%% Utrecht University

Lecture 2: Line segment intersection for map overlay

Computational Geometry

Utrecht University

Motivation

Motivation

Map overlay

Map layers

In a geographic information system (GIS)

data is stored in separate layers

/
A layer stores the geometric information /§\< \ \/
about some theme, like land cover, road —
network, municipality boundaries, red fox

habitat, ... /L/L>//

Map overlay is the combination of two (or

more) map layers

It is needed to answer questions like:

+ What is the total length of roads
through forests?

* What is the total area of corn fields

within 1 km from a river?

» What area of all lakes occurs at the

geological soil type “rock?

To solve map overlay questions, we need
(at the least) intersection points from two
sets of line segments (possibly,
boundaries of regions)

Line segment intersection

Line segment intersection

Problem

Let's first look at the easiest version of the

problem:

Given a set of of n line segments in the
plane, find all intersection points
efficiently

Algorithm FindIntersections(S)

Input. A set S of line segments in the plane.

Output. The set of intersection points among the segments in S.
1. for each pair of line segments e;,e; €S

2. do if ¢; and ¢ intersect

3. then report their intersection point

Question: Why can we say that this algorithm is optimal?

Line segment intersection

Output-sensitive algorithms

Output-sensitive algorithm

The asymptotic running time of an
algorithm is always input-sensitive

(depends on n)

We may also want the running time to be
output-sensitive: if the output is large, it
is fine to spend a lot of time, but if the

output is small, we want a fast algorithm

\/
%

Question: How many intersection points

do we typically expect in our application?

If this number is k, and if k = O(n), it
would be nice if the algorithm runs in
O(nlogn) time

Line segment intersection

Some attempts

First attempt

Observation: Two line segments can only

intersect if their y-spans have an overlap

So, how about only testing pairs of line

segments that intersect in the y-projection?

1D problem: Given a set of intervals on the

real line, find all partly overlapping pairs

< —
[
[
[

51 525354 85 g

(51’ 32)7 (S4a 86)’ (557 56)

1D problem: Given a set of intervals on the real line, find all partly

overlapping pairs

Sort the endpoints and handle them from left to right; maintain currently

intersected intervals in a balanced search tree T
+ Left endpoint of s;: for each s; in T, report the pair s;,s;. Then insert s;
inJ

+ Right endpoint of s;: delete s; from T’

Question: Is this algorithm output-sensitive for 1D interval intersection?

Back to the 2D problem:

Determine the y-intervals of the 2D line segments
Find the intersecting pairs of intervals with the 1D solution
For every pair of intersecting intervals, test whether the corresponding line

segments intersect, and if so, report

Question: Is this algorithm output-sensitive for 2D line segment

intersection?

Refined observation: Two line segments
can only intersect if their y-spans have an
overlap, and they are adjacent in the
x-order at that y-coordinate (they are

horizontal neighbors)

Plane sweep

20

Plane sweep

Introduction

21

The plane sweep technique: Imagine a horizontal line passing over
the plane from top to bottom, solving the problem as it moves

* The sweep line stops and the algorithm computes at certain
positions = events

* The algorithm stores the relevant situation at the current

position of the sweep line = status

+ The algorithm knows everything it needs to know above the
sweep line, and found all intersection points

22

AN

Sweep and status

computed

S

status / \ /

+ P e p——— D CEESCED +

unexplored

The status of this particular plane sweep algorithm, at the current
position of the sweep ling, is the set of line segments intersecting the
sweep line, ordered from left to right

The events occur when the status changes, and when output is

generated

event X interesting y-coordinate

25

S4

add s

S6 57

S8

S4

add s, after s

S6

S8

27

add s3 between s

S5 and s>

S8

28

add s4 before s

S8

29

report intersection

(s1,53); swap s1 and
53
87

30

remove s

S8

31

+ S5 + add s5 after s3
Se
87
\

33

S3 Sg
54
’ report intersection
) S5) (83,54); swap s3
s6 and s4

St

34

...andsoon...

85

Plane sweep

Events, status, structures

36

When do the events happen? When the sweep line is at

+ an upper endpoint of a line segment
+ alower endpoint of a line segment

+ an intersection point of a line segment

At each type, the status changes; at the third type output is found too

37

We will at first exclude degenerate cases:

+ No two endpoints have the same
y-coordinate

* No more than two line segments intersect

in a point

Question: Are there more degenerate cases?

38

event queue and status structure

The event queue is an abstract data structure that stores all events in

the order in which they occur

The status structure is an abstract data structure that maintains the

current status

Here: The status is the subset of currently intersected line segments in

the order of intersection by the sweep line

A\ ANEANE
DNAVARNNY

\ . / NS

39

Status structure

We use a balanced binary search tree with the line segments in the

leaves as the status structure

40

Status structure

Upper endpoint: search, and insert

41

Status structure

Upper endpoint: search, and insert

42

Status structure

Upper endpoint: search, and insert

43

Sweep line reaches lower endpoint of a line segment: delete from the
status structure

Sweep line reaches intersection point: swap two leaves in the status
structure (and update information on the search paths)

a4

Before the sweep algorithm starts, we know all upper endpoint events

and all lower endpoint events

But: How do we know intersection point events???

(those we were trying to find . . .)

Recall: Two line segments can only intersect if they are horizontal

neighbors

45

Finding events

Lemma: Two line segments s; and s; can only
intersect after (= below sweep line) they have
become horizontal neighbors

Proof: Just imagine that the sweep line is ever so
slightly above the intersection point of s; and s,

but below any other event []

Also: some earlier (= higher) event made s; and

s horizontally adjacent!!!

46

The event queue will be a balanced binary search tree, because during

the sweep, we discover new events that will happen later

We know upper endpoint events and lower endpoint events
beforehand; we find intersection point events when the involved line
segments become horizontal neighbors

47

Structure of sweep algorithm

Algorithm FindIntersections(S)

Input. A set S of line segments in the plane.

Output. The intersection points of the segments in S, with for each

1.

WS> W N

intersection point the segments that contain it.

Initialize an empty event queue Q. Insert the segment endpoints
into Q; when an upper endpoint is inserted, the corresponding
segment should be stored with it
Initialize an empty status structure 7'
while Q is not empty

do Determine next event point p in Q and delete it

HandleEventPoint(p)

48

Plane sweep

Event handling

49

If the event is an upper endpoint event,
and s is the line segment that starts at p:

1. Searchwith pin T, and insert s

2. If sintersects its left neighborin T, \ P / \

then determine the intersection point \ S\ / \

and insertin Q

3. If sintersects its right neighbor in T',
then determine the intersection point

and insertin Q

50

If the event is a lower endpoint event, and

s is the line segment that ends at p:

S
1. Search with pin T, and delete s /
2. Lets; and s, be the left and right \ P / \
< -_— -
neighbors of s in T (before deletion). \ / \

If they intersect below the sweep line,
then insert their intersection point
asaneventin Q

51

If the event is an intersection point event

where s and s’ intersect at p: /

S
A

52

If the event is an intersection point event
where s and s’ intersect at p: /

1. Exchange sand s’ in T \ M\

S
A

53]

If the event is an intersection point event
where s and s’ intersect at p:

1. Exchangesands’in T \/
2. If 5" and its new left neighbor in T \ p \

intersect below the sweep line, then \ \
insert this intersection point in Q

54

If the event is an intersection point event
where s and s’ intersect at p:

1. Exchange sand s’ in T
2. If s and its new left neighbor in T
intersect below the sweep line, then \ M\
insert this intersection point in Q \/\ \
3. If s and its new right neighbor in T

intersect below the sweep line, then

insert this intersection point in Q

55)

Event handling

If the event is an intersection point event

where s and s’ intersect at p:

1. Exchange sand s’ in T

2. If 5" and its new left neighbor in T’
intersect below the sweep line, then

insert this intersection point in Q

3. If s and its new right neighbor in T’
intersect below the sweep line, then

insert this intersection point in Q

4. Report the intersection point

56

Can it be that new horizontal
neighbors already intersected
above the sweep line?

Can it be that we insert a newly
detected intersection point

event, but it already occurs

in Q?

57

Plane sweep

Efficiency

58

How much time to handle an event?

At most one search in 7" and/or one insertion, deletion, or swap

At most twice finding a neighbor in T’
At most one deletion from and two insertions in Q

Since T and Q are balanced binary search trees, handling an event

takes only O(logn) time

59

How many events?

+ 2n for the upper and lower endpoints

+ k for the intersection points, if there are k of them

In total: O(n+ k) events

60

Initialization takes O(nlogn) time (to put all upper and lower

endpoint events in Q)
Each of the O(n + k) events takes O(logn) time

The algorithm takes O(nlogn + klogn) time

If k = O(n), then this is O(nlogn)

Note that if k is really large, the brute force O(nz) time algorithm is

more efficient

61

Question: How much storage does the algorithm take?

62

Question: Given that the event queue is a binary tree that may store
O(k) = O(n?) events, is the efficiency in jeopardy?

63

How do we deal with degenerate cases?

For two different events with the same y-coordinate, we treat them
from left to right = the “upper” endpoint of a horizontal line segment

is its left endpoint

64

Degenerate cases

How about multiply coinciding event points?

Let U(p) and L(p) be the line segments that have p as upper and

lower endpoint, and C(p) the ones that contain p

Question: How do we handle this multi-event?

65

How efficiently is such a multi-event point handled?
If|U(p)|+ |L(p)| + |C(p)| = m, then the event takes O(mlogn)
time
What do we report?
* The intersection point itself
+ Every pair of intersecting line segments

* The intersection point and every line segment involved

Question: What is the output size in each of these three cases?

66

Output size in case we report
+ the intersection point itself: O(1)
+ every pair of intersecting line segments: O(mz)

+ the intersection point and every line segment involved: O(m)

67

Degenerate cases

Since m = O(n), does this imply that the whole algorithm takes
O(k) - O(mlogn) = O(k) - O(nlogn) = O(nklogn) time?

No, we can bound Y m over all intersections by the number of edges

that arise in the subdivision: Note Y. m < 2F

Euler's formula gives V — E + F > 2 for the subdivision induced by

the line segments

68

Every face has at least 3 edges and every edge contributes to exactly 2
faces, so 2E > 3F

Combine with Euler's formulaV — E + F > 2, and we get:
E<3V-6

Note V < 2n —+ k with k intersections, so E < 6n+3k—6

Wegety m <2E <12n+6k—12

69

For any set of n line segments in the plane, all k intersections can be
computed in O(nlogn + klogn) time, and within this time bound,

we can report for every intersection which line segments are involved

70

For every sweep algorithm:
+ Define the status
+ Choose the status structure and the event queue
+ Figure out how events must be handled (with sketches!)

+ To analyze, determine the number of events and how much time
they take

Then deal with degeneracies and incorporate them carefully

71

	Motivation
	Map overlay

	Line segment intersection
	Problem
	Output-sensitive algorithms
	Some attempts

	Plane sweep
	Introduction
	Events, status, structures
	Event handling
	Efficiency

