
Lecture 1: Introduction and Convex Hulls

Computational Geometry

Utrecht University

1

Introduction

2

Introduction

Geometric objects

3

Geometry: points, lines, ...

• Plane (two-dimensional),R2

• Space (three-dimensional),R3

• Space (higher-dimensional),Rd

A point in the plane, 3-dimensional space, higher-dimensional space.

p = (px, py), p = (px, py, pz), p = (p1, p2, . . . , pd)

A line in the plane: y = m · x+ c; representation by m and c

A half-plane in the plane: y≤ m · x+ c or y≥ m · x+ c

Represent vertical lines? Not by m and c . . .

4

Geometry: points, lines, ...

• Plane (two-dimensional),R2

• Space (three-dimensional),R3

• Space (higher-dimensional),Rd

A point in the plane, 3-dimensional space, higher-dimensional space.

p = (px, py), p = (px, py, pz), p = (p1, p2, . . . , pd)

A line in the plane: y = m · x+ c; representation by m and c

A half-plane in the plane: y≤ m · x+ c or y≥ m · x+ c

Represent vertical lines? Not by m and c . . .

4

Geometry: line segments

A line segment pq is defined by its two endpoints p
and q:
(λ · px +(1−λ) ·qx, λ · py +(1−λ) ·qy)

where 0≤ λ ≤ 1

Line segments are assumed to be closed= with

endpoints, not open

Two line segments intersect if they have some point

in common. It is a proper intersection if it is exactly

one interior point of each line segment

5

Polygons: simple or not

A polygon is a connected region of the plane

bounded by a sequence of line segments

• simple polygon

• polygon with holes

• convex polygon

The line segments of a polygon are called its edges,

the endpoints of those edges are the vertices

Some abuse: polygon is only boundary, or interior

plus boundary

interior

exterior

6

Other shapes: rectangles, circles, disks

A circle is only the boundary, a disk is the boundary

plus the interior

Rectangles, squares, quadrants, slabs, half-lines,

wedges, . . .

7

Introduction

Geometric relations

8

Relations: distance, intersection, angle

The distance between two points is generally the

Euclidean distance:√
(px−qx)2 +(py−qy)2

Another option: the Manhattan distance:

|px−qx|+ |py−qy|

Question: What is the set of points at equal

Manhattan distance to some point?

√
(px − qx)2 + (py − qy)2

|px − qx|

|py − qy|

9

Relations: distance, intersection, angle

The distance between two geometric objects other than points usually refers to the minimum

distance between two points that are part of these objects

Question: How can the distance between two line segments be realized?

10

Relations: distance, intersection, angle

The intersection of two geometric objects is the set

of points (part of the plane, space) they have in

common

Question 1: How many intersection points can a

line and a circle have?

Question 2: What are the possible outcomes of the

intersection of a rectangle and a quadrant?

11

Relations: distance, intersection, angle

Question 3: What is the maximum number of

intersection points of a line and a simple polygon

with 10 vertices (trick question)?

12

Relations: distance, intersection, angle

Question 4: What is the maximum number of

intersection points of a line and a simple polygon

boundary with 10 vertices (still a trick question)?

13

Relations: distance, intersection, angle

Question 5: What is the maximum number of edges

of a simple polygon boundary with 10 vertices that a

line can intersect?

14

Introduction

Combinatorial complexity

15

Description size

A point in the plane can be represented using two

reals

A line in the plane can be represented using two

reals and a Boolean (for example)

A line segment can be represented by two points, so

four reals

A circle (or disk) requires three reals to store it

(center, radius)

A rectangle requires four reals to store it

false, m, c

true, .., c

y = m · x+ c

x = c

16

Description size

A simple polygon in the plane can be represented using 2n reals if it has n vertices (and

necessarily, n edges)

A set of n points requires 2n reals

A set of n line segments requires 4n reals

A point, line, circle, . . . requires O(1), or constant, storage.
A simple polygon with n vertices requires O(n), or linear, storage

17

Computation time

Any computation (distance, intersection) on two objects of O(1) description size takes O(1) time!

Question: Suppose that a simple polygon with n vertices is given; the vertices are given in

counterclockwise order along the boundary. Give an efficient algorithm to determine all edges

that are intersected by a given line.

How efficient is your algorithm? Why is your algorithm efficient?

18

Algorithms, efficiency

Recall from your algorithms and data structures course:

A set of n real numbers can be sorted in O(n logn) time

A set of n real numbers can be stored in a data structure that uses O(n) storage and that allows

searching, insertion, and deletion in O(logn) time per operation

These are fundamental results in 1-dimensional computational geometry!

19

Introduction

Computational geometry

20

Computational geometry scope

In computational geometry, problems on input with more than constant description size are the

ones of interest

Computational geometry (theory): Study of geometric problems on geometric data, and how

efficient geometric algorithms that solve them can be

Computational geometry (practice): Study of geometric problems that arise in various applications

and how geometric algorithms can help to solve well-defined versions of such problems

21

Computational geometry theory

Computational geometry (theory): Classify abstract

geometric problems into classes depending on how

efficiently they can be solved

smallest enclosing circle

closest pair

any intersection?

find all intersections

22

Computational geometry practice

Application areas that require geometric algorithms are computer graphics, motion planning and

robotics, geographic information systems, CAD/CAM, statistics, physics simulations, databases,

games, multimedia retrieval, . . .

• Computing shadows from virtual light sources

• Spatial interpolation from groundwater pollution measurements

• Computing a collision-free path between obstacles

• Computing similarity of two shapes for shape database retrieval

23

Computational geometry history

Early 70s: First attention for geometric problems from algorithms researchers

1976: First PhD thesis in computational geometry (Michael Shamos)

1985: First Annual ACM Symposium on Computational Geometry. Also: first textbook

1996: CGAL: first serious implementation effort for robust geometric algorithms

1997: First handbook on computational geometry (second one in 2000)

24

Convex hulls

25

Convex hulls

Convexity

26

Convexity

A shape or set is convex if for any two points that

are part of the shape, the whole connecting line

segment is also part of the shape

Question: Which of the following shapes are

convex? Point, line segment, line, circle, disk,

quadrant?

27

Convex hulls

Convex hull

28

Convex hull

For any subset S of the plane (set of points,

rectangle, simple polygon), its convex hull CH(S) is
the intersection of all convex sets that contain S.

Intuitively, the convex hull is the “smallest” convex

set that contains S.

29

Convex hull problem

Give an algorithm that computes the convex hull of

any given set of n points in the plane efficiently

The input has 2n coordinates, so O(n) size

Question: Why can’t we expect to do any better

than O(n) time?

30

Convex hull problem

Assume the n points are distinct

The output has at least 4 and at most 2n coordinates, so it has size between O(1) and O(n)

The output is a convex polygon so it should be returned as a sorted sequence of the points,

clockwise (CW) along the boundary

Question: Is there any hope of finding an O(n) time algorithm?

31

Convex hulls

Algorithm development

32

Developing an algorithm

To develop an algorithm, find useful properties, make various observations, draw many sketches to

gain insight

Property: The vertices of the convex hull are always points from the input

Consequently, the edges of the convex hull connect two points of the input

You have to prove these properties.

33

Developing an algorithm

To develop an algorithm, find useful properties, make various observations, draw many sketches to

gain insight

Property: The vertices of the convex hull are always points from the input

Consequently, the edges of the convex hull connect two points of the input

You have to prove these properties.

33

Developing an algorithm

Property: The supporting line of any convex hull

edge has all input points to one side.

p q

all points lie right of the
directed line from p to q,
if the edge from p to q is
a CW convex hull edge

34

Developing an algorithm

Property: The supporting line of any convex hull

edge has all input points to one side.

p

q

all points lie right of the
directed line from p to q,
if the edge from p to q is
a CW convex hull edge

34

Developing an algorithm

Algorithm SlowConvexHull(P)

Input. A set P of points in the plane.

Output. A listL containing the vertices ofCH(P) in clockwise order.

1. E← /0.
2. for all ordered pairs (p,q) ∈ P×P with p not equal to q
3. do valid← true

4. for all points r ∈ P not equal to p or q
5. do if r lies left of the directed line from p to q
6. then valid← false

7. if valid then Add the directed edge p⃗q to E
8. From the set E of edges construct a list L of vertices ofCH(P), sorted in clockwise order.

35

Developing an algorithm

Question: How must line 5 be interpreted to make the algorithm correct?

Question: How efficient is the algorithm?

36

Developing an algorithm

Idea: Let’s first compute only the upper boundary of the convex hull. Lower boundary is

symmetric.

Property: on the upper hull, points appear in x-order.

Observation: from left to right, there are only right turns on the upper hull

Main idea: Sort the points from left to right (= by x-coordinate). Then insert the points in this

order, and maintain the upper hull so far.

37

Developing an algorithm

Idea: Let’s first compute only the upper boundary of the convex hull. Lower boundary is

symmetric.

Property: on the upper hull, points appear in x-order.

Observation: from left to right, there are only right turns on the upper hull

Main idea: Sort the points from left to right (= by x-coordinate). Then insert the points in this

order, and maintain the upper hull so far.

37

Developing an algorithm

Idea: Let’s first compute only the upper boundary of the convex hull. Lower boundary is

symmetric.

Property: on the upper hull, points appear in x-order.

Observation: from left to right, there are only right turns on the upper hull

Main idea: Sort the points from left to right (= by x-coordinate). Then insert the points in this

order, and maintain the upper hull so far.

37

Developing an algorithm

Observation: from left to right,

there are only right turns on the

upper hull

38

Developing an algorithm

Initialize by inserting the leftmost

two points

39

Developing an algorithm

If we add the third point there will

be a right turn at the previous

point, so we add it

40

Developing an algorithm

If we add the fourth point we get a

left turn at the third point

41

Developing an algorithm

. . . so we remove the third point

from the upper hull when we add

the fourth

42

Developing an algorithm

If we add the fifth point we get a

left turn at the fourth point

43

Developing an algorithm

. . . so we remove the fourth point

when we add the fifth

44

Developing an algorithm

If we add the sixth point we get a

right turn at the fifth point, so we

just add it

45

Developing an algorithm

We also just add the seventh point

46

Developing an algorithm

When adding the eight point . . .

we must remove the seventh point

47

Developing an algorithm

. . . we must remove the seventh

point

48

Developing an algorithm

. . . and also the sixth point

49

Developing an algorithm

. . . and also the fifth point

50

Developing an algorithm

After two more steps we get:

51

The pseudo-code

Algorithm ConvexHull(P)

Input. A set P of points in the plane.

Output. A list containing the vertices ofCH(P) in clockwise order.

1. Sort the points by x-coordinate, resulting in a sequence p1, . . . , pn.

2. Put the points p1 and p2 in a list Lupper, with p1 as the first point.

3. for i← 3 to n
4. do Append pi to Lupper.

5. while Lupper contains more than two points and the last three points in Lupper do not

make a right turn

6. do Delete the middle of the last three points from Lupper.

52

The pseudo-code

Then we do the same for the lower

convex hull, from right to left

We remove the first and last points

of the lower convex hull

. . . and concatenate the two lists

into one

p1, p2, p10, p13, p14

p14, p12, p8, p4, p1

53

Convex hulls

Algorithm analysis

54

Algorithm analysis

Algorithm analysis generally has two components:

• proof of correctness

• efficiency analysis, proof of running time

55

Correctness

Are the general observations on which the algorithm is based correct?

Does the algorithm handle degenerate cases correctly?

Here:

• Does the sorted order matter if two or more points have the same x-coordinate?

• What happens if there are three or more collinear points, in particular on the convex hull?

56

Correctness

Are the general observations on which the algorithm is based correct?

Does the algorithm handle degenerate cases correctly?

Here:

• Does the sorted order matter if two or more points have the same x-coordinate?

• What happens if there are three or more collinear points, in particular on the convex hull?

56

Efficiency

Identify of each line of pseudo-code how much time it takes, if it is executed once (note:

operations on a constant number of constant-size objects take constant time)

Consider the loop-structure and examine how often each line of pseudo-code is executed

Sometimes there are global arguments why an algorithm is more efficient than it seems, at first

57

The pseudo-code

Algorithm ConvexHull(P)

Input. A set P of points in the plane.

Output. A list containing the vertices ofCH(P) in clockwise order.

1. Sort the points by x-coordinate, resulting in a sequence p1, . . . , pn.

2. Put the points p1 and p2 in a list Lupper, with p1 as the first point.

3. for i← 3 to n
4. do Append pi to Lupper.

5. while Lupper contains more than two points and the last three points in Lupper do not

make a right turn

6. do Delete the middle of the last three points from Lupper.

58

Efficiency

The sorting step takes O(n logn) time

Adding a point takes O(1) time for the adding-part. Removing points takes constant time for each

removed point. If due to an addition, k points are removed, the step takes O(1+ k) time

Total time:

O(n logn)+
n

∑
i=3

O(1+ ki)

if ki points are removed when adding pi

Since ki = O(n), we get

O(n logn)+
n

∑
i=3

O(n) = O(n2)

59

Efficiency

Global argument: each point can be removed only once from the upper hull

This gives us the fact:

n

∑
i=3

ki ≤ n

Hence,

O(n logn)+
n

∑
i=3

O(1+ ki) = O(n logn)+O(n) = O(n logn)

60

Final result

The convex hull of a set of n points in the plane can be computed in O(n logn) time, and this is

optimal

61

More on convex hulls

62

Other approaches: divide-and-conquer

Divide-and-conquer: split the point

set in two halves, compute the convex

hulls recursively, and merge

A merge involves finding “extreme

vertices” in every direction

63

Other approaches: divide-and-conquer

Alternatively: split the point set in two

halves on x-coordinate, compute the

convex hulls recursively, and merge

A merge now comes down to finding

two common tangent lines

64

Convex hulls in 3D

For a 3-dimensional point set, the

convex hull is a convex polyhedron

It has vertices (0-dim.), edges (1-dim.),

and facets (2-dim.) in its boundary,

and a 3-dimensional interior

The boundary is a planar graph, so it

has O(n) vertices, edges and facets

65

Convex hulls in 4D

For a 4-dimensional point set, the convex hull is a convex polyhedron

It has vertices (0-dim.), edges (1-dim.), 2-facets (2-dim.), and 3-facets

(3-dim.) in its boundary, and a 4-dimensional interior

Its boundary can have Θ(n2) facets in the worst case!

66

	Introduction
	Geometric objects
	Geometric relations
	Combinatorial complexity
	Computational geometry

	Convex hulls
	Convexity
	Convex hull
	Algorithm development
	Algorithm analysis

	More on convex hulls

