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Question: In a set of n points, are there 3 points on a line?

Naive algorithm: tests all triples in O(n?) time
Faster algorithm: uses duality and arrangements

Note: other motivation in chapter 8 of the book
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primal plane dual plane

op:(p:c:py) o I = (m, _b)

point p = (px, py) = line p* : y = pex —py
line £ :y =mx~+b — point £* = (m,—Db)

Note: does not handle vertical lines
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primal plane dual plane

f:y:mx—kl) P*?y=pw$—py

mpg +b—py Pam —py +b

p = (pz,py) £* = (m,—b)
Duality preserves vertical distances

= incidence preserving: p € {ifand only if {* € p*

= order preserving: p lies below / if and only if £* lies below p*



It can be applied to other objects, like segments

primal plane



It can be applied to other objects, like segments

primal plane dual plane

The dual of a segment is a double wedge

Question: What line would dualize to a point in the right part of the double wedge?



Why use duality? It gives a new perspective!

Detecting three points on a line dualizes to detecting three lines intersecting in a
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Why use duality? It gives a new perspective!

Detecting three points on a line dualizes to detecting three lines intersecting in a

point
primal plane dual plane
* p3*
y ¢ h y
*
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Next we use arrangements
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Arrangement A(L): subdivision induced by a set of lines L

+ consists of faces, edges and vertices (some

unbounded)

+ arrangements consist of other geometric
objects too, like line segments, circles,

higher-dimensional objects
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Combinatorial Complexity:
« <n(n—1)/2 vertices
- <n? edges
« <n?/2+n/2+ 1 faces:
add lines incrementally

n

1+) i=n(n+1)/2+1
i=1

+ equality holds in simple arrangements

Overall O(n*) complexity
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Goal: Compute A (L) in boundingbox in DCELrepresentation

- plane sweep for line segment intersection: O((n+ k)logn) = O(n?logn)

« faster: incremental construction



Arrangements

Incremental Construction



Algorithm ConstructArrangement(L)

Input. Set L of n lines

Output. DCEL for A(L) in B(L)

1. Compute bounding box B(L)

2. Construct DCEL for subdivision
induced by B(L)
fori< lton

4, do insert /;



Incremental Construction

Algorithm ConstructArrangement(L)

Input. A set L of n lines in the plane

Output. DCEL for subdivision induced by B(L) and the part of A(L) inside B(L),
where B(L) is a suitable bounding box

1. Compute a bounding box B(L) that contains all vertices of A(L) in its interior
2. Construct DCEL for the subdivision induced by B(L)
3. fori<1ton
4. do Find the edge e on B(L) that contains the leftmost intersection point of
{; and A;
f < the bounded face incident to e
6.

while f is not the unbounded face, that is, the face outside B(L)
7. do Split f, and set f to be the next face intersected by /;
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Runtime analysis:

1. 0(n?)
2. constant

3.&4.7

Algorithm ConstructArrangement(L)

Input. Set L of n lines

Output. DCEL for A(L) in B(L)

1. Compute bounding box B(L)

2. Construct DCEL for subdivision
induced by B(L)
fori< lton

4, do insert ¢;
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Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m)
Proof:
4
« We can assume ¢ horizontal and no other line is

horizontal

+ We count number of left-bounding edges

+ We show by induction on m that this at most S5m:

« m=1:trivially true w
« m > 1:only at most 3 new edges if £] is unique,

at most 5 if £1 is not unique

5(m—1)+5=>5m



Run time analysis:

Algorithm ConstructArrangement(L)
Input. Set L of n lines.
Output. DCEL for A(L) in B(L).
1. Compute bounding box B(L).
2. Construct DCEL for subdivision
induced by B(L).
fori< lton
4, do insert /;.
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Algorithm ConstructArrangement(L)
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1. Compute bounding box B(L).
2. Construct DCEL for subdivision
induced by B(L).
fori< lton
4, do insert /;.
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Run time analysis:

1. 0(n?)
2. constant

3.8&4. Y% ,0(i) = O(n?)

Algorithm ConstructArrangement(L)
Input. Set L of n lines.
Output. DCEL for A(L) in B(L).
1. Compute bounding box B(L).
2. Construct DCEL for subdivision
induced by B(L).
fori< lton
4, do insert /;.

20



. . Algorithm ConstructArrangement(L)

Run time analysis:

Input. Set L of n lines.

Output. DCEL for A(L) in B(L).
1.0(n?) 1. Compute bounding box B(L).
2. Construct DCEL for subdivision

induced by B(L).

3.&4.31,0(3) = 0(;12) 3. fori<1ton

4, do insert /;.

2. constant

In total O(n?)

20






Algorithm:
+ run incremental construction algorithm for dual problem
+ stop when 3 lines pass through a point

Run time: O(n?)

21



Arrangements

Motion Planning

22



Where can the rod move by translation (no rotations) while avoiding obstacles?

/|

\ 4

23



Where can the rod move by translation (no rotations) while avoiding obstacles?

7

\ 4

+ pick a reference point:

lower end-point of rod
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Where can the rod move by translation (no rotations) while avoiding obstacles?

+ pick a reference point:
lower end-point of rod

+ shrink rod to a point,
expand obstacles accordingly:
locus of semi-free placements

23



Example: Motion Planning

Where can the rod move by translation (no rotations) while avoiding obstacles?

* pick a reference point:
lower end-point of rod
* shrink rod to a point,

expand obstacles accordingly:

locus of semi-free placements
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Example: Motion Planning

Where can the rod move by translation (no rotations) while avoiding obstacles?

+ pick a reference point:

lower end-point of rod

* shrink rod to a point,
expand obstacles accordingly:

locus of semi-free placements

* reachable configurations:

cell of initial configuration in

arrangement of line segments

23



Arrangements

k-Levels

24



The level of a point in an arrangement of lines is the number of lines strictly above it
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The level of a point in an arrangement of lines is the number of lines strictly above it

Open problem: What is the complexity of

k-levels?

Dual problem: What is the number of
k-sets in a point set?
Known bounds:
+ Erdés etal. '73:
Q(nlogk) and O(nk'/?)
- Dey'97: O(nk'/3)

25



In 3D, we have point-plane duality; lines dualize to other lines
An arrangement induced by 7 planes in 3D has complexity 0(n3)

Deciding whether a set of points in 3D has four or more co-planar points can be
donein 0(n3) time (dualize and construct the arrangement)

26



A geometric interpretation:

« parabola U : y = x?/2
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A geometric interpretation:
« parabola U : y = x?/2
* point p = (px, py) on U

+ derivative of U at p is py, i.e., p* has
same slope as the tangent line

+ the tangent line intersects y-axis at
2
(07 _px/2)
+ = p*isthe tangent line at p

27



Duality is a useful tool to reformulate certain problems on points in the plane to

lines in the plane, and vice versa
Dualization of line segments is especially useful

Arrangements, zones of lines in arrangements, and levels in arrangements are

useful concepts in computational geometry

All of this exists in three and higher dimensional spaces too

28
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