%;% Utrecht University

Lecture 5: Casting a polyhedron

Computational Geometry

Utrecht University

Introduction

Introduction

Automated manufacturing

CAD/CAM systems

CAD/CAM systems allow you to
design objects and test how they

can be constructed

Many objects are constructed used

a mold

Casting

Casting

A general question: Given an
object, can it be made with a

particular design process?

For casting, can the object be
removed from its cast without

breaking the cast?

Objects to be made are 3D polyhedra

The boundary is like a planar graph, but the
coordinates of vertices are 3D

We can use a doubly-connected edge list with

three coordinates in each vertex object

Introduction

Casting in 2D

First the 2D version: can we remove a 2D

polygon from a mold?

Casting in 2D

Certain removal directions may be good while others are not

What top facet should we use?

When can we even begin to move the object out?

What kind of movements do we allow?

Assume the top facet is fixed; we can try all

An edge of the polygon should not directly run
into the coinciding mold edge

Let us consider translations only

Observe: For a given top facet, if the object can
be translated over some (small) distance, then it
can be translated all the way out

Consider a point p that at first translates away

from its mold side, but later runs into the mold

A polygon can be removed from its cast by a
single translation if and only if there is a direction
so that every polygon edge does not cross the
adjacent mold edge

Sequences of translations do not help; we would
not be able to construct more shapes than by a

single translation

Circle of directions

We need a representation of directions in 2D
Every polygon edge requires the removal
direction to be in a semi-circle

= compute the common intersection of a set of

circular intervals (semi-circles)

Line of directions

We only need to represent upward directions:

we can use points on the liney =1
Every polygon edge requires the removal
direction to be in a half-line

= compute the common intersection of a set of
half-lines in 1D

Common intersection of half-lines

The common intersection of a set of half-lines in 1D:
+ Determine the endpoint p; of the rightmost left-bounded
half-line
+ Determine the endpoint p, of the leftmost right-bounded
half-line

» The common intersection is [p;, p] (can be empty)

A A
L

q
wy

The algorithm takes only O(n) time for n half-lines

Note: we need not sort the endpoints

A M
L

»
q
wy

Casting in 3D

Can we do something similar in 3D?

Again each facet must not move into the
corresponding mold facet

The circle of directions for 2D becomes a sphere
of directions for 3D; the line of directions for 2D
becomes a plane of directions for 3D: take z = 1

Which directions represented in the plane does a

facet rule out as removal directions?

21

Consider the outward normal vectors of all

facets

An allowed removal direction must make an

angle of at least 7T /2 with every facet (except the
topmost one)

= every facet in 3D makes a half-planeinz =1
invalid

22

Common intersection

computation

23

Common intersection of half-planes

The problem of deciding castability of a polyhedron with n facets, with a given top
facet, where the polyhedron must be removed from the cast by a single translation,
can be solved by computing the common intersection of n — 1 half-planes

Problem: common intersection of half-planes in the plane?

24

Half-planes in the plane:
cy>m-x+c
cy<m-x+c
rx>c

cx<c

25

Common intersection

computation

Incremental common intersection

26

Take the first set:

cy>m-x+c

Sort by angle, and add incrementally

27

The boundary of the valid region is a polygonal
convex chain that is unbounded at both sides

The next half-plane has a steeper bounding line
and will always contribute to the next valid
region

37

Maintain the contributing bounding lines in

increasing angular order

For the new half-plane, remove any no longer

contributing bounding lines from the end

Then add the line bounding the new half-plane

38

After sorting on angle, this takes only O(n) time

Question: Why?

39

After sorting on angle, this takes only O(n) time

The half-planes bounded from above give a
similar chain

Intersecting the two chains is simple with a

left-to-right scan

g
=

40

Half-planes with vertical bounding lines can be
added by restricting the region even more

This can also be done in linear time —

41

Theorem: The common intersection of n half-planes in the plane can

be computed in O(nlogn) time

The common intersection may be empty, or a convex polygon that
can be bounded or unbounded

4o fit

42

The common intersection of half-planes cannot be computed faster
(we are sorting the lines along the boundary)

The region we compute represents all mold removal directions . ..

... but to determine castability, we only need one!

43

Linear programming in 2D

44

We will find the lowest point in the common intersection

Notice that half-planes are linear constraints

Minimize y

Subject to
y=mp-x+c
y=>my-x+c
y=>mi-x+ci

y<mjy1-x+cit1

y<my-x+cp

45

Minimize ¢q - x1 + -+ cg - X¢

Subject to
ap1 X1+ Fagx < by
arp-x1+-+agr-x < by
app- X1+ A X <b,

whereay 1,...,ak,, b1,...,b,, c1,...,cy are given coefficients

This is LP with k unknowns (dimensions) and n inequalities

Question: Where are the > inequalities?

46

Linear programming in 2D

Terminology

47

LP with k unknowns (dimensions) and 7 inequalities: k-dimensional

linear programming

The subspace that is the common intersection is the
feasible region. If it is empty, the LP is infeasible

The vector (cy, ... ,ck)T is the objective vector or cost vector

If the LP has solutions with arbitrarily low cost, then the LP is
unbounded

Note: The feasible region may be unbounded while the LP is bounded

48

Linear programming in 2D

LP for casting

49

LP for determining castability of 3D polyhedra is 2-dimensional linear

programming with 7 constraints

We only want to decide feasibility, so we can choose any objective

function

We will make it easy for ourselves

50

Incremental LP

Let hy,...,h, be the constraints and
l1,...,L, their bounding lines

Find any two constraints /2; and hy where £,

and /; are non-parallel

Rotate /11 and h; over an angle & around the
origin to make £; N, the optimal solution for

the objective function that minimizes y

Rotate all other constraints over & too

£1

ls

51

Solve the LP with the rotated constraints

If the rotated LP is infeasible, then so is the

unrotated version

ly
If the rotated LP gives an optimal solution \'
(Px, Py). then rotate it over an angle —a
around the origin to get the removal direction
for the original position of the polyhedron 7y

52

The algorithm adds the constraints &3, ..., h, incrementally and
maintains the optimum so far

Let H; = {hl,...,hi}

Let v; be the optimum for H; (unless we already have infeasibility)

53]

The incremental step: suppose we know v;_1
and want to add A;

There are two possibilities:

s Ifvi_1 € h;, thenv; = v;_;

* Ifv;i_| & h;, then either the LP is infeasible,
or v; lies on ¢;

54

55)

Algorithm LPforCasting(H)

1. Lethy, hy, and v, be as chosen
2. fori<3ton

3. doifv,_| €k

4 thenv; < v,

5

else v; <—the point p on ¢; that minimizes y, subject to
the constraints in H;_{.

o

if p does not exist

then Report that the LP is infeasible, and quit.
return v,

56

If vi_1 & h;, how do we find the point p on £;?

hi

57

If vi_1 € h;, then the incremental step takes
only O(1) time
If vi_1 & h;, then the incremental step takes

O(i) time

The LP-for-casting algorithm takes O(n?)

time in the worst case

58

59

Linear programming in 2D

Randomization

60

Algorithm RandomizedLPforCasting(H)

1. Lethy, hy, and v, be as chosen

2. Leths,hy,..., h, beinarandom order

3. fori<3ton

4, doifv,_1 €h;

5 thenv; < v,

6 else v; <—the point p on ¢; that minimizes y, subject to
the constraints in H;_1.

N

if p does not exist

then Report that the LP is infeasible, and quit.
return v,

61

The constraints may be given in any order, the algorithm will just

reorder them

+ Let j be a random integer in [3, 1]
* Swap h; and h,

+ Recursively shuffle A3, ..., 1,1

Putting in random order takes O(n) time

62

Every one of the (n — 2)! orders is equally likely

The expected time taken by the algorithm is the average time over all
orders

1

W . Z time if the random order is I'1
n—2)!

I1 permutation

63

If the order of the constraints A3, ..., h, is random, what is the

probability that v;—y € h; ?

We use backwards analysis: consider the situation after h; is inserted,

and v; is computed (either by v; = v;_1, or somewhere on ¢;)

64

Expected running time

Only if one of the dashed lines was ¢;, the last step where h; was

added was expensive and took @(i) time

65

If h; does not bound the feasible region, or not at v;, then the addition

step was cheap and took ®(1) time

66

There are i half-planes that could have been one of the lines defining

v;, and [— 2 of these are in random order

Since the order was random, each of the i — 2 half-planes has the
same probability to be the last one added, and only < 2 of these
caused the expensive step

+ <2outofi—2 cases: expensive step; (i) time for i-th
addition

« >i—4outofi—2 cases: cheap step; (1) time for i-th
addition

67

Expected time for i-th addition at most:

Total running time:
n

O(n)+) O(1) = O(n) expected time
i=3

68

The optimal solution may not be unique, if the feasible region is

bounded from below by a horizontal line. How to solve it?

There may be many lines from /3, ..., ¢; passing through v;; how
does this affect the probability of an expensive step?

69

70

In degenerate cases, the probability that the last addition was
expensive is even smaller: 1/(i —2), or 0

Without any adaptations, the running time holds

71

Theorem: Castability of a simple polyhedron with 7 facets, given a
top facet, can be decided in O(n) expected time

Theorem: 2-dimensional linear programming with n constraints can

be solved in O(n) expected time

Question: What does “expected time” mean? Expectation over what?

72

Question: Can you imagine whether we can also solve 3-dimensional

linear programming efficiently?

73

	Introduction
	Automated manufacturing
	Casting in 2D

	Casting in 3D
	Common intersection computation
	Incremental common intersection

	Linear programming in 2D
	Terminology
	LP for casting
	Randomization

