%;% Utrecht University

Range searching and kd-trees

Computational Geometry

Utrecht University

Introduction

Introduction

Database queries

Databases store records or objects

Personnel database: Each employee has a name, id code, date of birth, function,
salary, start date of employment, ...

Fields are textual or numerical

Database queries

A database query may ask for all employees with

age between aj and ap, and salary between s

and $7

G. Ometer
born: Aug 16, 1954

salary salary: $3,500

19,500,000 19,559,999
date of birth

Database queries

When we see numerical fields of objects as coordinates, a database stores a point

set in higher dimensions

Exact match query: Asks for the objects whose coordinates match query
coordinates exactly

Partial match query: Some but not all coordinates are specified

Range query: Asks for the objects whose coordinates lie in a specified query range
(interval)

Database queries

4,000}

Example of a 3-dimensional (orthogonal) range R
query: children in [2, 4], salary in [3000, 4000], 3,000
date of birth in 19,500,000, 19,559,999]

19,500,000 19,.559,999

Idea of data structures
+ Representation of structure, for convenience (like DCEL)

+ Preprocessing of data, to be able to solve future questions really fast
(sub-linear time)

A (search) data structure has a storage requirement, a query time, and a

construction time (and an update time)

Introduction

1D range trees

1D range query problem

1D range query problem: Preprocess a set of n points on the real line such that the

ones inside a 1D query range (interval) can be reported fast
The points p1, ..., p, are known beforehand, the query [x,x'] only later

A solution to a query problem is a data structure description, a query algorithm, and

a construction algorithm

Question: What are the most important factors for the efficiency of a solution?

Balanced binary search trees

A balanced binary search tree with the points in the leaves

Balanced binary search trees

The search path for 25

Balanced binary search trees

The search paths for 25 and for 90

Example 1D range query

A 1-dimensional range query with [25, 90]

Three types of nodes for a given query:
+ White nodes: never visited by the query
+ Grey nodes: visited by the query, unclear if they lead to output

+ Black nodes: visited by the query, whole subtree is output

Question: What query time do we hope for?

The query algorithm comes down to what we do at each type of node

Grey nodes: use query range to decide how to proceed: to not visit a subtree
(pruning), to report a complete subtree, or just continue

Black nodes: traverse and enumerate all points in the leaves

Example 1D range query

A 1-dimensional range query with [61, 90]

1D range query algorithm

Algorithm 1DRangeQuery(T, [x : X'])
Viplit <—FindSplitNode(T, x, x')

RN

if Vgpii¢ is a leaf
then Check if the point in Vgpj;; must be reported.
else vV < lc(Vgpiit)
while v is not a leaf
doifx <x,
then ReportSubtree(rc(Vv))
v lc(v)
else v« rc(v)

=S Y 0O N ok WN

11. V <= rc(Vplit)
12. Similarly, follow the path to x’, and . ..

0. Check if the point stored in V must be reported.

The efficiency analysis is based on counting the numbers of nodes visited for each
type

+ White nodes: never visited by the query; no time spent

+ Grey nodes: visited by the query, unclear if they lead to output; time
determines dependency on n

+ Black nodes: visited by the query, whole subtree is output; time determines
dependency on k, the output size

Grey nodes: they occur on only two paths in the tree, and since the tree is balanced,
its depth is O(logn)

Black nodes: a (sub)tree with m leaves has m — 1 internal nodes; traversal visits

O(m) nodes and finds m points for the output

The time spent at each node is O(1) = O(logn + k) query time

20

A (balanced) binary search tree storing n points uses O(n) storage

A balanced binary search tree storing n points can be built in O(n) time after
sorting, so in O(nlogn) time overall
(or by repeated insertion in O(nlogn) time)

21

Theorem: A set of 1 points on the real line can be preprocessed in O(nlogn) time
into a data structure of O(n) size so that any 1D range query can be answered in
O(logn + k) time, where k is the number of answers reported

22

Example 1D range counting query

A 1-dimensional range tree for range counting queries

23

Example 1D range counting query

A 1-dimensional range counting query with [25, 90]

24

Theorem: A set of n points on the real line can be preprocessed in O(nlogn) time
into a data structure of O(n) size so that any 1D range counting query can be
answered in O(logn) time

Note: The number of points does not influence the output size so it should not

show up in the query time

25

Kd-trees

26

Question: Why can't we simply use a balanced binary tree in x-coordinate?

Or, use one tree on x-coordinate and one on y-coordinate, and query the one where
we think querying is more efficient?

28

Kd-trees

Kd-trees

29

Kd-trees, the idea: Split the point set alternatingly by x-coordinate and by

y-coordinate
split by x-coordinate: split by a vertical line that has half the points left and half right

split by y-coordinate: split by a horizontal line that has half the points below and half

above

30

y4
A Yo
Y2
Ps Po
*P1o
Uy D2
ES D1 b7
o ‘P8
1{9 DPe
0y lg

31

Kd-tree construction

Algorithm BuildKdTree(P, depth)

1.

2
38
4

if P contains only one point
then return a leaf storing this point
else if depth is even
then Split P with a vertical line £ through the median x-coordinate
into Py (left of or on £) and P (right of £)
else Split P with a horizontal line £ through the median y-coordinate
into P; (below or on ¢) and P, (above ¢)
Vieft <— BuildKdTree(P;,depth + 1)
Viight <— BuildKdTree(P,,depth + 1)
Create a node V storing £, make Vief the left child of v, and make Vright
the right child of v.

return v

32

The median of a set of n values can be computed in O(n) time (randomized: easy;
worst case: much harder)

Let T'(n) be the time needed to build a kd-tree on n points
r(1)=o0(1)
T(n)=2-T(n/2)+0(n)
A kd-tree can be builtin O(nlogn) time

Question: What is the storage requirement?

33

Kd-trees

Querying in kd-trees

34

85

How do we know region(V) when we are at a node v?

Option 1: store it explicitly with every node

Option 2: compute it on-the-fly, when going from the root to v

Question: What are reasons to choose one or the other option?

36

Kd-tree querying

37

Kd-tree querying

Algorithm SearchKdTree(V, R)
Input. The root of (a subtree of) a kd-tree, and a range R
Output. All points at leaves below V that lie in the range.
if v is a leaf
then Report the point stored at V if it lies in R
else if region(lc(Vv)) is fully contained in R
then ReportSubtree(lc(V))

1

2

3

4

5. else if region(lc(Vv)) intersects R
6 then SearchKdTree(lc(V), R)
7 if region(rc(Vv)) is fully contained in R
8 then ReportSubtree(rc(V))

9 else if region(rc(v)) intersects R

1

0. then SearchKdTree(rc(V),R)

Question: How about a range counting query?

How should the code be adapted?

39

Kd-trees

Kd-tree query time analysis

40

Kd-tree query time analysis

To analyze the query time of kd-trees, we use the concept of white, grey, and black
nodes

+ White nodes: never visited by the query; no time spent

* Grey nodes: visited by the query, unclear if they lead to output; time
determines dependency on n

+ Black nodes: visited by the query, whole subtree is output; time determines
dependency on k, the output size

41

Kd-tree query time analysis

42

White, grey, and black nodes with respect to region(V):

* White node v: R does not intersect region(V)
+ Grey node V: R intersects region(V), but region(v) Z R
+ Black node v: region(v) CR

43

Kd-tree query time analysis

44

Kd-tree query time analysis

Question: How many grey and how many black /eaves?

45

Kd-tree query time analysis

Question: How many grey and how many black nodes?

46

Grey node V: R intersects region(V), but region(v) Z R

It implies that the boundaries of R and region(V) intersect
Advice: If you don’t know what to do, simplify until you do

Instead of taking the boundary of R, let's analyze the number of grey nodes if the
query is with a vertical line £

47

Kd-tree query time analysis

Question: How many grey and how many black nodes?
48

Kd-tree query time analysis

We observe: At every vertical split, £ is only to one side, while at every horizontal
split £ is to both sides

Let G(n) be the number of grey nodes in a kd-tree on n points whose root node
splits on x (vertically).

Let Gy(n) be the number of grey nodes in a kd-tree on n points whose root node
splits on y (horizontally).

Gy(n/2)+1 ifn>1 an 2G,(n/2)+1 ifn>1
IN\n) =
1 = Il ’ 1 ifn=1

Gy(n) =

49

n leaves

50

Let Gy(n) be the number of grey nodes in a kd-tree on n points whose root node
splits on x (vertically).

So, we get:

2G(n/4)+2 ifn>1
1 ifn=1

Gy(n) =

51

Let Gx(n) be the number of grey nodes in a kd-tree on n points whose root node

splits on x (vertically).

So, we get:

2G,(n/4)+0(1) ifn>1

Gy(n) = .
1 ifn=1

Question: What does this recurrence solve to?

52

Use the Master-Theorem:
T(n)=aT(n/b)+ f(n)
letc =log,a,lete >0

case 1: f(n) € O(n“"¢) then T (n) = O(n°).
case 2: ...
case3...

Here f(n) = O(1) and ¢ = log, 2 = 1/2. Therefor G,(n) = O(n'/?) = O(\/n).

53]

3&5: 'igi' eig'.

The grey subtree has unary and binary nodes

54

The depth is logn, so the binary depth is % -logn
Important: The logarithm is base-2

Counting only binary nodes, there are

2%-logn _ 2lognl/2 _ n1/2 _ \/ﬁ

Every unary grey node has a unique binary parent (except the root), so there are at
most twice as many unary nodes as binary nodes, plus 1

55)

The number of grey nodes if the query were a vertical line is O(/n)

For a horizontal line we get

n leaves

56

The number of grey nodes if the query were a vertical line is O(/n)

For a horizontal line we get

2G(n/4)+3 ifn>1
1 ifn=1

G(n) =

Which also solves to O(y/n).

How about a query rectangle?

57

Kd-tree query time analysis

58

Kd-tree query time analysis

59

The number of grey nodes for a query rectangle is at most the number of grey nodes
for two vertical and two horizontal lines, so itis at most 4 - O(y/n) = O(y/n) !

For black nodes, reporting a whole subtree with k leaves,
takes O(k) time (there are k — 1 internal black nodes)

60

Theorem: A set of n points in the plane can be preprocessed in O(nlogn) time into
a data structure of O(n) size so that any 2D range query can be answered in
O(y/n+ k) time, where k is the number of answers reported

For range counting queries, we need O(y/n) time

61

64

256
1024
4096
1.000.000

10
12
20

16
32
64
1000

62

Kd-trees

Higher-dimensional kd-trees

63

A 3-dimensional kd-tree alternates splits on x-, y-, and z-coordinate

A 3D range query is performed with a box

64

The construction of a 3D kd-tree is a trivial adaptation of the 2D version
The 3D range query algorithm is exactly the same as the 2D version

The 3D kd-tree still requires O(n) storage if it stores n points

65

How does the query time analysis change?

Intersection of B and region(Vv) depends on intersection of facets of B = analyze
by axes-parallel planes (B has no more grey nodes than six planes)

66

n leaves

67

Let G3(n) be the number of grey nodes for a query with an axes-parallel plane in a
3D kd-tree

Gs(1) =1
Gs(n) =4-G3(n/8)+0(1)
Question: What does this recurrence solve to?

Question: How many leaves does a perfectly balanced binary search tree with

depth %logn have?

68

Theorem: A set of 1 points in d-space can be preprocessed in O(nlogn) time into
a data structure of O(n) size so that any d-dimensional range query can be

answered in O(nl_l/d + k) time, where k is the number of answers reported

69

	Introduction
	Database queries
	1D range trees

	Kd-trees
	Kd-trees
	Querying in kd-trees
	Kd-tree query time analysis
	Higher-dimensional kd-trees

