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Databases

Databases store records or objects

Personnel database: Each employee has a name, id code, date of birth, function,

salary, start date of employment, . . .

Fields are textual or numerical
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Database queries

A database query may ask for all employees with

age between a1 and a2, and salary between s1

and s2

date of birth

salary

19,500,000 19,559,999

G. Ometer
born: Aug 16, 1954
salary: $3,500
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Database queries

When we see numerical fields of objects as coordinates, a database stores a point

set in higher dimensions

Exact match query: Asks for the objects whose coordinates match query

coordinates exactly

Partial match query: Some but not all coordinates are specified

Range query: Asks for the objects whose coordinates lie in a specified query range

(interval)
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Database queries

Example of a 3-dimensional (orthogonal) range

query: children in [2 , 4], salary in [3000 , 4000],
date of birth in [19,500,000 , 19,559,999]

19,500,000 19,559,999

3,000

4,000

2

4
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Data structures

Idea of data structures

• Representation of structure, for convenience (like DCEL)

• Preprocessing of data, to be able to solve future questions really fast

(sub-linear time)

A (search) data structure has a storage requirement, a query time, and a

construction time (and an update time)
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Introduction

1D range trees
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1D range query problem

1D range query problem: Preprocess a set of n points on the real line such that the

ones inside a 1D query range (interval) can be reported fast

The points p1, . . . , pn are known beforehand, the query [x,x′] only later

A solution to a query problem is a data structure description, a query algorithm, and

a construction algorithm

Question: What are the most important factors for the efficiency of a solution?
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Balanced binary search trees

A balanced binary search tree with the points in the leaves
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Balanced binary search trees

The search path for 25
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Balanced binary search trees

The search paths for 25 and for 90
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Example 1D range query

A 1-dimensional range query with [25, 90]
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Node types for a query

Three types of nodes for a given query:

• White nodes: never visited by the query

• Grey nodes: visited by the query, unclear if they lead to output

• Black nodes: visited by the query, whole subtree is output

Question: What query time do we hope for?
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Node types for a query

The query algorithm comes down to what we do at each type of node

Grey nodes: use query range to decide how to proceed: to not visit a subtree

(pruning), to report a complete subtree, or just continue

Black nodes: traverse and enumerate all points in the leaves
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Example 1D range query

A 1-dimensional range query with [61, 90]
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1D range query algorithm

Algorithm 1DRangeQuery(T, [x : x′])
1. νsplit←FindSplitNode(T,x,x′)
2. if νsplit is a leaf

3. then Check if the point in νsplit must be reported.

4. else ν ← lc(νsplit)

5. while ν is not a leaf

6. do if x≤ xν

7. then ReportSubtree(rc(ν))
8. ν ← lc(ν)
9. else ν ← rc(ν)
10. Check if the point stored in ν must be reported.

11. ν ← rc(νsplit)

12. Similarly, follow the path to x′, and . . .
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Query time analysis

The efficiency analysis is based on counting the numbers of nodes visited for each

type

• White nodes: never visited by the query; no time spent

• Grey nodes: visited by the query, unclear if they lead to output; time

determines dependency on n

• Black nodes: visited by the query, whole subtree is output; time determines

dependency on k, the output size
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Query time analysis

Grey nodes: they occur on only two paths in the tree, and since the tree is balanced,

its depth is O(logn)

Black nodes: a (sub)tree with m leaves has m−1 internal nodes; traversal visits

O(m) nodes and finds m points for the output

The time spent at each node is O(1) ⇒ O(logn+ k) query time
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Storage requirement and preprocessing

A (balanced) binary search tree storing n points uses O(n) storage

A balanced binary search tree storing n points can be built in O(n) time after

sorting, so in O(n logn) time overall

(or by repeated insertion in O(n logn) time)
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Result

Theorem: A set of n points on the real line can be preprocessed in O(n logn) time

into a data structure of O(n) size so that any 1D range query can be answered in

O(logn+ k) time, where k is the number of answers reported
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Example 1D range counting query

A 1-dimensional range tree for range counting queries
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Example 1D range counting query

A 1-dimensional range counting query with [25, 90]
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Result

Theorem: A set of n points on the real line can be preprocessed in O(n logn) time

into a data structure of O(n) size so that any 1D range counting query can be

answered in O(logn) time

Note: The number of points does not influence the output size so it should not

show up in the query time

25



Kd-trees
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Range queries in 2D

27



Range queries in 2D

Question: Why can’t we simply use a balanced binary tree in x-coordinate?

Or, use one tree on x-coordinate and one on y-coordinate, and query the one where

we think querying is more efficient?
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Kd-trees

Kd-trees
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Kd-trees

Kd-trees, the idea: Split the point set alternatingly by x-coordinate and by

y-coordinate

split by x-coordinate: split by a vertical line that has half the points left and half right

split by y-coordinate: split by a horizontal line that has half the points below and half

above
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Kd-trees
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Kd-tree construction

Algorithm BuildKdTree(P,depth)
1. if P contains only one point

2. then return a leaf storing this point

3. else if depth is even

4. then Split P with a vertical line ℓ through the median x-coordinate
into P1 (left of or on ℓ) and P2 (right of ℓ)

5. else Split P with a horizontal line ℓ through the median y-coordinate
into P1 (below or on ℓ) and P2 (above ℓ)

6. νleft← BuildKdTree(P1,depth+1)
7. νright← BuildKdTree(P2,depth+1)
8. Create a node ν storing ℓ, make νleft the left child of ν , and make νright

the right child of ν .

9. return ν
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Kd-tree construction

The median of a set of n values can be computed in O(n) time (randomized: easy;

worst case: much harder)

Let T (n) be the time needed to build a kd-tree on n points

T (1) = O(1)

T (n) = 2 ·T (n/2)+O(n)

A kd-tree can be built in O(n logn) time

Question: What is the storage requirement?
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Kd-trees

Querying in kd-trees
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Kd-tree regions of nodes
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Kd-tree regions of nodes

How do we know region(ν) when we are at a node ν?

Option 1: store it explicitly with every node

Option 2: compute it on-the-fly, when going from the root to ν

Question: What are reasons to choose one or the other option?
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Kd-tree querying
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Kd-tree querying

Algorithm SearchKdTree(ν ,R)

Input. The root of (a subtree of) a kd-tree, and a range R
Output. All points at leaves below ν that lie in the range.

1. if ν is a leaf

2. then Report the point stored at ν if it lies in R
3. else if region(lc(ν)) is fully contained in R
4. then ReportSubtree(lc(ν))
5. else if region(lc(ν)) intersects R
6. then SearchKdTree(lc(ν),R)

7. if region(rc(ν)) is fully contained in R
8. then ReportSubtree(rc(ν))
9. else if region(rc(ν)) intersects R
10. then SearchKdTree(rc(ν),R)
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Kd-tree querying

Question: How about a range counting query?

How should the code be adapted?
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Kd-trees

Kd-tree query time analysis
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Kd-tree query time analysis

To analyze the query time of kd-trees, we use the concept of white, grey, and black

nodes

• White nodes: never visited by the query; no time spent

• Grey nodes: visited by the query, unclear if they lead to output; time

determines dependency on n

• Black nodes: visited by the query, whole subtree is output; time determines

dependency on k, the output size
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Kd-tree query time analysis
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Kd-tree query time analysis

White, grey, and black nodes with respect to region(ν):

• White node ν : R does not intersect region(ν)

• Grey node ν : R intersects region(ν), but region(ν) ̸⊆ R

• Black node ν : region(ν)⊆ R
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Kd-tree query time analysis
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Kd-tree query time analysis

Question: How many grey and how many black leaves?
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Kd-tree query time analysis

Question: How many grey and how many black nodes?
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Kd-tree query time analysis

Grey node ν : R intersects region(ν), but region(ν) ̸⊆ R

It implies that the boundaries of R and region(ν) intersect

Advice: If you don’t know what to do, simplify until you do

Instead of taking the boundary of R, let’s analyze the number of grey nodes if the

query is with a vertical line ℓ
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Kd-tree query time analysis

Question: How many grey and how many black nodes?
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Kd-tree query time analysis

We observe: At every vertical split, ℓ is only to one side, while at every horizontal

split ℓ is to both sides

Let Gx(n) be the number of grey nodes in a kd-tree on n points whose root node

splits on x (vertically).

Let Gy(n) be the number of grey nodes in a kd-tree on n points whose root node

splits on y (horizontally).

Gx(n)=

Gy(n/2)+1 if n > 1

1 if n = 1
Gy(n)=

2Gx(n/2)+1 if n > 1

1 if n = 1
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Kd-tree query time analysis

x

y y

n leaves
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Kd-tree query time analysis

Let Gx(n) be the number of grey nodes in a kd-tree on n points whose root node

splits on x (vertically).

So, we get:

Gx(n) =

2Gx(n/4)+2 if n > 1

1 if n = 1
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Kd-tree query time analysis

Let Gx(n) be the number of grey nodes in a kd-tree on n points whose root node

splits on x (vertically).

So, we get:

Gx(n) =

2Gx(n/4)+O(1) if n > 1

1 if n = 1

Question: What does this recurrence solve to?
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Kd-tree query time analysis

Use the Master-Theorem:

T (n) = aT (n/b)+ f (n)

let c = logb a, let ε > 0

case 1: f (n) ∈ O(nc−ε) then T (n) = O(nc).

case 2: ...

case 3 ...

Here f (n) = O(1) and c = log4 2 = 1/2. Therefor Gx(n) = O(n1/2) = O(
√

n).
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Kd-tree query time analysis

The grey subtree has unary and binary nodes
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Kd-tree query time analysis

The depth is logn, so the binary depth is 1
2 · logn

Important: The logarithm is base-2

Counting only binary nodes, there are

2
1
2 ·logn = 2logn1/2

= n1/2 =
√

n

Every unary grey node has a unique binary parent (except the root), so there are at

most twice as many unary nodes as binary nodes, plus 1
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Kd-tree query time analysis

The number of grey nodes if the query were a vertical line is O(
√

n)

For a horizontal line we get
x

y y

n leaves
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Kd-tree query time analysis

The number of grey nodes if the query were a vertical line is O(
√

n)

For a horizontal line we get

G(n) =

2G(n/4)+3 if n > 1

1 if n = 1

Which also solves to O(
√

n).

How about a query rectangle?
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Kd-tree query time analysis
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Kd-tree query time analysis
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Kd-tree query time analysis

The number of grey nodes for a query rectangle is at most the number of grey nodes

for two vertical and two horizontal lines, so it is at most 4 ·O(
√

n) = O(
√

n) !

For black nodes, reporting a whole subtree with k leaves,

takes O(k) time (there are k−1 internal black nodes)
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Result

Theorem: A set of n points in the plane can be preprocessed in O(n logn) time into

a data structure of O(n) size so that any 2D range query can be answered in

O(
√

n+ k) time, where k is the number of answers reported

For range counting queries, we need O(
√

n) time
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Efficiency

n logn
√

n

4 2 2

16 4 4

64 6 8

256 8 16

1024 10 32

4096 12 64

1.000.000 20 1000
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Kd-trees

Higher-dimensional kd-trees
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Higher dimensions

A 3-dimensional kd-tree alternates splits on x-, y-, and z-coordinate

A 3D range query is performed with a box
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Higher dimensions

The construction of a 3D kd-tree is a trivial adaptation of the 2D version

The 3D range query algorithm is exactly the same as the 2D version

The 3D kd-tree still requires O(n) storage if it stores n points
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Higher dimensions

How does the query time analysis change?

Intersection of B and region(ν) depends on intersection of facets of B ⇒ analyze

by axes-parallel planes (B has no more grey nodes than six planes)
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Higher dimensions

n leaves
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z zz
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Kd-tree query time analysis

Let G3(n) be the number of grey nodes for a query with an axes-parallel plane in a

3D kd-tree

G3(1) = 1

G3(n) = 4 ·G3(n/8)+O(1)

Question: What does this recurrence solve to?

Question: How many leaves does a perfectly balanced binary search tree with

depth 2
3 logn have?
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Result

Theorem: A set of n points in d-space can be preprocessed in O(n logn) time into

a data structure of O(n) size so that any d-dimensional range query can be

answered in O(n1−1/d + k) time, where k is the number of answers reported
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