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Facility location

Given a set of houses and farms in an isolated area.

Can we place a helicopter ambulance post so that
each house and farm can be reached within 15

minutes?

Where should we place an antenna so that a

number of locations have maximum reception?




Facility location in geometric terms

Given a set of points in the plane. Is there any point

that is within a certain distance of these points?

Where do we place a point that minimizes the

maximum distance to a set of points?




Given a set of points in the plane, compute the

smallest enclosing circle



Introduction

Properties of the smallest enclosing
circle



Observation: It must pass through some points,
or else it cannot be smallest

+ Take any circle that encloses the points,
and reduce its radius until it contains a
point p

* Move center towards p while reducing the

radius further, until the circle contains
another point g
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* Move center on the bisector of p and g

towards their midpoint, until:
(i) the circle contains a third point, or
(i) the center reaches the midpoint of p and ¢

N\



Question: Does the “algorithm” of the previous

slide work?



Observe: A smallest enclosing circle has (at least)

three points on its boundary, or only two in which

case they are diametrally opposite
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Randomized incremental construction



Construction by randomized incremental construction
incremental construction: Add points one by one and maintain the solution so far

randomized: Use a random order to add the points



Let p1,..., pn be the points in random order
Let C; be the smallest enclosing circle for py, ..., p;

Suppose we know C;_ and we want to add p;
+ If pjisinside Cj_1, then C; = Cj_1

« If p; is outside C;_1, then C; will have p; on its boundary



Ci_q Ci—1



Question: Suppose we remembered not only C;_1, but also the two or three points
defining it. It looks like if p; is outside C;_1, the new circle C; is defined by p; and
some points that defined C;_. Why is this false?
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algorithm

A more restricted problem



How do we find the smallest enclosing circle of

p1-..,Ppi—1 with p; on the boundary?

We study the new(!) geometric problem of
computing the smallest enclosing circle with a given

point p on its boundary
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Given a set P of points and one special point p,

determine the smallest enclosing circle of P that
must have p on the boundary

Question: How do we solve it?
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Construction by randomized incremental construction
incremental construction: Add points one by one and maintain the solution so far

randomized: Use a random order to add the points
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Let p1,...,pi—1 be the points in random order

Let C} be the smallest enclosing circle for py,...,p; (j <i— 1)and with p on the
boundary

Suppose we know C}_l and we want to add p;
8 B / /I __
* If pjisinside Cj_l, then Cj = Cj_1
+ If pjis outside Cj_y, then C} will have p; on its boundary (and also p of

course!)
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algorithm

A yet more restricted problem
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How do we find the smallest enclosing circle of

p1---,pj—1 with pand p; on the boundary?

We study the new(!) geometric problem of
computing the smallest enclosing circle with two

given points on its boundary

q
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Given a set P of points and two special points p and

g, determine the smallest enclosing circle of P that
must have p and g on the boundary

Question: How do we solve it? q
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Assume w.lo.g. that p and ¢ lie on a vertical line. Let £ be the line through p and ¢
and let ¢’ be their bisector

Let P~ be the set of all points left of £. Every point p; € P~ defines a circle
C(pj,p,q) with center ¢;. Let p; € P~ be the point whose center ¢; is leftmost.

Lemma. For any two points p;, p; € P~,if p; € C(pj, p,q) then p; € C(py, p,q).

Corollary. C(py, p,q) is the only circle with p; € P~ that encloses all points in P~
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Two points known

Assume w.lo.g. that p and ¢ lie on a vertical line. Let £ be the line through p and ¢
and let ¢’ be their bisector

Let P~ be the set of all points left of £. Every point p; € P~ defines a circle
C(pj,p, q) with center cj. Let p; € P~ be the point whose center ¢; is leftmost.

Lemma. For any two points p;, p; € P~ if p; € C(pj, p,q) then p; € C(p1, p,q).

Corollary. C(p;, p, q) is the only circle with p; € P~ that encloses all points in P™.

= py is the only point from P~ that we have to consider to define a smallest
enclosing circle of P O P~
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Find the point p; € P~ whose center ¢; is leftmost.
Find the point p, € P\ P~ whose center ¢, is rightmost.

Decide if C(p,q, p1) or C(p,q, pr) or C(p,q) is the smallest enclosing circle
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Smallest enclosing circle

algorithm

Efficiency analysis
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Smallest enclosing circle for n points with two points

already known takes O(n) time, worst case

q
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« Use a random order for py,..., pu; startwith C; = C(p, p1)

+ for j<2tondo
If pjinoronC;_i then C; = C;_1; otherwise, solve smallest enclosing circle

for p1,..., pj—1 with two points known (p and p ;)

', CJ’-_1

J

"p;
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If only one point is known, we used randomized incremental construction, so we

need an expected time analysis

J J

lp]
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Backwards analysis: Consider the situation after adding pj, so we have computed C;
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The probability that the j-th addition was expensive is the same as the probability
that the smallest enclosing circle changes (decreases in size) if we remove a random
point from the j points
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This probability is 2/ j in the left situation and 1/ in the right situation
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The expected time for the j-th addition of a point is

j;__2.®(1)+§-®(j) =0(1)
%-@(1”%-@(1') =0(1)

The expected running time of the algorithm for n points is:
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Smallest enclosing circle for n points with one point

already known takes ®(n) time, expected
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* Use a random order for py, ..., p,; startwith Co = C(p1, p2)

« fori<3tondo
If p; in or on C;_1 then C; = C;_1; otherwise, solve smallest enclosing circle

for p1,..., pi—1 with one point known (p;)

Ci_q Ci—1
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For smallest enclosing circle, we used randomized incremental construction, so we

need an expected time analysis

Ci1 Ci1
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Backwards analysis: Consider the situation after adding p;, so we have computed C;

a4



The probability that the i-th addition was expensive is the same as the probability

that the smallest enclosing circle changes (decreases in size) if we remove a random

point from the i points
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This probability is 3 /7 in the left situation and 2/i in the right situation
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The expected time for the i-th addition of a point is

i_l_3.®(1)+%-®(i)=0(1)
;¥4XU+%®®=00)

The expected running time of the algorithm for n points is:
n
O(n)+) 0(1) =0(n)
i=3
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Theorem The smallest enclosing circle for n points
in plane can be computed in O(n) expected time
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Randomized incremental

construction
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Randomized incremental

construction

Conditions
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When does it work?

Randomized incremental construction algorithms of this sort (compute an ‘optimal’
thing) work if:

The test whether the next input object violates the current optimum must be
possible and fast

+ If the next input object violates the current optimum, finding the new

optimum must be an easier problem than the general problem
+ The thing must already be defined by O(1) of the input objects

+ Ultimately: the analysis must work out
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Randomized incremental

construction

Width?
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Width: Given a set of n points in the plane, compute
the smallest distance between two parallel lines that o
contain the points (narrowest strip) °
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Width: Given a set of n points in the plane, compute

the smallest distance between two parallel lines that .
contain the points (narrowest strip) ° °
Theorem: The width of a set of n points can be e °
computed in O(nlogn) time. o
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Property: The width is always determined by three

points of the set

Idea: Maintain the two lines defining the width to °
have a fast test for violation.
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Question: How about adding a point? If the new
point lies inside the narrowest strip we are fine, but ]
what if it lies outside? o O
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A good reason to be very suspicious of randomized

incremental construction as a working approach is

non-uniqueness of a solution
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Randomized incremental

construction

More examples
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Question: Can we compute the minimum

axis-parallel bounding box by randomized

incremental construction?
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Yes, in O(n) expected time .

... but a normal incremental algorithm does it in °

O(n) worst case time .

62



Problem 1: Given n disks in the plane, can we
compute the lowest point in their common
intersection efficiently by randomized incremental

construction?

Problem 2: Given n disks in the plane, can we
compute the lowest point in their union efficiently

by randomized incremental construction?
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Problem: Given a simple polygon with 7 vertices,

can we decide efficiently if one guard is enough?
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It can easily happen that a problem is
an instance of linear programming

Then don't devise a new algorithm,
just explain how to transform it, and
show that it is correct (that your

problem is really solved that way)
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