%;% Utrecht University

Lecture 9: Planar point location

Computational Geometry

Utrecht University

Introduction

Introduction

Planar point location

Point location problem: Preprocess a planar subdivision such that for any query
point g, the face of the subdivision containing g can be given quickly (name of the
face)

+ From GPS coordinates, find the region on a map where you are located

+ Subroutine for many other geometric problems (Chapter 13: motion planning,
or shortest path computation)

non-crossing

N

Planar subdivision: Partition of the
plane by a set of non-crossing line
segments into vertices, edges, and faces crossing

non-crossing: disjoint, or at most a shared

endpoint

=
~

Data structuring question, so interest in
query time, storage requirements, and
preprocessing time

To store: set of n non-crossing line

segments and the subdivision they induce

Introduction

Strip-based structure

Idea: Draw vertical lines through all vertices, then do something for every vertical

strip that appears

First solution

P

/*\

N

\\
T~

K

‘ \/ \\»/

Inside a single strip, there is a
well-defined bottom-to-top order on the

line segments

Use this for a balanced binary search tree
that is valid if the query point is in this
strip (knowing between which edges we

are is knowing in which face we are)

\/1/\ /

Solution with strips

search tree on
x-coordinate

/AN\NVER

AN

/\

\/ 1 /\

To answer a query with g = (qx,qy), search in the main tree with g, to find a leaf,
then follow the pointer to search in the tree that is correct for the strip that contains
qx

Question: What are the storage requirements and what is the query time of this
structure?

Solution with strips

% strips

w3

Solution with strips

W

/*\

N

> TN
//'\

K

‘ \/ \\»/

Vertical decomposition

The vertical strips idea gave a refinement of the original subdivision, but the number
of faces went up from linear in n to quadratic in n

Is there a different refinement whose size remains linear, but in which we can still
do point location queries easily?

Suppose we draw vertical extensions from every vertex up and down, but only until
the next line segment

+ Assume the input line segments are not vertical
+ Assume every vertex has a distinct x-coordinate

+ Assume we have a bounding box R that encloses all line segments that define
the subdivision

This is called the vertical decomposition or trapezoidal decomposition

Vertical decomposition

The vertical decomposition has triangular and trapezoidal faces

1
i

Vertical decomposition faces

Every face has a vertical left and/or right side that is a vertical extension, and is

bounded from above and below by some line segment of the input

The left and right sides are defined by some endpoint of a line segment

top(A)

top(A)

\

bottom(A) bottom(A)

leftp(A)
N~

20

Every face is defined by no more than four line segments

For any face, we ignore vertical extensions that end on top(A) and bottom(A)

21

Neighbors of faces

Two trapezoids (including triangles) are neighbors if they share a vertical side

Each trapezoid has 1, 2, 3, or 4 neighbors

22

T

A trapezoid could have many neighbors if vertices had the same x-coordinate

23

Representation

We could use a DCEL to represent a vertical decomposition, but we use a more

direct & convenient structure

« Every face A is an object; it has fields for top(A), bottom(A), leftp(A), and

rightp(A) (two line segments and two vertices)
* Every face has fields to access its up to four neighbors

+ Every line segment is an object and has fields for its endpoints (vertices) and

the name of the face in the original subdivision directly above it

+ Each vertex stores its coordinates

24

Representation

25

Any trapezoid A can find out the name of the face it is part of via bottom(A) and the

stored name of the face

26

A vertical decomposition of n non-crossing line segments inside a bounding box R,

seen as a proper planar subdivision, has at most 6n + 4 vertices and at most 3n+ 1

trapezoids
Ieftp(Al)
Ieftp(Az)

27

The input to planar point location is a planar subdivision, for example in DCEL
format

First, store with each edge the name of the face above it (our structure will find the
edge below any query point)

Then extract the edges to define a set S of non-crossing line segments; ignore the
DCEL otherwise

28

We will use randomized incremental construction to build, for a set S of non-crossing
line segments,

+ avertical decomposition T of S and R

+ asearch structure D whose leaves correspond to the trapezoids of 7'

The simple idea: Start with R, then add the line segments in random order and
maintain T and D

29

Letsy,...,s, be the nline segments in random order

Let 7; be the vertical decomposition of R and s1, .. .,s;, and let D; be the search
structure obtained by inserting s1, ..., s; in this order

Th D

30

Point location solution

Let sq,...,s, be the n line segments in random order
Let 7; be the vertical decomposition of R and s1, . ..,s;, and let D; be the search
structure obtained by inserting s1, ..., s; in this order
Ty
A;
A1 %’ T
Ay
1|
Ay

31

Vertical decomposition

The search structure

32

Point location solution

The search structure D has x-nodes, which store an endpoint, and y-nodes, which

store a line segment s

For any query point ¢, we only test at an x-node: Is 7 left or right of the vertical line
through the stored point?

For any query point #, we only test at an y-node: Is # below or above the stored line
segment?

We will guarantee that the question at a y-node is only asked if the query point ¢ is

between the vertical lines through p; and g, if line segment s; = p;q; is stored

33

Point location solution

b1

bql

Ay

T

34

Point location solution

b1

Ay
/ q2

T

35

Point location solution

b1

S1

D2

T

36

Point location solution

b1

15

37

Point location solution

e

8

"1

3

A

S1

Ag

S2

As

b2

Ay

D1

38

We want only one leaf in D to correspond to each trapezoid; this means we get a
search graph instead of a search tree

It is a directed acyclic graph, or DAG, hence the name D

39

Point location solution

40

A point location query is done by following a path in the search structure D to a leaf,
then following its pointer to a trapezoid of T, then accessing bottom(..) of this
trapezoid, and reporting the name of the face stored with it

a1

Point location query

42

Suppose we have D;_1 and T;_1, how do we add s;?

Because D;_ is a valid point location structure for s1,...,s;_1, we can use it to find
the trapezoid of 7;_; that contains p;, the left endpoint of s;

Then we use T;_; to find all other trapezoids that intersect s;

43

Vertical decomposition

Updating the vertical decomposition

44

Find intersected trapezoids

Aol 124
"t
1% | —
—

45

Find intersected trapezoids

46

Find intersected trapezoids

Ao
1%

\ e\ /

47

Find intersected trapezoids

Ay
1%

Ay

\ e\ /

N\

48

After locating the trapezoid that contains p;, we can determine all k trapezoids that
intersect s; in O(k) time by traversing 7;_;

49

Updating the vertical decomposition

\

N\

50

Updating the vertical decomposition

/1

\/

51

Updating the vertical decomposition

52

We can update the vertical decomposition in O(k) time as well

53]

Vertical decomposition

Updating the search structure

54

The search structure has k leaves that are no longer valid as leaves; they become
internal nodes

We find these using the pointers from 7;_1 to D;

From the update of the vertical decomposition 7;_; into 7; we know what new
leaves we must make for D;

All new nodes besides the leaves are x-nodes with p; and ¢; and y-nodes with s;

55)

Updating the search structure

56

Updating the search structure

G
T

N [| I e I

leaves for the new trapezoids in T;

57

Updating the search structure

N [| I e I

leaves for the new trapezoids in T;

58

Updating the search structure

I O R O

leaves for the new trapezoids in T;

59

For a single update step, adding s; and updating 7;_{ and D;_, we observe:
+ If 5; intersects k; trapezoids of 7;_ 1, then we will create O(k,-) new trapezoids
inT;
+ We find the k; trapezoids in time linear in the length of the search path of p; in
Dj_y, plus O(k;) time
+ We update by replacing k; leaves by O(k;) new internal nodes and O(k;) new
leaves

* The maximum depth increase is three nodes

60

Question: In what case is the depth increase three nodes?

Question: We noticed that the directed acyclic graph D is binary in its out-degree,

what is the maximum in-degree?

61

A common but special update

RN
A |54

Ih.%é

N\

\

L—

If p; was already an existing vertex, we search in D;_| with a point a fraction to the

right of p; on s;

62

Analysis

63

Analysis

Order matters

64

Randomized incremental construction, where does it matter?

+ The vertical decomposition 7; is independent of the insertion order among
SIS

+ The search structure D; can be different for many orders of sq,...,s;

« The number of nodes in D; depends on the order

+ The depth of search paths in D; depends on the order

65

Randomized incremental construction

66

Randomized incremental construction

x..u

x’

3%m

(&)
@rD rD
i’

P
PO

55

54

53

51
9 O0—9 —9 —9 —§

59

Randomized incremental construction

2
3
Co

58

3
CaD

S7

S5

S6

S6

S5

S7

58

68

Analysis

Storage analysis

69

The vertical decomposition structure T always uses linear storage
The search structure D can use anything between linear and quadratic storage

We analyse the expected number of new nodes when adding s;, using backwards
analysis (of course)

70

Storage of the structure

Backwards analysis in this case: Suppose we added s; and have computed 7; and
D;. All line segments (existing in 7;) had the same probability of having been the last
one added

71

Storage of the structure

For each of the i line segments, we can see how many trapezoids would have been

created if it were the last one added

72

For each of the i line segments, we can see how many trapezoids would have been

created if it were the last one added

73

For each of the i line segments, we can see how many trapezoids would have been

created if it were the last one added

74

The number of created trapezoids is linear in the number of deleted trapezoids

(leaves of D;_1), or intersected trapezoids by s; in T;_1; this is linear in k;

We will analyze

i
K= Z [no. of trapezoids created if s ; were last]
=1

75

Storage of the structure

Consider K; from the “trapezoid perspective”: For any trapezoid A, there are at
most four line segments whose insertion would have created it (top(A), bottom(A),
leftp(A), and rightp(A))

76

Storage of the structure

Consider K; from the “trapezoid perspective”: For any trapezoid A, there are at
most four line segments whose insertion would have created it (top(A), bottom(A),
leftp(A), and rightp(A))

77

Storage of the structure

Consider K; from the “trapezoid perspective”: For any trapezoid A, there are at
most four line segments whose insertion would have created it (top(A), bottom(A),
leftp(A), and rightp(A))

78

We know: There are at most 3i 4 1 trapezoids in a vertical decomposition of i line
segments in R

Hence,

K; =) [no. of segments that would create Al
A€T;

<) 4=12i+4
AeT;

79

Since K; is defined as a sum over i line segments, the average number of trapezoids
in T; created by s; is at most (12i +4) /i < 13

Since the expected number of new nodes is at most 13 in every step, the expected
size of the structure after adding n line segments is O(n)

80

Analysis

Query time analysis

81

Fix any point ¢ in the plane as a query point, we will analyze the probability that
inserting s; makes the search path to g longer

82

Query time of the structure

Backwards analysis: Take the situation after s; has been added, and ask the

question: How many of the i line segments made the search path to g longer?

oq

83

Backwards analysis: Take the situation after s; has been added, and ask the
question: How many of the i line segments made the search path to g longer?

The search path to g only became longer if g is in a trapezoid that was just created

by the latest insertion!

At most four line segments define the trapezoid that contains ¢, so the probability is

4/i

84

We analyze

n
[search path became longer due to i-th addition]
=1

L

n n
<Y 4/i =4-Y 1/i < 4(1+log,n)
i=1 i=1
So the expected query time is O(logn)

85

Theorem: Given a planar subdivision defined by a set of n non-crossing line
segments in the plane, we can preprocess it for planar point location queries in
O(nlogn) expected time, the structure uses O(n) expected storage, and the
expected query time is O(logn)

86

	Introduction
	Planar point location
	Strip-based structure

	Vertical decomposition
	The search structure
	Updating the vertical decomposition
	Updating the search structure

	Analysis
	Order matters
	Storage analysis
	Query time analysis

