%% Utrecht University

Range trees

Computational Geometry

Utrecht University

Introduction

Introduction

Range queries

Database queries

A database query may ask for all

employees with age between a; and ap,

and salary between s1 and s>

G. Ometer
born: Aug 16, 1954

salary salary: $3,500

19,500,000 19,559,999
date of birth

Theorem: A set of n points on the real line can be preprocessed in O(nlogn) time
into a data structure of O(n) size so that any 1D range reporting query can be

answered in O(logn + k) time.

Theorem: A set of n points in the plane can be preprocessed in O(nlogn) time
into a data structure of O(n) size so that any 2D range query can be answered in
O(y/n+ k) time, where k is the number of answers reported

For range counting queries, we need O(y/n) time

Can we achieve O(logn + k) query time?

Faster queries

Can we achieve O(logn + k) query time?

Faster queries

If the corners of the query rectangle fall in specific cells of the grid, the answer is

fixed (even for lower left and upper right corner)

Faster queries

Build a tree so that the leaves correspond to the different possible query rectangle
types (corners in same cells of grid), and with each leaf, store all answers (points)

[or: the count]

Build a tree on the different x-coordinates (to search with left side of R), in each of
the leaves, build a tree on the different x-coordinates (to search with the right side

of R), in each of the leaves, . ..

Question: What are the storage requirements of this structure, and what is the

query time?

Recall the 1D range tree and range query:
+ Two search paths (grey nodes)

* Subtrees in between have answers exclusively (black)

Example 1D range query

A 1-dimensional range query with [25, 90]

Example 1D range query

A 1-dimensional range query with [61, 90]

Observation: Ignoring the search path leaves, all answers are jointly represented
by the highest nodes strictly between the two search paths

Question: How many highest nodes between the search paths can there be?

For any 1D range query, we can identify O(logn) nodes that together represent all
answers to a 1D range query

For any 2d range query, we can identify O(logn) nodes that together represent all
points that have a correct first coordinate

B3] @2 B9 6.7 (23] B0 0.4

Toward 2D range queries

20

Toward 2D range queries

data structure
for searching on
y-coordinate

21

Toward 2D range queries

(1,5)] [3:8)] [4,2)] [5,9)] [6,7)] [(7,3)] |8, D] [(9,4)]

o~ o~ o~ o~ o~ o~ o~ —~

= N o = o w o

o

— N W R Ol -3 0o ©
e N N e N N SN

22

2D Range trees

23

2D range trees

Every internal node stores a whole tree in an associated structure, on y-coordinate

Question: How much storage does this take?

24

To analyze storage, two arguments can be used:

+ By level: On each level, any point is stored exactly once. So all associated trees

on one level together have O(n) size

+ By point: For any point, it is stored in the associated structures of its search
path. So it is stored in O(logn) of them

25

2D Range trees

Construction

26

Construction algorithm

Algorithm Build2DRangeTree(P)

1.

w N

Construct the associated structure: Build a binary search tree Jygs0c ON the set
P, of y-coordinates in P
if P contains only one point
then Create a leaf V storing this point, and make Tys40c the associated
structure of V.
else Split P into Pef and Pigpy, the subsets < and > the median
x-coordinate Xpid
Vieft <— Build2DRangeTree(Peft)
Vright <— Build2DRangeTree(Fight)
Create a node V storing Xmid, make Vief the left child of v, make Vyjght
the right child of v, and make Tygs0c the associated structure of Vv

return v

27

The construction algorithm takes O(nlog? n) time

T(n)=2-T(n/2)+ O(nlogn)

which solves to O(nlog? n) time

28

Suppose we pre-sort P on y-coordinate, and whenever we split P into Peg and
Pright, we keep the y-order in both subsets

For a sorted set, the associated structure can be built in linear time

29

The adapted construction algorithm takes O(nlogn) time

T(n)=2-T(n/2)+0(n)

which solves to O(nlogn) time

30

2D Range trees

Querying

31

How are queries performed and why are they correct?
+ Are we sure that each answer is found?

+ Are we sure that the same point is found only once?

32

2D range queries

33

Algorithm 2DRangeQuery(T, [x : X'] x [y : y])
1. Vpli <—FindSplitNode(T, x, x’)

2. if Vgpiit is a leaf

3 then report the point stored at Vspji, if an answer

4 else v < lc(Vyplic)

5 while Vv is not a leaf

6. doifx <x,

7 then 1DRangeQ(Tassoc (7¢(V)), [y 1 V])
8 v < lc(v)

9 else v+ rc(v)

1 Check if the point stored at V must be reported.
1

= @@

Similarly, follow the path from rc(vsplit) tox ...

34

Question: How much time does a 2D range query take?

Subquestions: In how many associated structures do we search? How much time
does each such search take?

85

36

Use the concept of grey and black nodes again:

AAAA&AAA

2D range query efficiency

We visit O(logn) grey nodes in the main structure.

We perform a 1D range query using the associated structure of O(logn) nodes V;
at most two per level.

Each such query visits O(logny) grey nodes and O(ky) black nodes, and thus
takes O(logny + ky) time, where
ny = #leaves in subtree v, and

ky = #reported points from subtree of V.

So the query time is

Y O(logny +ky)

\%

38

So the number of grey nodes is ¥, O(logny) = O(log?n), since ny < n

The number of black nodes is Y, O(ky) = O(k) if k points are reported (since
k=Y, ky).

The query time is O(log? n + k), where k is the size of the output

39

Theorem: A set of n points in the plane can be preprocessed in O(nlogn) time
into a data structure of O(nlogn) size so that any 2D range query can be answered
in O(log? n 4 k) time, where k is the number of answers reported

Recall that a kd-tree has O(n) size and answers queries in O(y/n+k) time

40

Question: How about range counting queries?

AAAA&AAA

41

2D Range trees

Higher dimensions

42

Higher dimensional range trees

A d-dimensional range tree has a main
tree which is a one-dimensional balanced
binary search tree on the first coordinate,
where every node has a pointer to an
associated structure that is a

(d — 1)-dimensional range tree on the

other coordinates

43

The size S(n) of a d-dimensional range tree satisfies:

Si(n) =0(n) foralln
Sa(1)=0(1) foralld

Sd(n) < 2-Sd(n/2)—|—Sd_1(n) ford > 2

This solves to Sy(n) = O(nlog? ™! n)

a4

The number of grey nodes G4(n) satisfies:

Gi(n) = O(logn) foralln
Gs(1)=0(1) foralld

Gq(n) <2-logn+2-logn-Gy—1(n) ford >?2

This solves to Gg(n) = O(log? n)

45

Theorem: A set of n points in d-dimensional space can be preprocessed in
O(nlog?~! n) time into a data structure of O(nlog?~! n) size so that any

d-dimensional range query can be answered in 0(10gdn + k) time, where k is the
number of answers reported

Recall that a kd-tree has O(n) size and answers queries in O(n'~1/4 4 k) time

46

2D Range trees

Fractional cascading

47

We can improve the query time of a 2D range tree from O(log? 1) to O(logn) by a
technique called fractional cascading

This automatically lowers the query time in d dimensions to 0(logd_1 n) time

48

The idea illustrated best by a different query problem:

Suppose that we have a collection of sets Sy, ..., S, where |Si| =n
and where ;11 C §;

We want a data structure that can report for a query number g, the
smallest value > ¢gin all sets Sy,...,S,

49

Improving the query time

1 2 3 5 813213455

1 3 5 813213455

FadaN

1 313213455

a2

3

34 55

Ss

Sy

50

Improvi

ng the query time

1

VT

AL

\
‘ B5

il
N

S

Ss

Improving the query time

S

S

Ss

Sy

52

Suppose that we have a collection of sets Sy, ..., S, where |S;| = n and where
Si+1 C S
We want a data structure that can report for a query number g, the smallest value

>ginallsets Sq,...,5,

This query problem can be solved in O(logn + m) time instead of O(m -logn) time

53]

Can we do something similar for m 1-dimensional range queries on m sets

S1y-eySm?

We hope to get a query time of O(logn + m + k) with k the total number of points

reported

54

Improving the query time

S

S

Ss

Sy

55

Improving the query time

51

S

Ss

Sy

56

Improving the query time

S

S

Ss

Sy

57

Fractional cascading

Now we do “the same” on the associated structures of a 2-dimensional range tree

Note that in every associated structure, we search with the same values y and y'
+ Replace all associated structures except for the one of the root by a linked list

* For every list element (and leaf of the associated structure of the root), store

two pointers to the appropriate list elements in the lists of the left child and of

the right child

58

Fractional cascading

60

Fractional cascading

(2,19) (7,10) (12,3) (17,62) (21,49) (41,95) (58,59) (93,70)
(5,80) (8,37) (15,99) (33,30) (52,23) (67,89)

61

Fractional cascading

[3]10]19]23][30]37]49]59]62] 70[80]89] 95] 99]
I T TT TI IT TI T 1T TT |

3 |10|19|37|62|80|99| [23]30]49]59] 70[89] 95]
II+ IT TI II T TI

|23|30|49|95| |59|70|89|

|10|19| |80| 3
||

||— @

|19|80| 10[37

i éﬁ%

||<— @

62

Fractional cascading

(2,19) (7,10) (12,3) (17,62) (21,49) (41,95) (58,59) (93, 70)
(5,80) (8,37) (15,99) (33,30) (52,23) (67,89)

63

Fractional cascading

ulll y I :

3 [10]19]37]62]80]99] |23|30|49|59|70|89|95|
[10[19]37[80] [3162[99] |23|30|49|95| |59|70|89|
v

|1|9||80| I||1(|)||37| %’YI%IL
4 9 b gy

64

Fractional cascading

3 |10|19|23|30|37|49|59|62|70|80|89|95|99|

[3T10]19]37][62]80]99]
I T TT II+

[23]30]49]59] 7089 95]
I T TI

65

Instead of doing a 1D range query on the associated structure of some node V, we
find the leaf where the search to y would end in O(1) time via the direct pointer in

the associated structure in the parent of v

The number of grey nodes reduces to O(logn)

66

Theorem: A set of n points in d-dimensional space can be preprocessed in
O(nlog?~! n) time into a data structure of O(nlog?~! n) size so that any
d-dimensional range query can be answered in 0(10gd_1 n-+k) time, where k is
the number of answers reported

Recall that a kd-tree has O(n) size and answers queries in O(n'~1/4 4 k) time

67

Degenerate cases

68

Both for kd-trees and for range trees we O
have to take care of multiple points with .

the same x- or y-coordinate

69

Both for kd-trees and for range trees we
have to take care of multiple points with .

the same x- or y-coordinate

70

Treat a point p = (px,py) with two reals as coordinates as a point with two
composite numbers as coordinates

A composite number is a pair of reals, denoted (a|b)

We let (a|b) < (c|d) iffa < cor(a = cand b < d); this defines a total order on
composite numbers

71

The point p = (py, py) becomes ((px|py), (Py|Px)). Then no two points have the
same first or second coordinate

The median x-coordinate or y-coordinate is a composite number

The query range [x : x'] x [y : '] becomes

[(e] = o0) 2 ('] +00)] X [(y] = 2) = (3| +<0)]

We have (pyx, py) € [x:x'] x [y :y] iff

((Palpy) s (pylpx)) € [(x] = 20) (K| +00)] X [(3] = 20) = (/| +)]

72

	Introduction
	Range queries

	2D Range trees
	Construction
	Querying
	Higher dimensions
	Fractional cascading

	Degenerate cases

