) Xxs

25

> quickCheck takeDrop
OK, passed 100 tests.

> quickCheck dropTwice
Falsifiable after 7 tests.
1

-1

[0]

> drop (-1) [0]
[0]

> drop 1 (drop (-1) [@])
26
[]

Recall the type of quickCheck:
quickCheck :: Testable prop => prop -> IO ()

We can now say more about when types are Testable:
+ testable properties usually are functions (with any number of arguments) resulting in a Bool

What argument types are admissible?

27

Recall the type of quickCheck:
quickCheck :: Testable prop => prop -> IO ()

We can now say more about when types are Testable:
+ testable properties usually are functions (with any number of arguments) resulting in a Bool

What argument types are admissible?

* QuickCheck has to know how to produce random test cases of such types

27

Properties - continued

A Testable thing is something which can be turned into a Property:

class Testable prop wherxe

property :: prop -> Property
A Bool is testable:
instance Testable Bool where ...

If a type is testable, we can add a function argument, as long as we know how to generate and
print test cases:

instance (Arbitrary a, Show a, Testable b) =>
Testable (a -> b) where

28

We can show the actual data that is tested:

> quickCheck (\xs -> collect xs (sorts sort xs))
OK, passed 100 tests:

6% []

1% [9,4,-6,71]

1% [9,-1,0,-22,25,32,32,0,9, ...

Why is it important to have access to the test data?

29

The function insert preserves an ordered list:

implies :: Bool -> Bool -> Bool
implies x y = not x || ¥y
insertPreservesOrdered :: Int -> [Int] -> Bool

insertPreservesOrdered x xs = sorted xs “implies’ sorted (insert x xs)

30

> quickCheck insertPreservesOrdered
OK, passed 100 tests.

31

> quickCheck insertPreservesOrdered
OK, passed 100 tests.

But:

> quickCheck (\x xs -> collect (sorted xs)
(insertPreservesOrdered x Xxs))

OK, passed 100 tests.

88% False

12% True

For 88 test cases, insert has not actually been relevant!

31

The solution is to use the QuickCheck implication operator:
(==>) :: Testable prop => Bool -> prop -> Property

insertPreservesOrdered :: Int -> [Int] -> Property

insertPreservesOrdered x xs = sorted xs ==> sorted (insert x xs)

Now, lists that are not sorted are discarded and do not contribute towards the goal of 100 test
cases

32

Implications - contd.

We can now easily run into a new problem:

insertPreservesOrdered :: Int -> [Int] -> Property
insertPreservesOrdered x xs =

length xs > 2 && sorted xs ==> sorted (insert Xx xs)
We try to ensure that lists are not too short, but:

> quickCheck (\x xs -> collect (sorted xs)

(insertPreservesOrdered x Xs))
Arguments exhausted after 20 tests (100% True).

The chance that a random list is sorted is extremely small

33

Custom generators

34

* Generators belong to an abstract data type Gen
+ The only effect available to us is access to random numbers
+ Think of as a restricted version of I0
+ We can define our own generators using another domain-specific language
+ The default generators for datatypes are specified by defining instances of class Arbitrary
class Arbitrary a where

arbitrary :: Gen a

35

choose :: Random a => (a,a) -> Gen a
oneof .. [Gen a] -> Gen a

frequency :: [(Int, Gen a)] -> Gen a
elements . [a] -> Gen a

sized :: (Int -> Gen a) -> Gen a

36

instance Arbitrary Bool where
arbitrary = choose (False, True)

instance (Arbitrary a, Arbitrary b)
=> Arbitrary (a,b) where
arbitrary = do x <- arbitrary
y <- arbitrary
return (x,y)

-- arbitrary = (,) <$> arbitrary <*> arbitrary

data Dir = North | East | South | West
instance Arbitrary Dir where

arbitrary = elements [North, East, South, West]
37

+ Asimple possibility:
instance Arbitrary Int where
arbitrary = choose (-20,20)
+ Better:
instance Arbitrary Int where
arbitrary = sized (\n -> choose (-n,n))

* QuickCheck automatically increases the size gradually

38

Idea: Adapt the default generator for lists
The following function turns a list of integers into a sorted list of integers:

mkSorted :: [Int] -> [Int]

mkSorted [] []

mkSorted [x] [x]

mkSorted (x:y:ys) x : mkSorted ((x + abs y : ys))

For example:

> mkSorted [1,2,-3,4]
[1,3,6,10]

39

The generator can be adapted as follows:

genSorted :: Gen [Int]

genSorted = do xs <- arbitrary
return (mkSorted xs)

-- genSorted = mkSorted <$> arbitrary

40

There is another function to construct properties provided by QuickCheck, passing an explicit
generator:

forAll :: (Show a, Testable b)

=> Gen a -> (a -> b) -> Property
This is how we use it:

insertPreservesOrdered :: Int -> Property
insertPreservesOrdered x = forAll genSorted (\xs ->

length xs > 2 && sorted xs ==> sorted (insert x xs))

41

The other method in Arbitrary is:

shrink :: (Arbitrary a) => a -> [a]

+ Maps each value to structurally smaller values

+ [2,3] is structurally smaller than [1,2, 3]

* When a failing test case is discovered, QuickCheck shrinks repeatedly until no smaller failing

test case can be obtained

42

» Haskell can deal with infinite values, and so can QuickCheck

+ Properties must not inspect infinitely many values
+ Solution: only inspect finite parts

+ QuickCheck can also generate functional values

+ Tequires defining an instance of another class Coarbitrary
+ Showing functional values is still problematic

* QuickCheck has facilities for testing properties that involve I0

43

QuickCheck is a great tool:
+ A domain-specific language for writing properties
+ Test data is generated automatically and randomly

+ Another domain-specific language to write custom generators

However, keep in mind that writing good tests still requires practice, and that tests can have bugs,

too

a4

Correctness

45

Testing cannot prove the absence of bugs

* Only point at failing cases

Are there ways to prove your code correct?

46

1. Write a bunch of properties that specify your algorithm
2. Prove that they hold using equational reasoning

3. You are done!

47

1. Write a bunch of properties that specify your algorithm
2. Prove that they hold using equational reasoning

3. You are done!

Caveats

+ Time-consuming, needs lots of manual work
+ Laziness and exceptions are not taken care of

+ Proofs only work for finite values

47

Help you proving properties about your program
+ Check that every inference step is correct
+ Fill'in boring and obvious proofs

Some interactive theorem provers:
+ Coq (blame the French for the name!)
+ Isabelle/HOL

48

Define the type of your function in such a way that only correct implementations are allowed

append :: List n a -> List m a -> List (n + m) a

1. Dependent types
+ Allow values to appear in types
« Examples: Agda, Idris, Coq

2. Refinement types

+ Attach predicates to types
+ Example: LiquidHaskell

49

Define the type of your function in such a way that only correct implementations are allowed

append :: List n a -> List m a -> List (n + m) a

1. Dependent types
+ Allow values to appear in types
« Examples: Agda, Idris, Coq

2. Refinement types

+ Attach predicates to types
+ Example: LiquidHaskell

Learn about them in Advanced FP!

49

How many implementations are of these signatures?

f::a->a
g :: (a, b) -> (b, a)

50

How many implementations are of these signatures?

f::a->a
g :: (a, b) -> (b, a)

Only one!
f x = X -- identity function
g (x, y) = (y, x) -- swap pair

Types are enough to determine many properties of the implementation

* We call those free theorems

50

	Case study: insertion sort
	QuickCheck in general
	Custom generators
	Correctness

