%% Utrecht University

Lecture 14. More monads and applicatives

Functional Programming

Utrecht University



+ See yet another example of monad

+ Understand the monad laws

+ Introduce the idea of applicative functor

+ Understand difference functor/applicative/monad

Chapter 12.2 from Hutton’s book



The State monad



get :: State s s

put :: s -> State s ()

modify :: (s -> s) -> State s ()
runState :: State s a -> s -> (s, a)



Notation in which an operator follows its operands

34+2*10 -
72 * 10
14 10

Parentheses are not needed when using RPN



Notation in which an operator follows its operands

34+2*10 -
72 * 10
14 10

Parentheses are not needed when using RPN

Historical note: RPN was invented in the 1920s by the Polish mathematician tukasiewicz, and

rediscovered by several computer scientists in the 1960s



Expressions in RPN are lists of numbers and operations

data Instr
type RPN

Number Float | Operation ArithOp
[Instr]

We reuse the ArithOp type from arithmetic expressions

For example, 3 4 + 2 * becomes
[ Number 3, Number 4, Operation Plus
, Number 2, Operation Times ]



To compute the value of an expression in RPN, you keep a stack of values
+ Each number is added at the top of the stack
+ Operations use the top-most elements in the stack

| 4 |2
S>3 -> 3> 7> 7] > 14|

o+ R — g g tommt



type Stack = [Float]

evallnstr :: Instr -> Stack -> Stack



type Stack = [Float]

evallnstr :: Instr -> Stack -> Stack
evallnstr (Number f) stack
= f : stack

evallnstr (Operation op) (x:y:stack)
= evalOp op x y : stack
where evalOp ...



Let me introduce two new operations to make clear what is going in with the stack

pop :: Stack -> (Float, Stack)
push :: Float -> Stack -> Stack

Using those the evaluator takes an intuitive form.



Let me introduce two new operations to make clear what is going in with the stack
pop :: Stack -> (Float, Stack)

pop (x:Xxs) = (x, Xs)

push :: Float -> Stack -> Stack

push x xs = X : XS

Using those the evaluator takes this form:
evalInstr (Number f) S

= push f s
evallnstr (Operation op) s

= let (x, sl) = pop s
(y, s2)
in push (evalOp op x y) s2

pop s1



A function like pop
pop :: Stack -> (Float, Stack)

can be seen as a function which modifies a state:
+ Takes the original state as an argument
* Returns the new state along with the result



A function like pop
pop :: Stack -> (Float, Stack)

can be seen as a function which modifies a state:
+ Takes the original state as an argument
* Returns the new state along with the result

The intuition is the same as looking at I0 as

type I0 a = World -> (a, World)



Functions which only operate in the state return ()

push ;. Float -> Stack -> ((), Stack)
push f s = ((), f : s)

evallnstr :: Instr -> Stack -> ((), Stack)
evallnstr (Number f) S
= push f s
evallnstr (Operation op) s
= let (x, sl) = pop s
(y, s2) = pop sl
in push (evalOp op x y) s2



The same pattern occurs twice in the previous code

let (x, newStack) = f oldStack

in _ -- something which uses x and the newStack
This leads to a higher-order function

next :: (Stack -> (a, Stack))
-> (a -> Stack -> (b, Stack))
-> (Stack -> (b, Stack))



The same pattern occurs twice in the previous code

let (x, newStack) = f oldStack

in _ -- something which uses x and the newStack
This leads to a higher-order function

next :: (Stack -> (a, Stack))
-> (a -> Stack -> (b, Stack))
-> (Stack -> (b, Stack))

next f g = \s -> let (x, s') = f s

in g x s'



type State a = Stack -> (a, Stack)

State is almost a monad, we only need a return

* The type has only one hole, as required

The missing part is a retuxrn function
* What can we do?

return :: a -> Stack -> (a, Stack)



type State a = Stack -> (a, Stack)

State is almost a monad, we only need a return

+ The type has only one hole, as required

The missing part is a return function
+ The only thing we can do is keep the state unmodified

return :: a -> Stack -> (a, Stack)

return x = \s -> (x, s)



evallnstr :: Inst -> State ()

evallnstr (Operation op)
= do x <- pop
y <- pop
push (evalOp op x y)

The Stack value is threaded implicitly
+ Similar to a single mutable variable



We can generalize this idea to any type s of State

type State s a = s -> (a, s)



We can generalize this idea to any type s of State
type State s a = s -> (a, s)

Alas, if you try to write the instance GHC complains
instance Monad (State s) where -- Wrong!

This is because you are only allowed to use a type synonym with all arguments applied
* But you need to leave one out to make it a monad



The “trick” is to wrap the value in a data type

newtype State s a = S (s -> (a, s))

run :: State s a ->s -> a

run = ??7

20



The “trick” is to wrap the value in a data type

newtype State s a = S (s -> (a, s))

run :: State s a -> s -> a
run (S f) s = fst (f s)

But now every time you need to access the function, you need to unwrap things, and then wrap
them again

instance Monad (State s) where
return x = S $ \s -> (x, s)
(S f) >>=g =S % \s ->1let (x, s') = f s
Sg' =gx
in g' s'
21



State passing style!

Warning: the following slides contain ASCll-art

22



AState s avalueis a“box” which, once feed with an state, gives back a value and the modified
state

to-t —-> v

S --> 4+--+ --> g'

23



AState s avalueis a“box” which, once feed with an state, gives back a value and the modified
state

to-t —-> v

S --> 4+--+ --> g'

Afunctionc -> State s aisa"box”with an extra input
C --> +--4+ --> Vv
|

S --> +--+ --> '

23



returnhastypea -> State s a

24



returnhastypea -> State s a

+ Itis thus a box of the second kind
+ It just passes the information through, unmodified

25



(>>=) : State s a -> (a -> State s b) -> State s b
* We take one box of each kind

+ And have to produce a box of the first kind
+----+ --> 3 a -->+4---+ --> b

| st | gl

S --> +----+ -->g' S' —=> +---+ --> g''

26



(>>=) : State s a -> (a -> State s b) -> State s b
* We take one box of each kind

+ And have to produce a box of the first kind
+----+ --> 3 a -->+4---+ --> b

| st | gl

S --> +----+ -->g' S' —=> +---+ --> g''

Connect the wires and wrap into a larger box!

focoocooooooocoocoooooocococoooooooDo0 +
26



Given a binary tree, return a new one labelled with numbers in depth-first order
> let t = Node (Node Leaf 'a' Leaf)

o

(Node Leaf 'c' Leaf)

> label t
Node (Node Leaf (0, 'a') Leaf)
(1, 'b")

(Node Leaf (2, 'c') Leaf)

27



Given a binary tree, return a new one labelled with numbers in depth-first order
> let t = Node (Node Leaf 'a' Leaf)

o

(Node Leaf 'c' Leaf)

> label t
Node (Node Leaf (0, 'a') Leaf)
(1, 'b")

(Node Leaf (2, 'c') Leaf)

What is the type for such a function?

27



Given a binary tree, return a new one labelled with numbers in depth-first order
> let t = Node (Node Leaf 'a' Leaf)

o

(Node Leaf 'c' Leaf)

> label t
Node (Node Leaf (0, 'a') Leaf)
(1, 'b")

(Node Leaf (2, 'c') Leaf)

What is the type for such a function?
label :: Tree a -> Tree (Int, a)

Idea: use an implicit counter to keep track of the label

27



The main work happens in a local function which is stateful
label' :: Tree a -> State Int (Tree (Int, a))
The purpose of 1abel is to initialize the state to @

label t = run (label' t) 0
where label' = ...

28



We use an auxiliary function to get the current label and update it to the next value

nextLabel :: State Int Int
nextLabel = S $ \i -> (i, i + 1)

Armed with it, writing the stateful 1abel"' is easy

label' Leaf
label' (Node 1 x 1)

return Leaf

do 1' <- label' 1
i <- nextlLabel
r' <- label'

return (Node 1' (i, x) 1'")

29



As with functors, valid monads should obbey some laws

-- return is a left identity
do y <- return x == f x
fy

30



As with functors, valid monads should obbey some laws
-- return is a left identity
do y <- return x == f x
fy
-- return is a right identity
do x <-m == m

return Xx

30



As with functors, valid monads should obbey some laws
-- return is a left identity
do y <- return x == f x
fy
-- return is a right identity
do x <-m == m

return Xx

-- bind is associative

do y <- do x <-m do x <-m do x <-m
f x == doy <- f x == y <- f x
gy gy gy

In fact, monads are a higher-order version of monoids -



Different monads provide different capabilities
* Maybe monad models optional values and failure
+ State monad threads an implicit value
* [] monad models search and non-determinism
+ I0 monad provides impure input/output

31



Summary of monads

Different monads provide different capabilities
* Maybe monad models optional values and failure
+ State monad threads an implicit value
* [] monad models search and non-determinism

+ I0 monad provides impure input/output

There are even more monads!
* Either models failure, but remembers the problem
+ Reader provides a read-only environment
* Writer computes an on-going value
+ For example, a log of the execution
+ STM provides atomic transactions
+ Cont provides non-local control flow

31



Monads provide a common interface
+ do-notation is applicable to all of them
+ Many utility functions (to be described)

32



Applicatives

33



When explaining Maybe and I0 we introduced 1iftM2

1iftM2 :: (a -> b -> ¢)

-> Maybe a -> Maybe b -> Maybe c
1iftM2 :: (a -> b -> c)

-> 10 a -> I0 b -> I0 d

In general, we can write 1iftM2 for any monad

1iftM2 :: Monad m => (a -> b -> ()
-=> ma->mb ->mc
liftM2 f x y = ?2?2?

34



When explaining Maybe and I0 we introduced 1iftM2

1iftM2 :: (a -> b -> ¢)

-> Maybe a -> Maybe b -> Maybe c
1iftM2 :: (a -> b -> ¢)

-> 10 a -> I0 b -> I0 d

In general, we can write 11ftM2 for any monad

1iftM2 :: Monad m => (a -> b -> )
-> ma->mb ->mc
liftM2 f x y = do x' <- x
y' <-y
return (f x' y')

35



This makes the code shorter and easier to read

-- Using do notation
do fn' <- validateFirstName fn
1n' <- validateLastName fn

return (Person fn' 1n')
-- Using 1lift

1iftM2 Person (validateFirstName fn)

(validateLastName 1n)

36



1iftM1 :: (a -> b) -=>ma ->mb
1iftM3 :: (a -> b -> ¢ -> d)

->ma->mb ->mc ->md
liftM4 ::

37



1iftM1 :: (a -> b) -=>ma ->mb
1iftM3 :: (a -> b -> ¢ -> d)

->ma->mb ->mc ->md
liftM4 ::

The implementation of 1iftM follows the same pattern
1iftM3 f x y z = do x' <- X

y' <=y

z' <- 2

return (f x' y' z'")

37



1iftM1 :: (a -> b) -=>ma ->mb
1iftM3 :: (a -> b -> ¢ -> d)

->ma->mb ->mc ->md
liftM4 ::

The implementation of 1iftM follows the same pattern
1iftM3 f x y z = do x' <- X

y' <=y

z' <- 2

return (f x' y' z'")

Can you find a nicer implementation for 1iftM1?

37



1iftM1 :: (@ -> b) ->ma ->mb
1iftM3 :: (a -> b -> c -> d)
->ma->mb->mc ->md
1iftM4 ::
The implementation of 1iftM follows the same pattern
1iftM3 f x y z = do x' <- X
y' <=y
z' <- 2
return (f x' y' z'")
Can you find a nicer implementation for 1iftM1?

1iftM1 = fmap

37



This is clearly suboptimal:
* We need to provide different 11ftM with almost the same implementation
+ If we refactor the code by adding or removing parameters to a function, we have to change

the 1iftM function we use at the call site

Can we do better?

38



Suppose we want to lift a function with two arguments:
f:ra->b->c x :: fa y :: fb

What type does fmap f x have?

39



Suppose we want to lift a function with two arguments:
f:ra->b->c x :: fa y :: fb
What type does fmap f x have?

fmap f :: fa ->f (b ->c¢)

We are able to apply the first argument

fmap f x :: f (b -> )

The result is not in the form we want
* The function is now inside the functor/monad

39



To apply the next argument we need some magical function
(<*>) 10 f(b->¢c) ->fb->fc
If we had that function, then we can write

fmap f x <*> vy
= -- using the synonym (<$>) = fmap
f <$> x <*> y

40



(<*>) :: £ (b ->¢c) ->fb ->fc

Note that in the type of (<*>) we can choose c to be yet another function type
* As aresult, by means of fmap and (<*>) we can lift a function with any number of arguments

f :ta->b->... >y ->7
ma :: ma
mb ::mb

f <$>ma <*>mb <*> ... <*>my i mz

a1



Take the 1abel' functions for trees we wrote previously

label' Leaf
label' (Node 1 x 1)

return Leaf
do 1' <- label' 1

i <- nextLabel

r' <- label' r

return (Node 1' (i, x) ')
Now we would write instead:

label' Leaf = return Leaf
label' (Node 1 x 1)
= Node <$> label' 1
<*> ( (,Xx) <$%$> nextLabel )

<*> Jabel' r
42



It turns out that (<*>) by itself is an useful abstraction
+ Functor allows you to lift one-argument function
+ With (<*>) you can lift functions with more than one argument

43



It turns out that (<*>) by itself is an useful abstraction
+ Functor allows you to lift one-argument function
+ With (<*>) you can lift functions with more than one argument

For completeness, we also want a way to lift 0-ary functions. What is the type of an fmap for 0-ary

functions?

43



Applicatives

It turns out that (<*>) by itself is an useful abstraction
+ Functor allows you to lift one-argument function
« With (<*>) you can lift functions with more than one argument

For completeness, we also want a way to lift 0-ary functions. What is the type of an fmap for 0-ary

functions?

A type constructor with these operations is called an applicative (functor)

class Functor f => Applicative f where

pure :: a -> f a
(<*>) :: f (a->b) ->fa->fhb

43



Every monad is also an applicative

pure = ?7??

mf <*> mx = ???

a4



Every monad is also an applicative

pure = return
mf <*> mx = do f <- mf
X <- mx

return (f x)

45



Every monad is also an applicative

pure = return
mf <*> mx = do f <- mf
X <- mx

return (f x)

As a result, you can use applicative style with I0, [], State...

do x <- xs == [ x +y
y <-ys | x <- xs
return (x + y) Yy <-ys ]

== (+) <$> XS <*> ys

45



Every monad is also an applicative

pure = return
mf <*> mx = do f <- mf
X <- mx

return (f x)

As a result, you can use applicative style with I0, [], State...

do x <- xs == [ x +y
y <-ys | x <- xs
return (x + y) Yy <-ys ]

== (+) <$> XS <*> ys

But there are applicatives which are not monads! e



class Functor f where
fmap :: (a ->b) ->fa->fb

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a->b) ->fa->fhb

class Applicative f => Monad f where

-- return is the same as Applicative's pure
(>>=) :: fa->(a->fb) ->Ffhb

46



fmap o (a -> b) ->fa->fhb
(<*>) o f(a->b) ->fa->Ffhb
flip (>>=) :: (a -> fb) ->fa->Ffhb

+ Have seen: can express <*> in terms of >>= and retuzrn

+ Exercise: express fmap in terms of <*> and pure

47



fmap it (a ->b) ->fa->fhb
(<*>) c: f(a->b) ->fa->Ffhb
flip (>>=) :: (a -> fb) ->fa->Ffhb

+ Have seen: can express <*> in terms of >>= and retuzrn

+ Exercise: express fmap in terms of <*> and pure

+ Finally: monads are more expressive than applicatives!

47



+ State monad models computation which can read/write some bit of state
+ Applicatives are functors + more structure (to lift multiple argument functions)
+ Monads are applicatives + more structure (to decide based on argument whether or not to

perform side-effects)

48



	The State monad
	Applicatives

