
Property Testing with QuickCheck

Functional Programming

Utrecht University

1

Why testing?

• Gain confidence in the correctness of your program

• Show that common cases work correctly

• Show that corner cases work correctly

Testing cannot prove the absence of bugs

2

Why testing?

• Gain confidence in the correctness of your program

• Show that common cases work correctly

• Show that corner cases work correctly

Testing cannot prove the absence of bugs

2

When is a program correct?

• When it satisfies the specification

• What is a specification?

• How to establish a relation between the specification and the implementation?

• What about bugs in the specification?

More in Software Testing and Verification, period 4

3

When is a program correct?

• When it satisfies the specification

• What is a specification?

• How to establish a relation between the specification and the implementation?

• What about bugs in the specification?

More in Software Testing and Verification, period 4

3

When is a program correct?

• When it satisfies the specification

• What is a specification?

• How to establish a relation between the specification and the implementation?

• What about bugs in the specification?

More in Software Testing and Verification, period 4

3

Property Testing using QuickCheck

QuickCheck, an automated testing library/tool for Haskell

• Describe properties as Haskell programs using an embedded domain-specific language

(EDSL)

• Automatic datatype-driven random test case generation

• Extensible, e.g. test case generators can be adapted

• A default generator for list generates any list, but you may want only sorted lists

4

Case study: insertion sort

5

A buggy insertion sort

sort :: [Int] -> [Int]
sort [] = []
sort (x:xs) = insert x xs

insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x (y:ys) | x <= y = x : ys

| otherwise = y : insert x ys

Let’s try to debug it using QuickCheck

6

How to write a specification?

A good specification is

• as precise as necessary

• but no more precise than necessary

A good specification for a particular problem, such as sorting, should:

1. distinguish sorting from all other operations on lists,

2. without forcing us to use a particular sorting algorithm

7

A first approximation

Certainly, sorting a list should not change its length

sortPreservesLength :: [Int] -> Bool
sortPreservesLength xs =
length (sort xs) == length xs

We can test by invoking the function:

> quickCheck sortPreservesLength
Failed! Falsifiable, after 4 tests:
[0,3]

QuickCheck gives back a counterexample

8

A first approximation

Certainly, sorting a list should not change its length

sortPreservesLength :: [Int] -> Bool
sortPreservesLength xs =
length (sort xs) == length xs

We can test by invoking the function:

> quickCheck sortPreservesLength
Failed! Falsifiable, after 4 tests:
[0,3]

QuickCheck gives back a counterexample

8

Correcting the bug

sort :: [Int] -> [Int]
sort [] = []
sort (x:xs) = insert x xs

insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x (y:ys) | x <= y = x : ys

| otherwise = y : insert x ys

Which branch does not preserve the list length?

9

A new attempt

> quickCheck sortPreservesLength
OK, passed 100 tests.

Looks better. But have we tested enough?

10

A different “sorting” algorithm….

sortPreservesLength :: [Int] -> Bool
sortPreservesLength xs =
length (sort xs) == length xs

idPreservesLength :: [Int] -> Bool
idPreservesLength xs =
length (id xs) == length xs

> quickCheck idPreservesLength
OK, passed 100 tests.

So we need to refine our specification

11

A different “sorting” algorithm….

sortPreservesLength :: [Int] -> Bool
sortPreservesLength xs =
length (sort xs) == length xs

idPreservesLength :: [Int] -> Bool
idPreservesLength xs =
length (id xs) == length xs

> quickCheck idPreservesLength
OK, passed 100 tests.

So we need to refine our specification

11

First, some refactoring ..

preserves :: Eq b => (a -> a) -> (a -> b) -> a -> Bool
(algo `preserves` prop) x = prop (algo x) == prop x

sortPreservesLength = sort `preserves` length
idPreservesLength = id `preserves` length

12

First, some refactoring ..

preserves :: Eq b => (a -> a) -> (a -> b) -> a -> Bool
(algo `preserves` prop) x = prop (algo x) == prop x

sortPreservesLength = sort `preserves` length
idPreservesLength = id `preserves` length

12

When is a list sorted?

We can define a predicate that checks if a list is sorted:

isSorted :: [Int] -> Bool
isSorted [] = True
isSorted [x] = True
isSorted (x:y:xs) = x < y && isSorted (y:xs)

And use this to check that sorting a list produces a list that isSorted

13

Testing again

sortEnsuresSorted :: [Int] -> Bool
sortEnsuresSorted xs = isSorted (sort xs)

> quickCheck sortEnsuresSorted
Falsifiable, after 5 tests:
[5,0,-2]
> sort [5,0,-2]
[0,-2,5]

We’re still not quite there…

14

Debugging sort

What’s wrong now?

sort :: [Int] -> [Int]
sort [] = []
sort (x:xs) = insert x xs

insert :: Int -> [Int] -> [Int]

We are not recursively sorting the tail in sort!

15

Debugging sort

What’s wrong now?

sort :: [Int] -> [Int]
sort [] = []
sort (x:xs) = insert x xs

insert :: Int -> [Int] -> [Int]

We are not recursively sorting the tail in sort!

15

Another bug

> quickCheck sortEnsuresSorted
Falsifiable, after 7 tests:
[4,2,2]
> sort [4,2,2]
[2,2,4]

This is correct. What is wrong?

> isSorted [2,2,4]
False

16

Another bug

> quickCheck sortEnsuresSorted
Falsifiable, after 7 tests:
[4,2,2]
> sort [4,2,2]
[2,2,4]

This is correct. What is wrong?

> isSorted [2,2,4]
False

16

Fixing the specification

The isSorted specification reads:

sorted :: [Int] -> Bool
sorted [] = True
sorted (x:[]) = True
sorted (x:y:ys) = x < y && sorted (y : ys)

Why does it return False? How can we fix it?

17

Are we done yet?

Is sorting specified completely by saying that

• sorting preserves the length of the input list,

• the resulting list is sorted?

Not really…

evilNoSort :: [Int] -> [Int]
evilNoSort xs = replicate (length xs) 1

This function fulfills both specifications, but does not sort

18

Are we done yet?

Is sorting specified completely by saying that

• sorting preserves the length of the input list,

• the resulting list is sorted?

Not really…

evilNoSort :: [Int] -> [Int]
evilNoSort xs = replicate (length xs) 1

This function fulfills both specifications, but does not sort

18

Specifying sorting

permutes :: ([Int] -> [Int]) -> [Int] -> Bool
permutes f xs = f xs `elem` permutations xs

sortPermutes :: [Int] -> Bool
sortPermutes xs = sort `permutes` xs

This completely specifies sorting and our algorithm passes the corresponding tests:

sorts :: ([Int] -> [Int]) -> [Int] -> Bool
sorts alg xs = and [alg `permutes` xs

, alg `preserves` length
, sorted (alg xs)
]

Are we now done?
19

A minimal specification

This completely specifies sorting and our algorithm passes the corresponding tests:

sorts :: ([Int] -> [Int]) -> [Int] -> Bool
sorts alg xs = and [alg `permutes` xs

, sorted (alg xs)
]

20

QuickCheck in general

21

The type of quickCheck

The type of is an overloaded type:

quickCheck :: Testable prop => prop -> IO ()

• The argument of is a property of type prop
• The only restriction on the type is that it is in the Testable type class.

• When executed, prints the results of the test to the screen – hence the IO () result type.

22

Which properties are Testable?

So far, all our properties have been of type:

sortPreservesLength :: [Int] -> Bool
sortEnsuresSorted :: [Int] -> Bool
sortPermutes :: [Int] -> Bool

When used on such properties, QuickCheck generates random integer lists:

• If the result is True for 100 cases, this success is reported in a message

• If the result is False for a test case, the input triggering the failure is printed

23

Nullary properties

A property without arguments is also possible:

lengthEmpty :: Bool
lengthEmpty = length [] == 0

wrong :: Bool
wrong = False

> quickCheck lengthEmpty
OK, passed 100 tests.
> quickCheck wrong
Falsifiable, after 0 tests.

QuickCheck subsumes unit tests

24

Other example properties

appendLength :: [Int] -> [Int] -> Bool
appendLength xs ys =
length xs + length ys == length (xs ++ ys)

plusIsCommutative :: Int -> Int -> Bool
plusIsCommutative m n = m + n == n + m

takeDrop :: Int -> [Int] -> Bool
takeDrop n xs = take n xs ++ drop n xs == xs

dropTwice :: Int -> Int -> [Int] -> Bool
dropTwice m n xs =
drop m (drop n xs) == drop (m + n) xs

25

Other forms of properties – contd.

> quickCheck takeDrop
OK, passed 100 tests.

> quickCheck dropTwice
Falsifiable after 7 tests.
1
-1
[0]

> drop (-1) [0]
[0]

> drop 1 (drop (-1) [0])
[]

26

Properties

Recall the type of quickCheck:

quickCheck :: Testable prop => prop -> IO ()

We can now say more about when types are Testable:
• testable properties usually are functions (with any number of arguments) resulting in a Bool

What argument types are admissible?

• QuickCheck has to know how to produce random test cases of such types

27

Properties

Recall the type of quickCheck:

quickCheck :: Testable prop => prop -> IO ()

We can now say more about when types are Testable:
• testable properties usually are functions (with any number of arguments) resulting in a Bool

What argument types are admissible?

• QuickCheck has to know how to produce random test cases of such types

27

Properties – continued

A Testable thing is something which can be turned into a Property:

class Testable prop where
property :: prop -> Property

A Bool is testable:

instance Testable Bool where ...

If a type is testable, we can add a function argument, as long as we know how to generate and

print test cases:

instance (Arbitrary a, Show a, Testable b) =>
Testable (a -> b) where

28

Information about test data

We can show the actual data that is tested:

> quickCheck (\xs -> collect xs (sorts sort xs))
OK, passed 100 tests:
6% []
1% [9,4,-6,7]
1% [9,-1,0,-22,25,32,32,0,9,...
...

Why is it important to have access to the test data?

29

Implications

The function insert preserves an ordered list:

implies :: Bool -> Bool -> Bool
implies x y = not x || y

insertPreservesOrdered :: Int -> [Int] -> Bool
insertPreservesOrdered x xs = sorted xs `implies` sorted (insert x xs)

30

Implications – contd.

> quickCheck insertPreservesOrdered
OK, passed 100 tests.

But:

> quickCheck (\x xs -> collect (sorted xs)
(insertPreservesOrdered x xs))

OK, passed 100 tests.
88% False
12% True

For 88 test cases, insert has not actually been relevant!

31

Implications – contd.

> quickCheck insertPreservesOrdered
OK, passed 100 tests.

But:

> quickCheck (\x xs -> collect (sorted xs)
(insertPreservesOrdered x xs))

OK, passed 100 tests.
88% False
12% True

For 88 test cases, insert has not actually been relevant!

31

Implications – contd.

The solution is to use the QuickCheck implication operator:

(==>) :: Testable prop => Bool -> prop -> Property

insertPreservesOrdered :: Int -> [Int] -> Property
insertPreservesOrdered x xs = sorted xs ==> sorted (insert x xs)

Now, lists that are not sorted are discarded and do not contribute towards the goal of 100 test

cases

32

Implications – contd.

We can now easily run into a new problem:

insertPreservesOrdered :: Int -> [Int] -> Property
insertPreservesOrdered x xs =

length xs > 2 && sorted xs ==> sorted (insert x xs)

We try to ensure that lists are not too short, but:

> quickCheck (\x xs -> collect (sorted xs)
(insertPreservesOrdered x xs))

Arguments exhausted after 20 tests (100% True).

The chance that a random list is sorted is extremely small

33

Custom generators

34

Generators

• Generators belong to an abstract data type Gen
• The only effect available to us is access to random numbers

• Think of as a restricted version of IO

• We can define our own generators using another domain-specific language

• The default generators for datatypes are specified by defining instances of class Arbitrary
class Arbitrary a where
arbitrary :: Gen a
...

35

Generator combinators

choose :: Random a => (a,a) -> Gen a
oneof :: [Gen a] -> Gen a
frequency :: [(Int, Gen a)] -> Gen a
elements :: [a] -> Gen a
sized :: (Int -> Gen a) -> Gen a

36

Simple generators

instance Arbitrary Bool where
arbitrary = choose (False, True)

instance (Arbitrary a, Arbitrary b)
=> Arbitrary (a,b) where

arbitrary = do x <- arbitrary
y <- arbitrary
return (x,y)

-- arbitrary = (,) <$> arbitrary <*> arbitrary

data Dir = North | East | South | West
instance Arbitrary Dir where
arbitrary = elements [North, East, South, West]

37

Generating random numbers

• A simple possibility:

instance Arbitrary Int where
arbitrary = choose (-20,20)

• Better:

instance Arbitrary Int where
arbitrary = sized (\n -> choose (-n,n))

• QuickCheck automatically increases the size gradually

38

How to generate sorted lists

Idea: Adapt the default generator for lists
The following function turns a list of integers into a sorted list of integers:

mkSorted :: [Int] -> [Int]
mkSorted [] = []
mkSorted [x] = [x]
mkSorted (x:y:ys) = x : mkSorted ((x + abs y : ys))

For example:

> mkSorted [1,2,-3,4]
[1,3,6,10]

39

Random generator

The generator can be adapted as follows:

genSorted :: Gen [Int]
genSorted = do xs <- arbitrary

return (mkSorted xs)
-- genSorted = mkSorted <$> arbitrary

40

Using a custom generator

There is another function to construct properties provided by QuickCheck, passing an explicit

generator:

forAll :: (Show a, Testable b)
=> Gen a -> (a -> b) -> Property

This is how we use it:

insertPreservesOrdered :: Int -> Property
insertPreservesOrdered x = forAll genSorted (\xs ->

length xs > 2 && sorted xs ==> sorted (insert x xs))

41

Shrinking

The other method in Arbitrary is:

shrink :: (Arbitrary a) => a -> [a]

• Maps each value to structurally smaller values

• [2,3] is structurally smaller than [1,2,3]

• When a failing test case is discovered, QuickCheck shrinks repeatedly until no smaller failing

test case can be obtained

42

Loose ends

• Haskell can deal with infinite values, and so can QuickCheck

• Properties must not inspect infinitely many values

• Solution: only inspect finite parts

• QuickCheck can also generate functional values

• Tequires defining an instance of another class Coarbitrary
• Showing functional values is still problematic

• QuickCheck has facilities for testing properties that involve IO

43

Summary

QuickCheck is a great tool:

• A domain-specific language for writing properties

• Test data is generated automatically and randomly

• Another domain-specific language to write custom generators

However, keep in mind that writing good tests still requires practice, and that tests can have bugs,

too

44

Correctness

45

Correctness as a goal

Testing cannot prove the absence of bugs

• Only point at failing cases

Are there ways to prove your code correct?

46

Equational reasoning

1. Write a bunch of properties that specify your algorithm

2. Prove that they hold using equational reasoning

3. You are done!

Caveats

• Time-consuming, needs lots of manual work

• Laziness and exceptions are not taken care of

• Proofs only work for finite values

47

Equational reasoning

1. Write a bunch of properties that specify your algorithm

2. Prove that they hold using equational reasoning

3. You are done!

Caveats

• Time-consuming, needs lots of manual work

• Laziness and exceptions are not taken care of

• Proofs only work for finite values

47

Interactive theorem proving

Help you proving properties about your program

• Check that every inference step is correct

• Fill in boring and obvious proofs

Some interactive theorem provers:

• Coq (blame the French for the name!)

• Isabelle/HOL

48

More expressive types

Define the type of your function in such a way that only correct implementations are allowed

append :: List n a -> List m a -> List (n + m) a

1. Dependent types

• Allow values to appear in types

• Examples: Agda, Idris, Coq

2. Refinement types

• Attach predicates to types

• Example: LiquidHaskell

Learn about them in Advanced FP!

49

More expressive types

Define the type of your function in such a way that only correct implementations are allowed

append :: List n a -> List m a -> List (n + m) a

1. Dependent types

• Allow values to appear in types

• Examples: Agda, Idris, Coq

2. Refinement types

• Attach predicates to types

• Example: LiquidHaskell

Learn about them in Advanced FP!

49

Theorems for free

How many implementations are of these signatures?

f :: a -> a
g :: (a, b) -> (b, a)

Only one!

f x = x -- identity function
g (x, y) = (y, x) -- swap pair

Types are enough to determine many properties of the implementation

• We call those free theorems

50

Theorems for free

How many implementations are of these signatures?

f :: a -> a
g :: (a, b) -> (b, a)

Only one!

f x = x -- identity function
g (x, y) = (y, x) -- swap pair

Types are enough to determine many properties of the implementation

• We call those free theorems

50

	Case study: insertion sort
	QuickCheck in general
	Custom generators
	Correctness

