
Lecture 5: Casting a polyhedron

Computational Geometry

Utrecht University

1



Introduction

2



Introduction

Automated manufacturing

3



CAD/CAM systems

CAD/CAM systems allow you to

design objects and test how they

can be constructed

Many objects are constructed used

a mold

4



Casting

5



Casting

A general question: Given an

object, can it be made with a

particular design process?

For casting, can the object be

removed from its cast without

breaking the cast?

6



Casting

Objects to be made are 3D polyhedra

The boundary is like a planar graph, but the

coordinates of vertices are 3D

We can use a doubly-connected edge list with

three coordinates in each vertex object

7



Introduction

Casting in 2D

8



Casting in 2D

First the 2D version: can we remove a 2D

polygon from a mold?

9



Casting in 2D

Certain removal directions may be good while others are not
10



Casting in 2D

What top facet should we use?

When can we even begin to move the object out?

What kind of movements do we allow?

11



Casting in 2D

Assume the top facet is fixed; we can try all

An edge of the polygon should not directly run

into the coinciding mold edge

Let us consider translations only

12



Casting in 2D

Observe: For a given top facet, if the object can

be translated over some (small) distance, then it

can be translated all the way out

Consider a point p that at first translates away

from its mold side, but later runs into the mold

. . .

13



Casting in 2D

A polygon can be removed from its cast by a

single translation if and only if there is a direction

so that every polygon edge does not cross the

adjacent mold edge

Sequences of translations do not help; we would

not be able to construct more shapes than by a

single translation

14



Circle of directions

We need a representation of directions in 2D

Every polygon edge requires the removal

direction to be in a semi-circle

⇒ compute the common intersection of a set of

circular intervals (semi-circles)

15



Line of directions

We only need to represent upward directions:

we can use points on the line y = 1

Every polygon edge requires the removal

direction to be in a half-line

⇒ compute the common intersection of a set of

half-lines in 1D

16



Common intersection of half-lines

The common intersection of a set of half-lines in 1D:

• Determine the endpoint pl of the rightmost left-bounded

half-line

• Determine the endpoint pr of the leftmost right-bounded

half-line

• The common intersection is [pl, pr] (can be empty)

17



Common intersection of half-lines

The algorithm takes only O(n) time for n half-lines

Note: we need not sort the endpoints

18



Casting in 3D

19



Casting in 3D

Can we do something similar in 3D?

Again each facet must not move into the

corresponding mold facet

20



Representing directions in 3D

The circle of directions for 2D becomes a sphere

of directions for 3D; the line of directions for 2D

becomes a plane of directions for 3D: take z = 1

Which directions represented in the plane does a

facet rule out as removal directions?

x

y

z

21



Directions in 3D

Consider the outward normal vectors of all

facets

An allowed removal direction must make an

angle of at least π/2 with every facet (except the

topmost one)

⇒ every facet in 3D makes a half-plane in z = 1
invalid

22



Common intersection

computation

23



Common intersection of half-planes

The problem of deciding castability of a polyhedron with n facets, with a given top

facet, where the polyhedron must be removed from the cast by a single translation,

can be solved by computing the common intersection of n−1 half-planes

Problem: common intersection of half-planes in the plane?

24



Common intersection of half-planes

Half-planes in the plane:

• y≥ m · x+ c

• y≤ m · x+ c

• x≥ c

• x≤ c

25



Common intersection

computation

Incremental common intersection

26



An approach

Take the first set:

• y≥ m · x+ c

Sort by angle, and add incrementally

27



28



29



30



31



32



33



34



35



36



Incremental common intersection

The boundary of the valid region is a polygonal

convex chain that is unbounded at both sides

The next half-plane has a steeper bounding line

and will always contribute to the next valid

region

37



Incremental common intersection

Maintain the contributing bounding lines in

increasing angular order

For the new half-plane, remove any no longer

contributing bounding lines from the end

Then add the line bounding the new half-plane

38



Incremental common intersection

After sorting on angle, this takes only O(n) time

Question: Why?

39



Incremental common intersection

After sorting on angle, this takes only O(n) time

The half-planes bounded from above give a

similar chain

Intersecting the two chains is simple with a

left-to-right scan

40



Incremental common intersection

Half-planes with vertical bounding lines can be

added by restricting the region even more

This can also be done in linear time

41



Result

Theorem: The common intersection of n half-planes in the plane can

be computed in O(n logn) time

The common intersection may be empty, or a convex polygon that

can be bounded or unbounded

42



Back to casting

The common intersection of half-planes cannot be computed faster

(we are sorting the lines along the boundary)

The region we compute represents all mold removal directions . . .

. . . but to determine castability, we only need one!

43



Linear programming in 2D

44



Linear programming

We will find the lowest point in the common intersection

Notice that half-planes are linear constraints

Minimize y

Subject to

y≥ m1 · x+ c1

y≥ m2 · x+ c2
...

y≥ mi · x+ ci

y≤ mi+1 · x+ ci+1
...

y≤ mn · x+ cn

45



Linear programming

Minimize c1 · x1 + · · ·+ ck · xk

Subject to

a1,1 · x1 + · · ·+ak,1 · xk ≤ b1

a1,2 · x1 + · · ·+ak,2 · xk ≤ b2
...

a1,n · x1 + · · ·+ak,n · xk ≤ bn

where a1,1, . . . ,ak,n, b1, . . . ,bn, c1, . . . ,ck are given coefficients

This is LP with k unknowns (dimensions) and n inequalities

Question: Where are the≥ inequalities?

46



Linear programming in 2D

Terminology

47



Terminology

LP with k unknowns (dimensions) and n inequalities: k-dimensional

linear programming

The subspace that is the common intersection is the

feasible region. If it is empty, the LP is infeasible

The vector (c1, . . . ,ck)
T is the objective vector or cost vector

If the LP has solutions with arbitrarily low cost, then the LP is

unbounded

Note: The feasible region may be unbounded while the LP is bounded

48



Linear programming in 2D

LP for casting

49



LP for casting

LP for determining castability of 3D polyhedra is 2-dimensional linear

programming with n constraints

We only want to decide feasibility, so we can choose any objective

function

We will make it easy for ourselves

50



Incremental LP

Let h1, . . . ,hn be the constraints and

ℓ1, . . . , ℓn their bounding lines

Find any two constraints h1 and h2 where ℓ1

and ℓ2 are non-parallel

Rotate h1 and h2 over an angle α around the

origin to make ℓ1∩ ℓ2 the optimal solution for

the objective function that minimizes y

Rotate all other constraints over α too

ℓ1

ℓ2

ℓ1
ℓ2

51



Incremental LP

Solve the LP with the rotated constraints

If the rotated LP is infeasible, then so is the

unrotated version

If the rotated LP gives an optimal solution

(px, py), then rotate it over an angle−α
around the origin to get the removal direction

for the original position of the polyhedron

ℓ1

ℓ2

ℓ1
ℓ2

52



Incremental LP

The algorithm adds the constraints h3, . . . ,hn incrementally and

maintains the optimum so far

Let Hi = {h1, . . . ,hi }

Let vi be the optimum for Hi (unless we already have infeasibility)

53



LP for casting

The incremental step: suppose we know vi−1

and want to add hi

There are two possibilities:

• If vi−1 ∈ hi, then vi = vi−1

• If vi−1 ̸∈ hi, then either the LP is infeasible,

or vi lies on ℓi

vi−1

hi
ℓi

vi−1

hi
ℓi

54



Incremental LP

hi

ℓi

hiℓi

vi−1 vi−1

hi

ℓi

vi−1

55



LP for casting

Algorithm LPforCasting(H)

1. Let h1, h2, and v2 be as chosen

2. for i← 3 to n
3. do if vi−1 ∈ hi

4. then vi← vi−1

5. else vi←the point p on ℓi that minimizes y, subject to
the constraints in Hi−1.

6. if p does not exist

7. then Report that the LP is infeasible, and quit.

8. return vn

56



LP for casting

If vi−1 ̸∈ hi, how do we find the point p on ℓi?

hi

ℓi

vi−1

ℓi ℓi

57



Efficiency

If vi−1 ∈ hi, then the incremental step takes

only O(1) time

If vi−1 ̸∈ hi, then the incremental step takes

O(i) time

The LP-for-casting algorithm takes O(n2)

time in the worst case

v2

v3
v4
v5

vn
· · ·

58



Efficiency

v2

v3
v4
v5

vn
· · ·

v2

v3

v4
v5

vn

· · ·

v2

v3

v4

v5

vn

· · ·

59



Linear programming in 2D

Randomization

60



Randomized algorithm

Algorithm RandomizedLPforCasting(H)

1. Let h1, h2, and v2 be as chosen

2. Let h3,h4, . . . ,hn be in a random order

3. for i← 3 to n
4. do if vi−1 ∈ hi

5. then vi← vi−1

6. else vi←the point p on ℓi that minimizes y, subject to
the constraints in Hi−1.

7. if p does not exist

8. then Report that the LP is infeasible, and quit.

9. return vn

61



Putting in random order

The constraints may be given in any order, the algorithm will just

reorder them

• Let j be a random integer in [3,n]

• Swap h j and hn

• Recursively shuffle h3, . . . ,hn−1

Putting in random order takes O(n) time

62



Expected running time

Every one of the (n−2)! orders is equally likely

The expected time taken by the algorithm is the average time over all

orders

1
(n−2)!

· ∑
Π permutation

time if the random order is Π

63



Expected running time

If the order of the constraints h3, . . . ,hn is random, what is the

probability that vi−1 ∈ hi ?

We use backwards analysis: consider the situation after hi is inserted,

and vi is computed (either by vi = vi−1, or somewhere on ℓi)

64



Expected running time

vi vi vi

Only if one of the dashed lines was ℓi, the last step where hi was

added was expensive and took Θ(i) time

65



Expected running time

vi

If hi does not bound the feasible region, or not at vi, then the addition

step was cheap and took Θ(1) time

66



Expected running time

There are i half-planes that could have been one of the lines defining

vi, and i−2 of these are in random order

Since the order was random, each of the i−2 half-planes has the

same probability to be the last one added, and only≤ 2 of these

caused the expensive step

• ≤ 2 out of i−2 cases: expensive step; Θ(i) time for i-th
addition

• ≥ i−4 out of i−2 cases: cheap step; Θ(1) time for i-th
addition

67



Expected running time

Expected time for i-th addition at most:

i−4
i−2

·Θ(1)+
2

i−2
·Θ(i) = Θ(1)

Total running time:

Θ(n)+
n

∑
i=3

Θ(1) = Θ(n) expected time

68



Degenerate cases

The optimal solution may not be unique, if the feasible region is

bounded from below by a horizontal line. How to solve it?

There may be many lines from ℓ3, . . . , ℓi passing through vi; how

does this affect the probability of an expensive step?

69



Degenerate cases

vi

70



Degenerate cases

In degenerate cases, the probability that the last addition was

expensive is even smaller: 1/(i−2), or 0

Without any adaptations, the running time holds

71



Result

Theorem: Castability of a simple polyhedron with n facets, given a

top facet, can be decided in O(n) expected time

Theorem: 2-dimensional linear programming with n constraints can

be solved in O(n) expected time

Question: What does “expected time” mean? Expectation over what?

72



Higher dimensions?

Question: Can you imagine whether we can also solve 3-dimensional

linear programming efficiently?

73


	Introduction
	Automated manufacturing
	Casting in 2D

	Casting in 3D
	Common intersection computation
	Incremental common intersection

	Linear programming in 2D
	Terminology
	LP for casting
	Randomization


