
Range trees

Computational Geometry

Utrecht University

1

Introduction

2

Introduction

Range queries

3

Database queries

A database query may ask for all

employees with age between a1 and a2,

and salary between s1 and s2

date of birth

salary

19,500,000 19,559,999

G. Ometer
born: Aug 16, 1954
salary: $3,500

4

Result

Theorem: A set of n points on the real line can be preprocessed in O(n logn) time

into a data structure of O(n) size so that any 1D range reporting query can be

answered in O(logn+ k) time.

5

Result

Theorem: A set of n points in the plane can be preprocessed in O(n logn) time

into a data structure of O(n) size so that any 2D range query can be answered in

O(
√

n+ k) time, where k is the number of answers reported

For range counting queries, we need O(
√

n) time

6

Faster queries

Can we achieve O(logn+ k) query time?

7

Faster queries

Can we achieve O(logn+ k) query time?

8

Faster queries

If the corners of the query rectangle fall in specific cells of the grid, the answer is

fixed (even for lower left and upper right corner)

9

Faster queries

Build a tree so that the leaves correspond to the different possible query rectangle

types (corners in same cells of grid), and with each leaf, store all answers (points)

[or: the count]

Build a tree on the different x-coordinates (to search with left side of R), in each of

the leaves, build a tree on the different x-coordinates (to search with the right side

of R), in each of the leaves, . . .

10

Faster queries

n

n

n

n

11

Faster queries

Question: What are the storage requirements of this structure, and what is the

query time?

12

Faster queries

Recall the 1D range tree and range query:

• Two search paths (grey nodes)

• Subtrees in between have answers exclusively (black)

13

Example 1D range query

A 1-dimensional range query with [25, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

14

Example 1D range query

A 1-dimensional range query with [61, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

split node

15

Examining 1D range queries

Observation: Ignoring the search path leaves, all answers are jointly represented

by the highest nodes strictly between the two search paths

Question: How many highest nodes between the search paths can there be?

16

Examining 1D range queries

For any 1D range query, we can identify O(logn) nodes that together represent all
answers to a 1D range query

17

Toward 2D range queries

For any 2d range query, we can identify O(logn) nodes that together represent all
points that have a correct first coordinate

18

Toward 2D range queries

(3, 8)(1, 5) (4, 2) (5, 9) (6, 7) (8, 1)(7, 3) (9, 4)

19

Toward 2D range queries

(3, 8)(1, 5) (4, 2) (5, 9) (6, 7) (8, 1)(7, 3) (9, 4)

20

Toward 2D range queries

(3, 8)(1, 5) (4, 2) (5, 9) (6, 7) (8, 1)(7, 3) (9, 4)

data structure
for searching on
y-coordinate

21

Toward 2D range queries

(3, 8)(1, 5) (4, 2) (5, 9) (6, 7) (8, 1)(7, 3) (9, 4)

(3, 8)

(1, 5)

(4, 2)

(5, 9)

(6, 7)

(8, 1)

(7, 3)

(9, 4)

22

2D Range trees

23

2D range trees

Every internal node stores a whole tree in an associated structure, on y-coordinate

Question: How much storage does this take?

24

Storage of 2D range trees

To analyze storage, two arguments can be used:

• By level: On each level, any point is stored exactly once. So all associated trees

on one level together have O(n) size

• By point: For any point, it is stored in the associated structures of its search

path. So it is stored in O(logn) of them

25

2D Range trees

Construction

26

Construction algorithm

Algorithm Build2DRangeTree(P)

1. Construct the associated structure: Build a binary search tree Tassoc on the set

Py of y-coordinates in P
2. if P contains only one point

3. then Create a leaf ν storing this point, and make Tassoc the associated

structure of ν .

4. else Split P into Pleft and Pright, the subsets≤ and> the median

x-coordinate xmid

5. νleft← Build2DRangeTree(Pleft)

6. νright← Build2DRangeTree(Pright)

7. Create a node ν storing xmid, make νleft the left child of ν , make νright

the right child of ν , and make Tassoc the associated structure of ν
8. return ν

27

Efficiency of construction

The construction algorithm takes O(n log2 n) time

T (1) = O(1)

T (n) = 2 ·T (n/2)+O(n logn)

which solves to O(n log2 n) time

28

Efficiency of construction

Suppose we pre-sort P on y-coordinate, and whenever we split P into Pleft and

Pright, we keep the y-order in both subsets

For a sorted set, the associated structure can be built in linear time

29

Efficiency of construction

The adapted construction algorithm takes O(n logn) time

T (1) = O(1)

T (n) = 2 ·T (n/2)+O(n)

which solves to O(n logn) time

30

2D Range trees

Querying

31

2D range queries

How are queries performed and why are they correct?

• Are we sure that each answer is found?

• Are we sure that the same point is found only once?

32

2D range queries

ν

µ µ′ p

p

p

p

33

Query algorithm

Algorithm 2DRangeQuery(T, [x : x′]× [y : y′])
1. νsplit←FindSplitNode(T,x,x′)
2. if νsplit is a leaf

3. then report the point stored at νsplit, if an answer

4. else ν ← lc(νsplit)

5. while ν is not a leaf

6. do if x≤ xν

7. then 1DRangeQ(Tassoc(rc(ν)), [y : y′])
8. ν ← lc(ν)
9. else ν ← rc(ν)
10. Check if the point stored at ν must be reported.

11. Similarly, follow the path from rc(νsplit) to x′ . . .

34

2D range query time

Question: How much time does a 2D range query take?

Subquestions: In how many associated structures do we search? How much time

does each such search take?

35

2D range queries

ν

µ µ′

36

2D range query efficiency

Use the concept of grey and black nodes again:

37

2D range query efficiency

We visit O(logn) grey nodes in the main structure.

We perform a 1D range query using the associated structure of O(logn) nodes ν ;

at most two per level.

Each such query visits O(lognν) grey nodes and O(kν) black nodes, and thus

takes O(lognν + kν) time, where

nν = #leaves in subtree ν , and

kν = #reported points from subtree of ν .

So the query time is

∑
ν

O(lognν + kν)

38

2D range query efficiency

So the number of grey nodes is ∑ν O(lognν) = O(log2 n), since nν ≤ n

The number of black nodes is ∑ν O(kν) = O(k) if k points are reported (since

k = ∑ν kν).

The query time is O(log2 n+ k), where k is the size of the output

39

Result

Theorem: A set of n points in the plane can be preprocessed in O(n logn) time

into a data structure of O(n logn) size so that any 2D range query can be answered

in O(log2 n+ k) time, where k is the number of answers reported

Recall that a kd-tree has O(n) size and answers queries in O(
√

n+ k) time

40

2D range query efficiency

Question: How about range counting queries?

41

2D Range trees

Higher dimensions

42

Higher dimensional range trees

A d-dimensional range tree has a main

tree which is a one-dimensional balanced

binary search tree on the first coordinate,

where every node has a pointer to an

associated structure that is a

(d−1)-dimensional range tree on the

other coordinates

43

Storage

The size Sd(n) of a d-dimensional range tree satisfies:

S1(n) = O(n) for all n

Sd(1) = O(1) for all d

Sd(n)≤ 2 ·Sd(n/2)+Sd−1(n) for d ≥ 2

This solves to Sd(n) = O(n logd−1 n)

44

Query time

The number of grey nodes Gd(n) satisfies:

G1(n) = O(logn) for all n

Gd(1) = O(1) for all d

Gd(n)≤ 2 · logn+2 · logn ·Gd−1(n) for d ≥ 2

This solves to Gd(n) = O(logd n)

45

Result

Theorem: A set of n points in d-dimensional space can be preprocessed in

O(n logd−1 n) time into a data structure of O(n logd−1 n) size so that any

d-dimensional range query can be answered in O(logd n+ k) time, where k is the

number of answers reported

Recall that a kd-tree has O(n) size and answers queries in O(n1−1/d + k) time

46

2D Range trees

Fractional cascading

47

Improving the query time

We can improve the query time of a 2D range tree from O(log2 n) to O(logn) by a
technique called fractional cascading

This automatically lowers the query time in d dimensions to O(logd−1 n) time

48

Improving the query time

The idea illustrated best by a different query problem:

Suppose that we have a collection of sets S1, . . . ,Sm, where |S1|= n
and where Si+1 ⊆ Si

We want a data structure that can report for a query number q, the
smallest value≥ q in all sets S1, . . . ,Sm

49

Improving the query time

1 2 3 5 8 13 21 34 55

1 3 5 8 13 21 34 55

1 3 13 34 55

3 34 55

21

S1

S2

S3

S4

50

Improving the query time

1 2 3 5 8 13 21 34 55

1 3 5 8 13 21 34 55

1 3 13 34 55

3 34 55

21

S1

S2

S3

S4

51

Improving the query time

1 2 3 5 8 13 21 34 55

1 3 5 8 13 21 34 55

1 3 13 34 55

3 34 55

21

S1

S2

S3

S4

52

Improving the query time

Suppose that we have a collection of sets S1, . . . ,Sm, where |S1|= n and where

Si+1 ⊆ Si

We want a data structure that can report for a query number q, the smallest value

≥ q in all sets S1, . . . ,Sm

This query problem can be solved in O(logn+m) time instead of O(m · logn) time

53

Improving the query time

Can we do something similar for m 1-dimensional range queries on m sets

S1, . . . ,Sm?

We hope to get a query time of O(logn+m+ k) with k the total number of points

reported

54

Improving the query time

1 2 3 5 8 13 21 34 55

1 3 5 8 13 21 34 55

1 3 13 34 55

3 34 55

21

S1

S2

S3

S4

55

Improving the query time

1 2 3 5 8 13 21 34 55

1 3 5 8 13 21 34 55

1 3 13 34 55

3 34 55

21

S1

S2

S3

S4

56

Improving the query time

1 2 3 5 8 13 21 34 55

1 3 5 8 13 21 34 55

1 3 13 34 55

3 34 55

21

[6,35]

S1

S2

S3

S4

57

Fractional cascading

Now we do “the same” on the associated structures of a 2-dimensional range tree

Note that in every associated structure, we search with the same values y and y′

• Replace all associated structures except for the one of the root by a linked list

• For every list element (and leaf of the associated structure of the root), store

two pointers to the appropriate list elements in the lists of the left child and of

the right child

58

Fractional cascading

59

Fractional cascading

60

Fractional cascading

(2, 19)

(5, 80)

(7, 10)

(8, 37)

(12, 3)

(15, 99)

(17, 62) (21, 49)

(33, 30)

(41, 95)

(52, 23)

(58, 59)

(67, 89)

(93, 70)

2

5 7 8 12 15

17

21 33 41 52

58

67

17

8

155

7 12 21 41

33

52

58 67

932

61

Fractional cascading

3 99

10 19 37 80

30 4962

3 10 19 23 30 37 49 59 62 70 80 89 95 99

89705923 9530 49803 9962371910

3 9962 89705923 9530 49

897023 9510 3719 80

70892395371019

59

4980 3 3099

62

Fractional cascading

(2, 19)

(5, 80)

(7, 10)

(8, 37)

(12, 3)

(15, 99)

(17, 62) (21, 49)

(33, 30)

(41, 95)

(52, 23)

(58, 59)

(67, 89)

(93, 70)

2

5 7 8 12 15

17

21 33 41 52

58

67

17

8

155

7 12 21 41

33

52

58 67

932

[4, 58]× [19, 65]

63

Fractional cascading

3 99

10 19 37 80

30 4962

3 10 19 23 30 37 49 59 62 70 80 89 95 99

89705923 9530 49803 9962371910

3 9962 89705923 9530 49

897023 9510 3719 80

70892395371019

59

4980 3 3099

64

Fractional cascading

3 99

10 19 37 80

30 4962

3 10 19 23 30 37 49 59 62 70 80 89 95 99

89705923 9530 49803 9962371910

3 9962 89705923 9530 49

897023 9510 3719 80

70892395371019

59

4980 3 3099

65

Fractional cascading

Instead of doing a 1D range query on the associated structure of some node ν , we

find the leaf where the search to y would end in O(1) time via the direct pointer in

the associated structure in the parent of ν

The number of grey nodes reduces to O(logn)

66

Result

Theorem: A set of n points in d-dimensional space can be preprocessed in

O(n logd−1 n) time into a data structure of O(n logd−1 n) size so that any

d-dimensional range query can be answered in O(logd−1 n+ k) time, where k is

the number of answers reported

Recall that a kd-tree has O(n) size and answers queries in O(n1−1/d + k) time

67

Degenerate cases

68

Degenerate cases

Both for kd-trees and for range trees we

have to take care of multiple points with

the same x- or y-coordinate

69

Degenerate cases

Both for kd-trees and for range trees we

have to take care of multiple points with

the same x- or y-coordinate

70

Degenerate cases

Treat a point p = (px, py) with two reals as coordinates as a point with two

composite numbers as coordinates

A composite number is a pair of reals, denoted (a|b)

We let (a|b)< (c|d) iff a < c or (a = c and b < d); this defines a total order on

composite numbers

71

Degenerate cases

The point p = (px, py) becomes ((px|py) , (py|px)). Then no two points have the

same first or second coordinate

The median x-coordinate or y-coordinate is a composite number

The query range [x : x′]× [y : y′] becomes

[(x|−∞) : (x′|+∞)]× [(y|−∞) : (y′|+∞)]

We have (px, py) ∈ [x : x′]× [y : y′] iff

((px|py) , (py|px)) ∈ [(x|−∞) : (x′|+∞)]× [(y|−∞) : (y′|+∞)]

72

	Introduction
	Range queries

	2D Range trees
	Construction
	Querying
	Higher dimensions
	Fractional cascading

	Degenerate cases

