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Goals

• See yet another example of monad

• Understand the monad laws

• Introduce the idea of applicative functor

• Understand difference functor/applicative/monad

Chapter 12.2 from Hutton’s book
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The State monad
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The State monad

get :: State s s

put :: s -> State s ()

modify :: (s -> s) -> State s ()

runState :: State s a -> s -> (s, a)
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Reverse Polish Notation (RPN)

Notation in which an operator follows its operands

3 4 + 2 * 10 -

= 7 2 * 10 -

= 14 10 -

= 4

Parentheses are not needed when using RPN

Historical note: RPN was invented in the 1920s by the Polish mathematician Łukasiewicz, and

rediscovered by several computer scientists in the 1960s
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RPN expressions

Expressions in RPN are lists of numbers and operations

data Instr = Number Float | Operation ArithOp

type RPN = [Instr]

We reuse the ArithOp type from arithmetic expressions

For example, 3 4 + 2 * becomes

[ Number 3, Number 4, Operation Plus

, Number 2, Operation Times ]
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RPN calculator

To compute the value of an expression in RPN, you keep a stack of values

• Each number is added at the top of the stack

• Operations use the top-most elements in the stack

3 4 + 2 *

| 4 | | 2 |

-> | 3 | -> | 3 | -> | 7 | -> | 7 | -> | 14 |

+--+ +---+ +---+ +---+ +---+ +----+
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Case study: RPN calculator

type Stack = [Float]

evalInstr :: Instr -> Stack -> Stack

8



Case study: RPN calculator

type Stack = [Float]

evalInstr :: Instr -> Stack -> Stack

evalInstr (Number f) stack

= f : stack

evalInstr (Operation op) (x:y:stack)

= evalOp op x y : stack

where evalOp ...
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Case study: RPN calculator

Let me introduce two new operations to make clear what is going in with the stack

pop :: Stack -> (Float, Stack)

push :: Float -> Stack -> Stack

Using those the evaluator takes an intuitive form.
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Case study: RPN calculator

Let me introduce two new operations to make clear what is going in with the stack

pop :: Stack -> (Float, Stack)

pop (x:xs) = (x, xs)

push :: Float -> Stack -> Stack

push x xs = x : xs

Using those the evaluator takes this form:

evalInstr (Number f) s

= push f s

evalInstr (Operation op) s

= let (x, s1) = pop s

(y, s2) = pop s1

in push (evalOp op x y) s2
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Encoding state explicitly

A function like pop

pop :: Stack -> (Float, Stack)

can be seen as a function which modifies a state:

• Takes the original state as an argument

• Returns the new state along with the result

The intuition is the same as looking at IO as

type IO a = World -> (a, World)
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Encoding state explicitly

Functions which only operate in the state return ()

push :: Float -> Stack -> ((), Stack)

push f s = ((), f : s)

evalInstr :: Instr -> Stack -> ((), Stack)

evalInstr (Number f) s

= push f s

evalInstr (Operation op) s

= let (x, s1) = pop s

(y, s2) = pop s1

in push (evalOp op x y) s2
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Looking for similarities

The same pattern occurs twice in the previous code

let (x, newStack) = f oldStack

in _ -- something which uses x and the newStack

This leads to a higher-order function

next :: (Stack -> (a, Stack))

-> (a -> Stack -> (b, Stack))

-> (Stack -> (b, Stack))
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Looking for similarities

The same pattern occurs twice in the previous code

let (x, newStack) = f oldStack

in _ -- something which uses x and the newStack

This leads to a higher-order function

next :: (Stack -> (a, Stack))

-> (a -> Stack -> (b, Stack))

-> (Stack -> (b, Stack))

next f g = \s -> let (x, s') = f s

in g x s'
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(Almost) the State monad

type State a = Stack -> (a, Stack)

State is almost a monad, we only need a return

• The type has only one hole, as required

The missing part is a return function

• What can we do?

return :: a -> Stack -> (a, Stack)
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(Almost) the State monad

type State a = Stack -> (a, Stack)

State is almost a monad, we only need a return

• The type has only one hole, as required

The missing part is a return function

• The only thing we can do is keep the state unmodified

return :: a -> Stack -> (a, Stack)

return x = \s -> (x, s)
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Nicer code for the examples

evalInstr :: Inst -> State ()

...

evalInstr (Operation op)

= do x <- pop

y <- pop

push (evalOp op x y)

...

The Stack value is threaded implicitly

• Similar to a single mutable variable
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Notes on implementation

We can generalize this idea to any type s of State

type State s a = s -> (a, s)

Alas, if you try to write the instance GHC complains

instance Monad (State s) where -- Wrong!

This is because you are only allowed to use a type synonym with all arguments applied

• But you need to leave one out to make it a monad
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Notes on implementation

The “trick” is to wrap the value in a data type

newtype State s a = S (s -> (a, s))

run :: State s a -> s -> a

run = ???

20



Notes on implementation

The “trick” is to wrap the value in a data type

newtype State s a = S (s -> (a, s))

run :: State s a -> s -> a

run (S f) s = fst (f s)

But now every time you need to access the function, you need to unwrap things, and then wrap

them again

instance Monad (State s) where

return x = S $ \s -> (x, s)

(S f) >>= g = S $ \s -> let (x, s') = f s

S g' = g x

in g' s'
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What is going on?

State passing style!

Warning: the following slides contain ASCII-art
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What is going on?

A State s a value is a “box” which, once feed with an state, gives back a value and the modified

state

+--+ --> v

| |

s --> +--+ --> s'

A function c -> State s a is a “box” with an extra input

c --> +--+ --> v

| |

s --> +--+ --> s'
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What is going on with return?

return has type a -> State s a
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What is going on with return?

return has type a -> State s a

• It is thus a box of the second kind

• It just passes the information through, unmodified

x --> +--------+ --> x

| return |

s --> +--------+ --> s
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What is going on with (>>=)?

(>>=) : State s a -> (a -> State s b) -> State s b

• We take one box of each kind

• And have to produce a box of the first kind
+----+ --> a a --> +---+ --> b

| st | | g |

s --> +----+ --> s' s' --> +---+ --> s''

Connect the wires and wrap into a larger box!
+----------------------------------+

| +----+ ----------------> +---+ --> b

| | st | | g | |

s --> +----+ ----------------> +---+ --> s''

+----------------------------------+
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Another use for state: counters

Given a binary tree, return a new one labelled with numbers in depth-first order

> let t = Node (Node Leaf 'a' Leaf)

'b'

(Node Leaf 'c' Leaf)

> label t

Node (Node Leaf (0, 'a') Leaf)

(1, 'b')

(Node Leaf (2, 'c') Leaf)

What is the type for such a function?

label :: Tree a -> Tree (Int, a)

Idea: use an implicit counter to keep track of the label
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Cooking label

The main work happens in a local function which is stateful

label' :: Tree a -> State Int (Tree (Int, a))

The purpose of label is to initialize the state to 0

label t = run (label' t) 0

where label' = ...
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Cooking label'

We use an auxiliary function to get the current label and update it to the next value

nextLabel :: State Int Int

nextLabel = S $ \i -> (i, i + 1)

Armed with it, writing the stateful label' is easy

label' Leaf = return Leaf

label' (Node l x r) = do l' <- label' l

i <- nextLabel

r' <- label' r

return (Node l' (i, x) r')
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Monad laws

As with functors, valid monads should obbey some laws

-- return is a left identity

do y <- return x == f x

f y

-- return is a right identity

do x <- m == m

return x

-- bind is associative

do y <- do x <- m do x <- m do x <- m

f x == do y <- f x == y <- f x

g y g y g y

In fact, monads are a higher-order version of monoids
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Summary of monads

Different monads provide different capabilities

• Maybemonad models optional values and failure

• Statemonad threads an implicit value

• []monad models search and non-determinism

• IOmonad provides impure input/output

There are even more monads!

• Eithermodels failure, but remembers the problem

• Reader provides a read-only environment

• Writer computes an on-going value

• For example, a log of the execution

• STM provides atomic transactions

• Cont provides non-local control flow
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Summary of monads

Monads provide a common interface

• do-notation is applicable to all of them

• Many utility functions (to be described)
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Applicatives
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Lifting functions

When explaining Maybe and IO we introduced liftM2

liftM2 :: (a -> b -> c)

-> Maybe a -> Maybe b -> Maybe c

liftM2 :: (a -> b -> c)

-> IO a -> IO b -> IO c

In general, we can write liftM2 for any monad

liftM2 :: Monad m => (a -> b -> c)

-> m a -> m b -> m c

liftM2 f x y = ???
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Lifting functions

When explaining Maybe and IO we introduced liftM2

liftM2 :: (a -> b -> c)

-> Maybe a -> Maybe b -> Maybe c

liftM2 :: (a -> b -> c)

-> IO a -> IO b -> IO c

In general, we can write liftM2 for any monad

liftM2 :: Monad m => (a -> b -> c)

-> m a -> m b -> m c

liftM2 f x y = do x' <- x

y' <- y

return (f x' y')
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Lifting functions

This makes the code shorter and easier to read

-- Using do notation

do fn' <- validateFirstName fn

ln' <- validateLastName fn

return (Person fn' ln')

-- Using lift

liftM2 Person (validateFirstName fn)

(validateLastName ln)

36



Lifting with different number of arguments

liftM1 :: (a -> b) -> m a -> m b

liftM3 :: (a -> b -> c -> d)

-> m a -> m b -> m c -> m d

liftM4 :: ...

The implementation of liftM follows the same pattern

liftM3 f x y z = do x' <- x

y' <- y

z' <- z

return (f x' y' z')

Can you find a nicer implementation for liftM1?

liftM1 = fmap
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Lifting with different number of arguments

This is clearly suboptimal:

• We need to provide different liftM with almost the same implementation

• If we refactor the code by adding or removing parameters to a function, we have to change

the liftM function we use at the call site

Can we do better?
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Introducing (<*>)

Suppose we want to lift a function with two arguments:

f :: a -> b -> c x :: f a y :: f b

What type does fmap f x have?

fmap f :: f a -> f (b -> c)

We are able to apply the first argument

fmap f x :: f (b -> c)

The result is not in the form we want

• The function is now inside the functor/monad
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Introducing (<*>)

To apply the next argument we need some magical function

(<*>) :: f (b -> c) -> f b -> f c

If we had that function, then we can write

fmap f x <*> y

= -- using the synonym (<$>) = fmap

f <$> x <*> y
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Introducing (<*>)

(<*>) :: f (b -> c) -> f b -> f c

Note that in the type of (<*>) we can choose c to be yet another function type

• As a result, by means of fmap and (<*>) we can lift a function with any number of arguments

f :: a -> b -> ... -> y -> z

ma :: m a

mb :: m b

...

f <$> ma <*> mb <*> ... <*> my :: m z
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Using (<*>)

Take the label' functions for trees we wrote previously

label' Leaf = return Leaf

label' (Node l x r) = do l' <- label' l

i <- nextLabel

r' <- label' r

return (Node l' (i, x) r')

Now we would write instead:

label' Leaf = return Leaf

label' (Node l x r)

= Node <$> label' l

<*> ( (,x) <$> nextLabel )

<*> label' r
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Applicatives

It turns out that (<*>) by itself is an useful abstraction

• Functor allows you to lift one-argument function

• With (<*>) you can lift functions with more than one argument

For completeness, we also want a way to lift 0-ary functions. What is the type of an fmap for 0-ary

functions?

A type constructor with these operations is called an applicative (functor)

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b
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Monads are applicatives

Every monad is also an applicative

pure = ???

mf <*> mx = ???
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Monads are applicatives

Every monad is also an applicative

pure = return

mf <*> mx = do f <- mf

x <- mx

return (f x)

As a result, you can use applicative style with IO, [], State…

do x <- xs == [ x + y

y <- ys | x <- xs

return (x + y) , y <- ys ]

== (+) <$> xs <*> ys

But there are applicatives which are not monads!
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The functor - applicative - monad hierarchy

class Functor f where

fmap :: (a -> b) -> f a -> f b

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

class Applicative f => Monad f where

-- return is the same as Applicative's pure

(>>=) :: f a -> (a -> f b) -> f b
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The functor - applicative - monad hierarchy

fmap :: (a -> b) -> f a -> f b

(<*>) :: f (a -> b) -> f a -> f b

flip (>>=) :: (a -> f b) -> f a -> f b

• Have seen: can express <*> in terms of >>= and return

• Exercise: express fmap in terms of <*> and pure

• Finally: monads are more expressive than applicatives!
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Summary

• State monad models computation which can read/write some bit of state

• Applicatives are functors + more structure (to lift multiple argument functions)

• Monads are applicatives + more structure (to decide based on argument whether or not to

perform side-effects)
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