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Introduction

Facility location
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Facility location

Given a set of houses and farms in an isolated area.

Can we place a helicopter ambulance post so that

each house and farm can be reached within 15

minutes?

Where should we place an antenna so that a

number of locations have maximum reception?
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Facility location in geometric terms

Given a set of points in the plane. Is there any point

that is within a certain distance of these points?

Where do we place a point that minimizes the

maximum distance to a set of points?
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Facility location in geometric terms

Given a set of points in the plane, compute the

smallest enclosing circle
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Introduction

Properties of the smallest enclosing
circle
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Smallest enclosing circle

Observation: It must pass through some points,

or else it cannot be smallest

• Take any circle that encloses the points,

and reduce its radius until it contains a

point p

• Move center towards p while reducing the

radius further, until the circle contains

another point q
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Smallest enclosing circle

• Move center on the bisector of p and q
towards their midpoint, until:

(i) the circle contains a third point, or

(ii) the center reaches the midpoint of p and q
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Smallest enclosing circle

Question: Does the “algorithm” of the previous

slide work?
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Smallest enclosing circle

Observe: A smallest enclosing circle has (at least)

three points on its boundary, or only two in which

case they are diametrally opposite
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Smallest enclosing circle

algorithm
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Smallest enclosing circle

algorithm

Randomized incremental construction

13



Randomized incremental construction

Construction by randomized incremental construction

incremental construction: Add points one by one and maintain the solution so far

randomized: Use a random order to add the points
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Adding a point

Let p1, . . . , pn be the points in random order

LetCi be the smallest enclosing circle for p1, . . . , pi

Suppose we knowCi−1 and we want to add pi

• If pi is insideCi−1, thenCi =Ci−1

• If pi is outsideCi−1, thenCi will have pi on its boundary
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Adding a point

Ci−1

pi

Ci−1

pi
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Adding a point

Question: Suppose we remembered not onlyCi−1, but also the two or three points

defining it. It looks like if pi is outsideCi−1, the new circleCi is defined by pi and

some points that definedCi−1. Why is this false?

17



Adding a point
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Smallest enclosing circle

algorithm

A more restricted problem
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Adding a point

How do we find the smallest enclosing circle of

p1 . . . , pi−1 with pi on the boundary?

We study the new(!) geometric problem of

computing the smallest enclosing circle with a given

point p on its boundary p
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Smallest enclosing circle with point

Given a set P of points and one special point p,
determine the smallest enclosing circle of P that

must have p on the boundary

Question: How do we solve it?
p
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Randomized incremental construction

Construction by randomized incremental construction

incremental construction: Add points one by one and maintain the solution so far

randomized: Use a random order to add the points

22



Adding a point

Let p1, . . . , pi−1 be the points in random order

LetC′j be the smallest enclosing circle for p1, . . . , p j ( j ≤ i−1) and with p on the

boundary

Suppose we knowC′j−1 and we want to add p j

• If p j is insideC′j−1, thenC′j =C′j−1

• If p j is outsideC′j−1, thenC′j will have p j on its boundary (and also p of

course!)
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Adding a point

C ′j−1

pj

C ′j−1

pj

p p
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Smallest enclosing circle

algorithm

A yet more restricted problem
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Adding a point

How do we find the smallest enclosing circle of

p1 . . . , p j−1 with p and p j on the boundary?

We study the new(!) geometric problem of

computing the smallest enclosing circle with two

given points on its boundary p
q
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Smallest enclosing circle with two points

Given a set P of points and two special points p and

q, determine the smallest enclosing circle of P that

must have p and q on the boundary

Question: How do we solve it?
p

q
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Two points known

p

q q

p

28



Two points known

p

q q

p
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Two points known

Assume w.lo.g. that p and q lie on a vertical line. Let ℓ be the line through p and q
and let ℓ′ be their bisector

Let P− be the set of all points left of ℓ. Every point p j ∈ P− defines a circle

C(p j, p,q) with center c j . Let pl ∈ P− be the point whose center cl is leftmost.

Lemma. For any two points pi, p j ∈ P−, if pi ∈C(p j, p,q) then pi ∈C(pl, p,q).

Corollary. C(pl, p,q) is the only circle with pl ∈ P− that encloses all points in P−.

=⇒ pl is the only point from P− that we have to consider to define a smallest

enclosing circle of P⊇ P−.
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Two points known

Assume w.lo.g. that p and q lie on a vertical line. Let ℓ be the line through p and q
and let ℓ′ be their bisector

Let P− be the set of all points left of ℓ. Every point p j ∈ P− defines a circle

C(p j, p,q) with center c j . Let pl ∈ P− be the point whose center cl is leftmost.

Lemma. For any two points pi, p j ∈ P−, if pi ∈C(p j, p,q) then pi ∈C(pl, p,q).

Corollary. C(pl, p,q) is the only circle with pl ∈ P− that encloses all points in P−.

=⇒ pl is the only point from P− that we have to consider to define a smallest

enclosing circle of P⊇ P−.
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Algorithm: two points known

Find the point pl ∈ P− whose center cl is leftmost.

Find the point pr ∈ P\P− whose center cr is rightmost.

Decide ifC(p,q, pl) orC(p,q, pr) orC(p,q) is the smallest enclosing circle

31



Two points known

p

q q

p p

qq

p

pl pr

C(p, q, pr)

C(p, q, pl)
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Smallest enclosing circle

algorithm

Efficiency analysis
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Analysis: two points known

Smallest enclosing circle for n points with two points

already known takes O(n) time, worst case

p
q
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Algorithm: one point known

• Use a random order for p1, . . . , pn; start withC1 =C(p, p1)

• for j← 2 to n do

If p j in or onC j−1 thenC j =C j−1; otherwise, solve smallest enclosing circle

for p1, . . . , p j−1 with two points known (p and p j)

C ′j−1

pj

C ′j−1

pj

p p
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Analysis: one point known

If only one point is known, we used randomized incremental construction, so we

need an expected time analysis

C ′j−1

pj

C ′j−1

pj

p p
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Analysis: one point known

Backwards analysis: Consider the situation after adding p j , so we have computedC j

p Cj
p Cj
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Analysis: one point known

The probability that the j-th addition was expensive is the same as the probability

that the smallest enclosing circle changes (decreases in size) if we remove a random

point from the j points

p Cj
p Cj
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Analysis: one point known

This probability is 2/ j in the left situation and 1/ j in the right situation

p Cj
p Cj

39



Analysis: one point known

The expected time for the j-th addition of a point is

j−2
j
·Θ(1)+

2
j
·Θ( j) = O(1)

or

j−1
j
·Θ(1)+

1
j
·Θ( j) = O(1)

The expected running time of the algorithm for n points is:

Θ(n)+
n

∑
j=2

Θ(1) = Θ(n)
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Analysis: one point known

Smallest enclosing circle for n points with one point

already known takes Θ(n) time, expected

p
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Algorithm: smallest enclosing circle

• Use a random order for p1, . . . , pn; start withC2 =C(p1, p2)

• for i← 3 to n do

If pi in or onCi−1 thenCi =Ci−1; otherwise, solve smallest enclosing circle

for p1, . . . , pi−1 with one point known (pi)

Ci−1

pi

Ci−1

pi
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Analysis: smallest enclosing circle

For smallest enclosing circle, we used randomized incremental construction, so we

need an expected time analysis

Ci−1

pi

Ci−1

pi
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Analysis: smallest enclosing circle

Backwards analysis: Consider the situation after adding pi, so we have computedCi

Ci Ci
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Analysis: smallest enclosing circle

The probability that the i-th addition was expensive is the same as the probability

that the smallest enclosing circle changes (decreases in size) if we remove a random

point from the i points

Ci Ci
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Analysis: smallest enclosing circle

This probability is 3/i in the left situation and 2/i in the right situation

Ci Ci
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Analysis: smallest enclosing circle

The expected time for the i-th addition of a point is

i−3
i
·Θ(1)+

3
i
·Θ(i) = O(1)

or

i−2
i
·Θ(1)+

2
i
·Θ(i) = O(1)

The expected running time of the algorithm for n points is:

Θ(n)+
n

∑
i=3

Θ(1) = Θ(n)
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Result: smallest enclosing circle

Theorem The smallest enclosing circle for n points

in plane can be computed in O(n) expected time
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Randomized incremental

construction
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Randomized incremental

construction

Conditions
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When does it work?

Randomized incremental construction algorithms of this sort (compute an ‘optimal’

thing) work if:

• The test whether the next input object violates the current optimum must be

possible and fast

• If the next input object violates the current optimum, finding the new

optimum must be an easier problem than the general problem

• The thing must already be defined by O(1) of the input objects

• Ultimately: the analysis must work out
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Randomized incremental

construction

Width?
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Width

Width: Given a set of n points in the plane, compute

the smallest distance between two parallel lines that

contain the points (narrowest strip)
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Width

Width: Given a set of n points in the plane, compute

the smallest distance between two parallel lines that

contain the points (narrowest strip)

Theorem: The width of a set of n points can be

computed in O(n logn) time.
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Width by RIC?

Property: The width is always determined by three

points of the set

Idea: Maintain the two lines defining the width to

have a fast test for violation.
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Adding a point

Question: How about adding a point? If the new

point lies inside the narrowest strip we are fine, but

what if it lies outside?
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Adding a point
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Adding a point

58



Width

A good reason to be very suspicious of randomized

incremental construction as a working approach is

non-uniqueness of a solution
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Randomized incremental

construction

More examples
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Minimum bounding box

Question: Can we compute the minimum

axis-parallel bounding box by randomized

incremental construction?
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Minimum bounding box

Yes, in O(n) expected time

. . . but a normal incremental algorithm does it in

O(n) worst case time
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Lowest point in circles

Problem 1: Given n disks in the plane, can we

compute the lowest point in their common

intersection efficiently by randomized incremental

construction?

Problem 2: Given n disks in the plane, can we

compute the lowest point in their union efficiently

by randomized incremental construction?
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One-guardable polygons

Problem: Given a simple polygon with n vertices,

can we decide efficiently if one guard is enough?
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One-guardable polygons

It can easily happen that a problem is

an instance of linear programming

Then don’t devise a new algorithm,

just explain how to transform it, and

show that it is correct (that your

problem is really solved that way)
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