Solution to Homework Exam 1 2023-2024

Deadline: 24 November 2023, 13:15

This homework exam has 1 question for a total of 9 points. You can earn an additional point by a careful preparation of your hand-in: using a good layout, good spelling, good figures, no sloppy notation, no statements like "The algorithm runs in $n \log n$." (forgetting the O(...) and forgetting to say that it concerns time), etc. Use lemmas, theorems, and figures where appropriate.

Question 1 (9 points)

Let S be a set of n disjoint line segments in the plane, and let $\mathcal{D}=[x_{\min},x_{\max}]\times[y_{\min},y_{\max}]$ be an axis parallel rectangle. You can assume that no two endpoints have the same x-coordinate or the same y-coordinate. Develop an $O(n\log n)$ time algorithm to find a longest horizontal line segment $\overline{ab}\subseteq\mathcal{D}$ whose interior intersects the interior of at most one segment in S. Prove that your algorithm is correct and achieves the desired running time.

We say that a segment is valid if it is horizontal, contained in \mathcal{D} , and intersects at most one segment in S.

Lemma 1. There is an optimal valid segment $v^* = \overline{pq}$ such that: (i) p and q lie on segments in S or on vertical edges of \mathcal{D} , and (ii) either (ii.a) v^* passes through an endpoint of a segment in S, (ii.b) v^* passes through an intersection point of a segment in S with the vertical boundary of \mathcal{D} , or (ii.c) v^* is a subsegment of the top or bottom boundary of \mathcal{D} .

Proof. Claim (i) in the lemma statement is trivial. Next, we prove claim (ii) by contradiction. Assume that v^* is optimal, and no optimal horizontal segment with properties (i) and (ii) exists.

Let s_p and s_q be the line segments (from S or the boundary of \mathcal{D}) containing endpoints p and q, respectively, and let s_c be the segment intersected by the interior of v^* (if it exists). Furthermore, let v(y), be the segment at y-coordinate y that has its endpoints on s_p and s_q .

Consider shifting v^* to the top, while keeping its endpoints on s_p and s_q until we: (1) encounter the top endpoint of s_p, s_q , or s_c , (2) we start to intersect an additional segment s_d , (3) the endpoints p and q exit \mathcal{D} , or (4) we are at the top boundary of \mathcal{D} . Let $v(y_t)$ at y_t be the segment after shifting, and observe that $v(y_t)$ is valid (since the only segment it can intersect in its interior is still s_c), and satisfies conditions (i) and (ii). Analogously, we obtain a valid segment v_b at y_b that satisfies (i) and (ii) by shifting to the bottom.

Let f(y) be the length of v(y). Since f is a linear function, we have that $\max\{f(y_t), f(y_b)\} \ge f(p_y)$. That is, either $v(y_t)$ or $v(y_b)$ is at least as long as v^* , is valid, and satisfies (i) and (ii). Contradiction. The lemma follows.

Observation 2. Let $v^* = \overline{ab}$ be a valid segment that contains point p, then \overline{pa} and \overline{pb} intersect at most one segment in S.

It follows from Lemma 1 that the only segments we have to consider are maximal horizontal segments passing through an endpoint of a segment in S, or the intersection points of S with the edges of \mathcal{D} . Moreover, for every such candidate point p, there are only a constant number of valid maximal segments that contain p (Observation 2). In particular, the left endpoint of such a segment lies either on the first or the second segment hit by a horizontal ray starting in p. The same holds for the right endpoint.

We will now develop a sweep line algorithm that sweeps a horizontal line over $\mathcal D$ to compute all these candidate segments and their lengths.

The status structure stores the/a best valid segment above the sweep line, and a balanced binary search tree (e.g. a red black tree) that stores the segments in S intersected by the sweep line. These segments are ordered from left to right.

The status changes when we enter or exit \mathcal{D} and when we sweep over an endpoint of a segment. We can precompute all these events, so the event queue is simply a linked list with all these points, ordered by decreasing y-coordinate.

INFOGA 2023-2024 1

We start the sweep at y-coordinate ∞ , and initialize the status structure with an empty BST and a non-existent segment of length $-\infty$.

At each event point p, we query the status structure to find the first two segments left and right of p. If p lies in $\mathcal D$ this gives us O(1) candidate segments \overline{ab} and their lengths. For each candidate, we test if it is valid, compare it with the maximum length segment found so far, and update the maximum length segment found so far if needed. We then either insert or remove the segment s incident to p (depending on whether p is the top or bottom endpoint of s).

Since there are 2n endpoints, and 2n intersection points, constructing the event queue takes $O(n \log n)$ time. We handle each event by O(1) queries, a single update in the status structure, and a constant amount of additional work. Since the operations on the status structure take $O(\log n)$ time each we can handle an event in $O(\log n)$ time. We conclude:

Theorem 3. Given a set S of n line segments in \mathcal{D} , a longest horizontal line segment in \mathcal{D} that intersects at most one segment of S in its interior can be computed in $O(n \log n)$ time.

INFOGA 2023-2024 2