
Range searching and kd-trees

Computational Geometry

Utrecht University

1

Introduction

2

Introduction

Database queries

3

Databases

Databases store records or objects

Personnel database: Each employee has a name, id code, date of birth, function,

salary, start date of employment, . . .

Fields are textual or numerical

4

Database queries

A database query may ask for all employees with

age between a1 and a2, and salary between s1

and s2

date of birth

salary

19,500,000 19,559,999

G. Ometer
born: Aug 16, 1954
salary: $3,500

5

Database queries

When we see numerical fields of objects as coordinates, a database stores a point

set in higher dimensions

Exact match query: Asks for the objects whose coordinates match query

coordinates exactly

Partial match query: Some but not all coordinates are specified

Range query: Asks for the objects whose coordinates lie in a specified query range

(interval)

6

Database queries

Example of a 3-dimensional (orthogonal) range

query: children in [2 , 4], salary in [3000 , 4000],
date of birth in [19,500,000 , 19,559,999]

19,500,000 19,559,999

3,000

4,000

2

4

7

Data structures

Idea of data structures

• Representation of structure, for convenience (like DCEL)

• Preprocessing of data, to be able to solve future questions really fast

(sub-linear time)

A (search) data structure has a storage requirement, a query time, and a

construction time (and an update time)

8

Introduction

1D range trees

9

1D range query problem

1D range query problem: Preprocess a set of n points on the real line such that the

ones inside a 1D query range (interval) can be reported fast

The points p1, . . . , pn are known beforehand, the query [x,x′] only later

A solution to a query problem is a data structure description, a query algorithm, and

a construction algorithm

Question: What are the most important factors for the efficiency of a solution?

10

Balanced binary search trees

A balanced binary search tree with the points in the leaves

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

11

Balanced binary search trees

The search path for 25

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

12

Balanced binary search trees

The search paths for 25 and for 90

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

13

Example 1D range query

A 1-dimensional range query with [25, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

14

Node types for a query

Three types of nodes for a given query:

• White nodes: never visited by the query

• Grey nodes: visited by the query, unclear if they lead to output

• Black nodes: visited by the query, whole subtree is output

Question: What query time do we hope for?

15

Node types for a query

The query algorithm comes down to what we do at each type of node

Grey nodes: use query range to decide how to proceed: to not visit a subtree

(pruning), to report a complete subtree, or just continue

Black nodes: traverse and enumerate all points in the leaves

16

Example 1D range query

A 1-dimensional range query with [61, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

split node

17

1D range query algorithm

Algorithm 1DRangeQuery(T, [x : x′])
1. νsplit←FindSplitNode(T,x,x′)
2. if νsplit is a leaf

3. then Check if the point in νsplit must be reported.

4. else ν ← lc(νsplit)

5. while ν is not a leaf

6. do if x≤ xν

7. then ReportSubtree(rc(ν))
8. ν ← lc(ν)
9. else ν ← rc(ν)
10. Check if the point stored in ν must be reported.

11. ν ← rc(νsplit)

12. Similarly, follow the path to x′, and . . .
18

Query time analysis

The efficiency analysis is based on counting the numbers of nodes visited for each

type

• White nodes: never visited by the query; no time spent

• Grey nodes: visited by the query, unclear if they lead to output; time

determines dependency on n

• Black nodes: visited by the query, whole subtree is output; time determines

dependency on k, the output size

19

Query time analysis

Grey nodes: they occur on only two paths in the tree, and since the tree is balanced,

its depth is O(logn)

Black nodes: a (sub)tree with m leaves has m−1 internal nodes; traversal visits

O(m) nodes and finds m points for the output

The time spent at each node is O(1) ⇒ O(logn+ k) query time

20

Storage requirement and preprocessing

A (balanced) binary search tree storing n points uses O(n) storage

A balanced binary search tree storing n points can be built in O(n) time after

sorting, so in O(n logn) time overall

(or by repeated insertion in O(n logn) time)

21

Result

Theorem: A set of n points on the real line can be preprocessed in O(n logn) time

into a data structure of O(n) size so that any 1D range query can be answered in

O(logn+ k) time, where k is the number of answers reported

22

Example 1D range counting query

A 1-dimensional range tree for range counting queries

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

1 1 1 1 1 1 1 1 1 1 1 1

112 22222

3 34 4

7 7

14

23

Example 1D range counting query

A 1-dimensional range counting query with [25, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

1 1 1 1 1 1 1 1 1 1 1 1

112 22222

3 34 4

7 7

14

24

Result

Theorem: A set of n points on the real line can be preprocessed in O(n logn) time

into a data structure of O(n) size so that any 1D range counting query can be

answered in O(logn) time

Note: The number of points does not influence the output size so it should not

show up in the query time

25

Kd-trees

26

Range queries in 2D

27

Range queries in 2D

Question: Why can’t we simply use a balanced binary tree in x-coordinate?

Or, use one tree on x-coordinate and one on y-coordinate, and query the one where

we think querying is more efficient?

28

Kd-trees

Kd-trees

29

Kd-trees

Kd-trees, the idea: Split the point set alternatingly by x-coordinate and by

y-coordinate

split by x-coordinate: split by a vertical line that has half the points left and half right

split by y-coordinate: split by a horizontal line that has half the points below and half

above

30

Kd-trees

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

ℓ7

ℓ8

ℓ9

p1 p2

ℓ8 p3 p4

ℓ4 ℓ5

p5

p6 p7

p8 p9 p10

ℓ7

ℓ3

ℓ1

ℓ6

ℓ9

ℓ2

31

Kd-tree construction

Algorithm BuildKdTree(P,depth)
1. if P contains only one point

2. then return a leaf storing this point

3. else if depth is even

4. then Split P with a vertical line ℓ through the median x-coordinate
into P1 (left of or on ℓ) and P2 (right of ℓ)

5. else Split P with a horizontal line ℓ through the median y-coordinate
into P1 (below or on ℓ) and P2 (above ℓ)

6. νleft← BuildKdTree(P1,depth+1)
7. νright← BuildKdTree(P2,depth+1)
8. Create a node ν storing ℓ, make νleft the left child of ν , and make νright

the right child of ν .

9. return ν
32

Kd-tree construction

The median of a set of n values can be computed in O(n) time (randomized: easy;

worst case: much harder)

Let T (n) be the time needed to build a kd-tree on n points

T (1) = O(1)

T (n) = 2 ·T (n/2)+O(n)

A kd-tree can be built in O(n logn) time

Question: What is the storage requirement?

33

Kd-trees

Querying in kd-trees

34

Kd-tree regions of nodes

ℓ1

ℓ2

ℓ3region(ν)

ν

ℓ1

ℓ2

ℓ3

35

Kd-tree regions of nodes

How do we know region(ν) when we are at a node ν?

Option 1: store it explicitly with every node

Option 2: compute it on-the-fly, when going from the root to ν

Question: What are reasons to choose one or the other option?

36

Kd-tree querying

p1 p2

p2

p1
p3

p3 p4

p4
p5

p5

p6p6

p7

p7 p8

p8

p9

p9
p10

p10

p11

p11

p12

p12 p13

p13

37

Kd-tree querying

Algorithm SearchKdTree(ν ,R)

Input. The root of (a subtree of) a kd-tree, and a range R
Output. All points at leaves below ν that lie in the range.

1. if ν is a leaf

2. then Report the point stored at ν if it lies in R
3. else if region(lc(ν)) is fully contained in R
4. then ReportSubtree(lc(ν))
5. else if region(lc(ν)) intersects R
6. then SearchKdTree(lc(ν),R)

7. if region(rc(ν)) is fully contained in R
8. then ReportSubtree(rc(ν))
9. else if region(rc(ν)) intersects R
10. then SearchKdTree(rc(ν),R)

38

Kd-tree querying

Question: How about a range counting query?

How should the code be adapted?

39

Kd-trees

Kd-tree query time analysis

40

Kd-tree query time analysis

To analyze the query time of kd-trees, we use the concept of white, grey, and black

nodes

• White nodes: never visited by the query; no time spent

• Grey nodes: visited by the query, unclear if they lead to output; time

determines dependency on n

• Black nodes: visited by the query, whole subtree is output; time determines

dependency on k, the output size

41

Kd-tree query time analysis

p1 p2

p2

p1
p3

p3 p4

p4
p5

p5

p6p6

p7

p7 p8

p8

p9

p9
p10

p10

p11

p11

p12

p12 p13

p13

42

Kd-tree query time analysis

White, grey, and black nodes with respect to region(ν):

• White node ν : R does not intersect region(ν)

• Grey node ν : R intersects region(ν), but region(ν) ̸⊆ R

• Black node ν : region(ν)⊆ R

43

Kd-tree query time analysis

44

Kd-tree query time analysis

Question: How many grey and how many black leaves?

45

Kd-tree query time analysis

Question: How many grey and how many black nodes?

46

Kd-tree query time analysis

Grey node ν : R intersects region(ν), but region(ν) ̸⊆ R

It implies that the boundaries of R and region(ν) intersect

Advice: If you don’t know what to do, simplify until you do

Instead of taking the boundary of R, let’s analyze the number of grey nodes if the

query is with a vertical line ℓ

47

Kd-tree query time analysis

Question: How many grey and how many black nodes?
48

Kd-tree query time analysis

We observe: At every vertical split, ℓ is only to one side, while at every horizontal

split ℓ is to both sides

Let Gx(n) be the number of grey nodes in a kd-tree on n points whose root node

splits on x (vertically).

Let Gy(n) be the number of grey nodes in a kd-tree on n points whose root node

splits on y (horizontally).

Gx(n)=

Gy(n/2)+1 if n > 1

1 if n = 1
Gy(n)=

2Gx(n/2)+1 if n > 1

1 if n = 1

49

Kd-tree query time analysis

x

y y

n leaves

50

Kd-tree query time analysis

Let Gx(n) be the number of grey nodes in a kd-tree on n points whose root node

splits on x (vertically).

So, we get:

Gx(n) =

2Gx(n/4)+2 if n > 1

1 if n = 1

51

Kd-tree query time analysis

Let Gx(n) be the number of grey nodes in a kd-tree on n points whose root node

splits on x (vertically).

So, we get:

Gx(n) =

2Gx(n/4)+O(1) if n > 1

1 if n = 1

Question: What does this recurrence solve to?

52

Kd-tree query time analysis

Use the Master-Theorem:

T (n) = aT (n/b)+ f (n)

let c = logb a, let ε > 0

case 1: f (n) ∈ O(nc−ε) then T (n) = O(nc).

case 2: ...

case 3 ...

Here f (n) = O(1) and c = log4 2 = 1/2. Therefor Gx(n) = O(n1/2) = O(
√

n).

53

Kd-tree query time analysis

The grey subtree has unary and binary nodes

54

Kd-tree query time analysis

The depth is logn, so the binary depth is 1
2 · logn

Important: The logarithm is base-2

Counting only binary nodes, there are

2
1
2 ·logn = 2logn1/2

= n1/2 =
√

n

Every unary grey node has a unique binary parent (except the root), so there are at

most twice as many unary nodes as binary nodes, plus 1

55

Kd-tree query time analysis

The number of grey nodes if the query were a vertical line is O(
√

n)

For a horizontal line we get
x

y y

n leaves

56

Kd-tree query time analysis

The number of grey nodes if the query were a vertical line is O(
√

n)

For a horizontal line we get

G(n) =

2G(n/4)+3 if n > 1

1 if n = 1

Which also solves to O(
√

n).

How about a query rectangle?

57

Kd-tree query time analysis

58

Kd-tree query time analysis

59

Kd-tree query time analysis

The number of grey nodes for a query rectangle is at most the number of grey nodes

for two vertical and two horizontal lines, so it is at most 4 ·O(
√

n) = O(
√

n) !

For black nodes, reporting a whole subtree with k leaves,

takes O(k) time (there are k−1 internal black nodes)

60

Result

Theorem: A set of n points in the plane can be preprocessed in O(n logn) time into

a data structure of O(n) size so that any 2D range query can be answered in

O(
√

n+ k) time, where k is the number of answers reported

For range counting queries, we need O(
√

n) time

61

Efficiency

n logn
√

n

4 2 2

16 4 4

64 6 8

256 8 16

1024 10 32

4096 12 64

1.000.000 20 1000

62

Kd-trees

Higher-dimensional kd-trees

63

Higher dimensions

A 3-dimensional kd-tree alternates splits on x-, y-, and z-coordinate

A 3D range query is performed with a box

64

Higher dimensions

The construction of a 3D kd-tree is a trivial adaptation of the 2D version

The 3D range query algorithm is exactly the same as the 2D version

The 3D kd-tree still requires O(n) storage if it stores n points

65

Higher dimensions

How does the query time analysis change?

Intersection of B and region(ν) depends on intersection of facets of B ⇒ analyze

by axes-parallel planes (B has no more grey nodes than six planes)

66

Higher dimensions

n leaves

x

y

z

y

z zz

67

Kd-tree query time analysis

Let G3(n) be the number of grey nodes for a query with an axes-parallel plane in a

3D kd-tree

G3(1) = 1

G3(n) = 4 ·G3(n/8)+O(1)

Question: What does this recurrence solve to?

Question: How many leaves does a perfectly balanced binary search tree with

depth 2
3 logn have?

68

Result

Theorem: A set of n points in d-space can be preprocessed in O(n logn) time into

a data structure of O(n) size so that any d-dimensional range query can be

answered in O(n1−1/d + k) time, where k is the number of answers reported

69

	Introduction
	Database queries
	1D range trees

	Kd-trees
	Kd-trees
	Querying in kd-trees
	Kd-tree query time analysis
	Higher-dimensional kd-trees

