
Lecture 9: Planar point location

Computational Geometry

Utrecht University

1

Introduction

2

Introduction

Planar point location

3

Point location

Point location problem: Preprocess a planar subdivision such that for any query

point q, the face of the subdivision containing q can be given quickly (name of the

face)

• From GPS coordinates, find the region on a map where you are located

• Subroutine for many other geometric problems (Chapter 13: motion planning,

or shortest path computation)

4

Point location

Planar subdivision: Partition of the

plane by a set of non-crossing line

segments into vertices, edges, and faces

non-crossing: disjoint, or at most a shared

endpoint

non-crossing

crossing

5

Point location

Data structuring question, so interest in

query time, storage requirements, and

preprocessing time

To store: set of n non-crossing line

segments and the subdivision they induce

6

Introduction

Strip-based structure

7

First solution

Idea: Draw vertical lines through all vertices, then do something for every vertical

strip that appears

8

First solution

9

In one strip

Inside a single strip, there is a

well-defined bottom-to-top order on the

line segments

Use this for a balanced binary search tree

that is valid if the query point is in this

strip (knowing between which edges we

are is knowing in which face we are)

10

Solution with strips

search tree on
x-coordinate

11

Solution with strips

To answer a query with q = (qx,qy), search in the main tree with qx to find a leaf,

then follow the pointer to search in the tree that is correct for the strip that contains

qx

Question: What are the storage requirements and what is the query time of this

structure?

12

Solution with strips

n
4 strips

n
4

13

Solution with strips

14

Vertical decomposition

15

Different idea

The vertical strips idea gave a refinement of the original subdivision, but the number

of faces went up from linear in n to quadratic in n

Is there a different refinement whose size remains linear, but in which we can still

do point location queries easily?

16

Vertical decomposition

Suppose we draw vertical extensions from every vertex up and down, but only until

the next line segment

• Assume the input line segments are not vertical

• Assume every vertex has a distinct x-coordinate

• Assume we have a bounding box R that encloses all line segments that define

the subdivision

This is called the vertical decomposition or trapezoidal decomposition

17

Vertical decomposition

R

18

Vertical decomposition faces

The vertical decomposition has triangular and trapezoidal faces

19

Vertical decomposition faces

Every face has a vertical left and/or right side that is a vertical extension, and is

bounded from above and below by some line segment of the input

The left and right sides are defined by some endpoint of a line segment

top(∆)

bottom(∆)

leftp(∆) rightp(∆)
∆

top(∆)

bottom(∆)

leftp(∆)
rightp(∆)∆

20

Vertical decomposition faces

Every face is defined by no more than four line segments

For any face, we ignore vertical extensions that end on top(∆) and bottom(∆)

∆

21

Neighbors of faces

Two trapezoids (including triangles) are neighbors if they share a vertical side

Each trapezoid has 1, 2, 3, or 4 neighbors

22

Neighbors of faces

A trapezoid could have many neighbors if vertices had the same x-coordinate

23

Representation

We could use a DCEL to represent a vertical decomposition, but we use a more

direct & convenient structure

• Every face ∆ is an object; it has fields for top(∆), bottom(∆), leftp(∆), and

rightp(∆) (two line segments and two vertices)

• Every face has fields to access its up to four neighbors

• Every line segment is an object and has fields for its endpoints (vertices) and

the name of the face in the original subdivision directly above it

• Each vertex stores its coordinates

24

Representation

R

f1

f1

f1
f1 f1

f1

f1

f1

f1

f2

f2
f3 f3

25

Representation

Any trapezoid ∆ can find out the name of the face it is part of via bottom(∆) and the

stored name of the face

26

Complexity

A vertical decomposition of n non-crossing line segments inside a bounding box R,

seen as a proper planar subdivision, has at most 6n+4 vertices and at most 3n+1
trapezoids

leftp(∆1)

leftp(∆2)

leftp(∆3)
sisi

27

Point location preprocessing

The input to planar point location is a planar subdivision, for example in DCEL

format

First, store with each edge the name of the face above it (our structure will find the

edge below any query point)

Then extract the edges to define a set S of non-crossing line segments; ignore the

DCEL otherwise

28

Point location solution

We will use randomized incremental construction to build, for a set S of non-crossing

line segments,

• a vertical decomposition T of S and R

• a search structure D whose leaves correspond to the trapezoids of T

The simple idea: Start with R, then add the line segments in random order and

maintain T and D

29

Point location solution

Let s1, . . . ,sn be the n line segments in random order

Let Ti be the vertical decomposition of R and s1, . . . ,si, and let Di be the search

structure obtained by inserting s1, . . . ,si in this order

R

R

T0 D0

30

Point location solution

Let s1, . . . ,sn be the n line segments in random order

Let Ti be the vertical decomposition of R and s1, . . . ,si, and let Di be the search

structure obtained by inserting s1, . . . ,si in this order

R

∆1

∆2

∆3

∆4

s1

p1

q1

p1

q1

s1

∆1 ∆2 ∆3 ∆4

T1 D1

31

Vertical decomposition

The search structure

32

Point location solution

The search structure D has x-nodes, which store an endpoint, and y-nodes, which

store a line segment s j

For any query point t , we only test at an x-node: Is t left or right of the vertical line

through the stored point?

For any query point t , we only test at an y-node: Is t below or above the stored line

segment?

We will guarantee that the question at a y-node is only asked if the query point t is
between the vertical lines through p j and q j , if line segment s j = p jq j is stored

33

Point location solution

R

∆1

∆2

∆3

∆4

s1

p1

q1

p1

q1

s1

∆1 ∆2 ∆3 ∆4

T1 D1

34

Point location solution

R

∆1

∆2

∆3

∆4

s1

p1

q1

p1

q1

s1

∆1 ∆2 ∆3 ∆4

s2

p2

q2

T1 D1

35

Point location solution

R

∆1

∆3

s1

p1

q1

p1

q1

s1

∆1 ∆3

s2

p2

q2

T1 D1

36

Point location solution

R

∆1

∆3

s1

p1

q1

p1

q1

s1

∆1 ∆3

s2

p2

q2
∆5

∆6

∆7

∆8

∆9

T2 D1

37

Point location solution

R

∆1

∆3

s1

p1

q1

p1

q1

s1

∆1 ∆3s2

p2

q2
∆5

∆6

∆7

∆8

∆9

p2

s2

q2

s2∆5

∆6∆7 ∆8

∆9

T2

D2

38

Point location solution

We want only one leaf in D to correspond to each trapezoid; this means we get a

search graph instead of a search tree

It is a directed acyclic graph, or DAG, hence the name D

39

Point location solution

R

∆1

∆3

s1

p1

q1

p1

q1

s1

∆1 ∆3s2

p2

q2
∆5

∆6

∆7

∆8

∆9

p2

s2

q2

s2∆5

∆6∆7 ∆8

∆9

T2

D2

40

Point location query

A point location query is done by following a path in the search structure D to a leaf,

then following its pointer to a trapezoid of T , then accessing bottom(..) of this

trapezoid, and reporting the name of the face stored with it

41

Point location query

R

∆1

∆3

s1

p1

q1

p1

q1

s1

∆1 ∆3s2

p2

q2
∆5

∆6

∆7

∆8

∆9

p2

s2

q2

s2∆5

∆6∆7 ∆8

∆9

T2

D2

42

The incremental step

Suppose we have Di−1 and Ti−1, how do we add si?

Because Di−1 is a valid point location structure for s1, . . . ,si−1, we can use it to find

the trapezoid of Ti−1 that contains pi, the left endpoint of si

Then we use Ti−1 to find all other trapezoids that intersect si

43

Vertical decomposition

Updating the vertical decomposition

44

Find intersected trapezoids

∆0

pi

si

qi

45

Find intersected trapezoids

∆0

pi

si

qi

46

Find intersected trapezoids

∆0

∆1

∆2

∆3
∆4

∆5
∆6

∆7

pi

si

qi

47

Find intersected trapezoids

∆0

∆1

∆2

∆3
∆4

∆5
∆6

∆7

pi

si

qi

48

Find intersected trapezoids

After locating the trapezoid that contains pi, we can determine all k trapezoids that

intersect si in O(k) time by traversing Ti−1

49

Updating the vertical decomposition

∆0

∆1

∆2

∆3
∆4

∆5
∆6

∆7

50

Updating the vertical decomposition

∆0

∆1

∆2

∆3
∆4

∆5
∆6

∆7

51

Updating the vertical decomposition

52

Updating the vertical decomposition

We can update the vertical decomposition in O(k) time as well

53

Vertical decomposition

Updating the search structure

54

Updating the search structure

The search structure has k leaves that are no longer valid as leaves; they become

internal nodes

We find these using the pointers from Ti−1 to Di−1

From the update of the vertical decomposition Ti−1 into Ti we know what new

leaves we must make for Di

All new nodes besides the leaves are x-nodes with pi and qi and y-nodes with si

55

Updating the search structure

∆8∆7

∆6∆5
∆4

∆3∆2∆1

∆0

∆9

Ti−1

Di−1

56

Updating the search structure

∆8∆7

∆6∆5
∆4

∆3∆2∆1

∆0

∆9

Ti

Di−1

leaves for the new trapezoids in Ti

57

Updating the search structure

Ti

Di−1

si

sisi

si

sisisi

si

leaves for the new trapezoids in Ti

58

Updating the search structure

Ti

Di−1

si

sisi

si

sisisi

si

leaves for the new trapezoids in Ti

pi

qi
si

si

59

Observations

For a single update step, adding si and updating Ti−1 and Di−1, we observe:

• If si intersects ki trapezoids of Ti−1, then we will create O(ki) new trapezoids

in Ti

• We find the ki trapezoids in time linear in the length of the search path of pi in

Di−1, plus O(ki) time

• We update by replacing ki leaves by O(ki) new internal nodes and O(ki) new

leaves

• The maximum depth increase is three nodes

60

Questions

Question: In what case is the depth increase three nodes?

Question: We noticed that the directed acyclic graph D is binary in its out-degree,

what is the maximum in-degree?

61

A common but special update

∆0

pi

si

If pi was already an existing vertex, we search in Di−1 with a point a fraction to the

right of pi on si

62

Analysis

63

Analysis

Order matters

64

Randomized incremental construction

Randomized incremental construction, where does it matter?

• The vertical decomposition Ti is independent of the insertion order among

s1, . . . ,si

• The search structure Di can be different for many orders of s1, . . . ,si

• The number of nodes in Di depends on the order

• The depth of search paths in Di depends on the order

65

Randomized incremental construction

p1

q1

s1 p2

q2

s2 p3

q5

s5

s1 s2 s3 s4 s5

66

Randomized incremental construction

p1

q1

s1

p2

q2

s2 p3

q3

s3

p4

q4

s4 p5

q5

s5

s1s2 s3 s4 s5

67

Randomized incremental construction

s1 s2 s3 s4

s5
s6
s7
s8

s1 s2 s3 s4

s5
s6
s7
s8

68

Analysis

Storage analysis

69

Storage of the structure

The vertical decomposition structure T always uses linear storage

The search structure D can use anything between linear and quadratic storage

We analyse the expected number of new nodes when adding si, using backwards

analysis (of course)

70

Storage of the structure

Backwards analysis in this case: Suppose we added si and have computed Ti and

Di. All line segments (existing in Ti) had the same probability of having been the last

one added

71

Storage of the structure

For each of the i line segments, we can see how many trapezoids would have been

created if it were the last one added

4

4
3

56

3

9

72

Storage of the structure

For each of the i line segments, we can see how many trapezoids would have been

created if it were the last one added

4

4
3

56

3

9

73

Storage of the structure

For each of the i line segments, we can see how many trapezoids would have been

created if it were the last one added

4

4
3

56

3

9

74

Storage of the structure

The number of created trapezoids is linear in the number of deleted trapezoids

(leaves of Di−1), or intersected trapezoids by si in Ti−1; this is linear in ki

We will analyze

Ki =
i

∑
j=1

[no. of trapezoids created if s j were last]

75

Storage of the structure

Consider Ki from the “trapezoid perspective”: For any trapezoid ∆, there are at

most four line segments whose insertion would have created it (top(∆), bottom(∆),

leftp(∆), and rightp(∆))

76

Storage of the structure

Consider Ki from the “trapezoid perspective”: For any trapezoid ∆, there are at

most four line segments whose insertion would have created it (top(∆), bottom(∆),

leftp(∆), and rightp(∆))

∆

77

Storage of the structure

Consider Ki from the “trapezoid perspective”: For any trapezoid ∆, there are at

most four line segments whose insertion would have created it (top(∆), bottom(∆),

leftp(∆), and rightp(∆))

∆

78

Storage of the structure

We know: There are at most 3i+1 trapezoids in a vertical decomposition of i line
segments in R

Hence,

Ki = ∑
∆∈Ti

[no. of segments that would create ∆]

≤ ∑
∆∈Ti

4 = 12i+4

79

Storage of the structure

Since Ki is defined as a sum over i line segments, the average number of trapezoids

in Ti created by si is at most (12i+4)/i ≤ 13

Since the expected number of new nodes is at most 13 in every step, the expected

size of the structure after adding n line segments is O(n)

80

Analysis

Query time analysis

81

Query time of the structure

Fix any point q in the plane as a query point, we will analyze the probability that

inserting si makes the search path to q longer

82

Query time of the structure

Backwards analysis: Take the situation after si has been added, and ask the

question: How many of the i line segments made the search path to q longer?

q

83

Query time of the structure

Backwards analysis: Take the situation after si has been added, and ask the

question: How many of the i line segments made the search path to q longer?

The search path to q only became longer if q is in a trapezoid that was just created

by the latest insertion!

At most four line segments define the trapezoid that contains q, so the probability is

4/i

84

Query time of the structure

We analyze

n

∑
i=1

[search path became longer due to i-th addition]

≤
n

∑
i=1

4/i = 4 ·
n

∑
i=1

1/i ≤ 4(1+ loge n)

So the expected query time is O(logn)

85

Result

Theorem: Given a planar subdivision defined by a set of n non-crossing line

segments in the plane, we can preprocess it for planar point location queries in

O(n logn) expected time, the structure uses O(n) expected storage, and the

expected query time is O(logn)

86

	Introduction
	Planar point location
	Strip-based structure

	Vertical decomposition
	The search structure
	Updating the vertical decomposition
	Updating the search structure

	Analysis
	Order matters
	Storage analysis
	Query time analysis

