
Lecture 4: Triangulating a polygon

Computational Geometry

Utrecht University

1



Motivation

2



Motivation

Visibility in polygons

3



Polygons and visibility

Two points in a simple polygon can see each other if their connecting

line segment is in the polygon

4



Art gallery problem

Art Gallery Problem: How many cameras are needed to guard a

given art gallery so that every point is seen?

5



Art gallery problem

In geometry terminology: How many points are needed in a simple

polygon with n vertices so that every point in the polygon is seen?

The optimization problem is computationally difficult

Art Gallery Theorem: ⌊n/3⌋ cameras are occasionally necessary but

always sufficient

6



Art gallery problem

Art Gallery Theorem: ⌊n/3⌋ cameras are occasionally necessary but

always sufficient

7



Motivation

Triangulation

8



Triangulation, diagonal

Why are ⌊n/3⌋ cameras always enough?

Assume polygon P is triangulated: a

decomposition of P into disjoint triangles

by a maximal set of non-intersecting

diagonals

Diagonal of P: open line segment that

connects two vertices of P and fully lies in

the interior of P

9



A triangulation always exists

Lemma: A simple polygon with n vertices can

always be triangulated, and always with n−2
triangles

Proof: Induction on n. If n = 3, it is trivial

Assume n > 3. Consider the leftmost vertex v
and its two neighbors u and w. Either uw is a

diagonal (case 1), or part of the boundary of P is

in△uvw (case 2)

Case 2: choose the vertex t in△uvw farthest

from the line through u and w, then vt must be a

diagonal

v

v

u

u

w

w

10



A triangulation always exists

In case 1, uw cuts the polygon into a triangle and a simple polygon

with n−1 vertices, and we apply induction

In case 2, vt cuts the polygon into two simple polygons with m and

n−m+2 vertices, 3 ≤ m ≤ n−1, and we also apply induction

By induction, the two polygons can be triangulated using m−2 and

n−m+2−2 = n−m triangles. So the original polygon is

triangulated using m−2 + n−m = n−2 triangles □

11



Motivation

Proof of the Art gallery theorem

12



A 3-coloring always exists

Observe: the dual graph of a triangulated simple

polygon is a tree

Dual graph: each face gives a node; two nodes

are connected if the faces are adjacent

13



A 3-coloring always exists

Lemma: The vertices of a triangulated simple

polygon can always be 3-colored

Proof: Induction on the number of triangles in

the triangulation. Base case: True for a triangle

Every tree has a leaf, in particular the one that is

the dual graph. Remove the corresponding

triangle from the triangulated polygon, color its

vertices, add the triangle back, and let the extra

vertex have the color different from its neighbors

14



A 3-coloring always exists

Lemma: The vertices of a triangulated simple

polygon can always be 3-colored

Proof: Induction on the number of triangles in

the triangulation. Base case: True for a triangle

Every tree has a leaf, in particular the one that is

the dual graph. Remove the corresponding

triangle from the triangulated polygon, color its

vertices, add the triangle back, and let the extra

vertex have the color different from its neighbors

14



A 3-coloring always exists

15



⌊n/3⌋ cameras are enough

For a 3-colored, triangulated simple polygon,

one of the color classes is used by at most ⌊n/3⌋
colors. Place the cameras at these vertices

This argument is called

the pigeon-hole principle

16



⌊n/3⌋ cameras are enough

Question: Why does the proof fail when the polygon has holes?

17



Triangulating a polygon

18



Two-ears for triangulation

Using the two-ears theorem:

(an ear consists of three consecutive vertices

u,v,w where uw is a diagonal)

Find an ear, cut it off with a diagonal, triangulate

the rest iteratively

Question: Why does every simple polygon have

an ear?

Question: How efficient is this algorithm?

19



Triangulating a polygon

Towards an efficient algorithm

20



Overview

A simple polygon is y-monotone iff any

horizontal line intersects it in a connected set (or

not at all)

Use plane sweep to partition the polygon into

y-monotone polygons

Then triangulate each y-monotone polygon

21



Monotone polygons

A y-monotone polygon has a top vertex, a

bottom vertex, and two y-monotone chains

between top and bottom as its boundary

Any simple polygon with one top vertex and one

bottom vertex is y-monotone

22



Vertex types

What types of vertices does a simple

polygon have?

• start

• stop

• split

• merge

• regular

. . . imagining a sweep line going top to

bottom

start

merge regular

split

end

23



Triangulating a polygon

Partitioning into monotone pieces

24



Sweep ideas

Find diagonals from each merge vertex

down, and from each split vertex up

A simple polygon with no split or merge

vertices can have at most one start and

one end vertex, so it is y-monotone

25



Sweep ideas

explored

unexplored

explored

unexplored

26



Sweep ideas

Where can a diagonal from a split

vertex go?

Perhaps the upper endpoint of the

edge immediately left of the split

vertex?

27



Sweep ideas

Where can a diagonal from a split

vertex go?

Perhaps the upper endpoint of the

edge immediately left of the split

vertex?

28



Sweep ideas

Where can a diagonal from a split

vertex go?

Perhaps the upper endpoint of the

edge immediately left of the split

vertex?

29



Sweep ideas

Where can a diagonal from a split

vertex go?

Perhaps the last vertex passed in

the same “component”?

30



Sweep ideas

Where can a diagonal from a split

vertex go?

Perhaps the last vertex passed in

the same “component”?

31



Sweep ideas

Where can a diagonal from a split

vertex go?

Perhaps the last vertex passed in

the same “component”?

32



Helpers of edges

The helper for an edge e that has

the polygon right of it, and a

position of the sweep line, is the

lowest vertex v above the sweep

line such that the horizontal line

segment connecting e and v is

inside the polygon

33



Status of sweep

The status is the set of edges

intersecting the sweep line that

have the polygon to their right,

sorted from left to right, and each

with their helper: the last vertex

passed in that component

34



Status structure, event list

The status structure stores all edges that have the polygon to the

right, with their helper, sorted from left to right in the leaves of a

balanced binary search tree

The events happen only at the vertices: sort them by y-coordinate
and put them in a list (or array, or tree)

35



Main algorithm

Initialize the event list (all vertices sorted by decreasing y-coordinate)
and the status structure (empty)

While there are still events in the event list, remove the first (topmost)

one and handle it

36



Event handling

Start vertex v:

• Insert the counterclockwise incident

edge in T with v as the helper

37



Event handling

End vertex v:

• Delete the clockwise incident edge

and its helper from T

38



Event handling

Regular vertex v:

• If the polygon is right of the two

incident edges, then replace the

upper edge by the lower edge in T ,

and make v the helper

• If the polygon is left of the two

incident edges, then find the edge e
directly left of v, and replace its

helper by v

39



Event handling

Merge vertex v:

• Remove the edge clockwise from v
from T

• Find the edge e directly left of v, and
replace its helper by v

e

40



Event handling

Split vertex v:

• Find the edge e directly left of v, and
choose as a diagonal the edge

between its helper and v

• Replace the helper of e by v

• Insert the edge counterclockwise

from v in T , with v as its helper

e

41



Efficiency

Sorting all events by y-coordinate takes O(n logn) time

Every event takes O(logn) time, because it only involves querying,

inserting and deleting in T

42



Degenerate cases

Question: Which degenerate cases arise in this algorithm?

43



Representation

A simple polygon with some

diagonals is a subdivision⇒ use a

DCEL

Question: How many diagonals

may be chosen to the same vertex?

44



More sweeping

With an upward sweep in each

subpolygon, we can find a

diagonal down from every merge

vertex (which is a split vertex for

an upward sweep!)

This makes all subpolygons

y-monotone

45



Result

Theorem: A simple polygon with n vertices can be partitioned into

y-monotone pieces in O(n logn) time

46



Triangulating a polygon

Triangulating a monotone polygon

47



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

48



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

49



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

50



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

51



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

52



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

53



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

54



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

55



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

56



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

57



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

58



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

59



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

60



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

61



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

62



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

63



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

64



Triangulating a monotone polygon

How to triangulate a y-monotone

polygon?

65



The algorithm

• Sort the vertices top-to-bottom by a merge of the two chains

• Initialize a stack. Push the first two vertices

• Take the next vertex v, and triangulate as much as possible,

top-down, while popping the stack

• Push v onto the stack

66



Triangulating a polygon

Triangulating a simple polygon

67



Result

Theorem: A simple polygon with n vertices can be partitioned into

y-monotone pieces in O(n logn) time

Theorem: A monotone polygon with n vertices can be triangulated

O(n) time

Can we immediately conclude:

A simple polygon with n vertices can be triangulated O(n logn) time

???

68



Result

We need to argue that all y-monotone polygons together that we will

triangulate have O(n) vertices

Initially we had n edges. We add at most n−3 diagonals in the

sweeps. These diagonals are used on both sides as edges. So all

monotone polygons together have at most 3n−6 edges, and

therefore at most 3n−6 vertices

Hence we can conclude that triangulating all monotone polygons

together takes only O(n) time

Theorem: A simple polygon with n vertices can be triangulated

O(n logn) time

69


	Motivation
	Visibility in polygons
	Triangulation
	Proof of the Art gallery theorem

	Triangulating a polygon
	Towards an efficient algorithm
	Partitioning into monotone pieces
	Triangulating a monotone polygon
	Triangulating a simple polygon


