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Introduction
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Three Points on a Line

Question: In a set of n points, are there 3 points on a line?

Naive algorithm: tests all triples in O(n3) time

Faster algorithm: uses duality and arrangements

Note: other motivation in chapter 8 of the book
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Duality
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Duality

ℓ : y = mx+ b

p = (px, py)

point p = (px, py) 7→ line p∗ : y = pxx− py

line ℓ : y = mx+b 7→ point ℓ∗ = (m,−b)

Note:
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Duality

ℓ : y = mx+ b

p = (px, py)

primal plane dual plane

p∗ : y = pxx− py

ℓ∗ = (m,−b)

point p = (px, py) 7→ line p∗ : y = pxx− py

line ℓ : y = mx+b 7→ point ℓ∗ = (m,−b)

Note: does not handle vertical lines
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Duality

primal plane dual plane

ℓ : y = mx+ b

p = (px, py)

mpx + b− py

p∗ : y = pxx− py

ℓ∗ = (m,−b)

pxm− py + b

Duality preserves vertical distances

⇒ incidence preserving: p ∈ ℓ if and only if ℓ∗ ∈ p∗

⇒ order preserving: p lies below ℓ if and only if ℓ∗ lies below p∗
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Duality

It can be applied to other objects, like segments

primal plane

s
p

q`

The dual of a segment is a double wedge

Question: What line would dualize to a point in the right part of the double wedge?
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Duality

It can be applied to other objects, like segments

primal plane

s
p

q`

dual plane

s∗

p∗ q∗

`∗

The dual of a segment is a double wedge

Question: What line would dualize to a point in the right part of the double wedge?
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Usefulness of Duality

Why use duality? It gives a new perspective!

Detecting three points on a line dualizes to detecting three lines intersecting in a

point

x

y

x

y

primal plane dual plane

`

`∗

p1

p2

p3
p4 p2

∗

p4
∗

p1
∗ p3

∗

Next we use arrangements
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Arrangements
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Arrangements of Lines

ArrangementA(L): subdivision induced by a set of lines L

• consists of faces, edges and vertices (some

unbounded)

• arrangements consist of other geometric

objects too, like line segments, circles,

higher-dimensional objects

edge

vertex

face
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Arrangements of Lines

ArrangementA(L): subdivision induced by a set of lines L

• consists of faces, edges and vertices (some

unbounded)

• arrangements consist of other geometric

objects too, like line segments, circles,

higher-dimensional objects

edge

vertex

face

10



Arrangements of Lines

Combinatorial Complexity:

• ≤ n(n−1)/2 vertices

• ≤ n2 edges

• ≤ n2/2+n/2+1 faces:

add lines incrementally

1+
n

∑
i=1

i = n(n+1)/2+1

• equality holds in simple arrangements

Overall O(n2) complexity

edge

vertex

face
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Constructing Arrangements

Goal: ComputeA(L) in boundingbox in DCELrepresentation

• plane sweep for line segment intersection: O((n+ k) logn) = O(n2 logn)

• faster: incremental construction
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Arrangements

Incremental Construction
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Incremental Construction

`i

Algorithm ConstructArrangement(L)
Input. Set L of n lines

Output. DCEL forA(L) inB(L)
1. Compute bounding boxB(L)
2. Construct DCEL for subdivision

induced byB(L)
3. for i← 1 to n
4. do insert ℓi
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Incremental Construction

Algorithm ConstructArrangement(L)
Input. A set L of n lines in the plane

Output. DCEL for subdivision induced byB(L) and the part ofA(L) insideB(L),
whereB(L) is a suitable bounding box

1. Compute a bounding boxB(L) that contains all vertices ofA(L) in its interior

2. Construct DCEL for the subdivision induced byB(L)
3. for i← 1 to n
4. do Find the edge e onB(L) that contains the leftmost intersection point of

ℓi andAi

5. f ← the bounded face incident to e
6. while f is not the unbounded face, that is, the face outsideB(L)
7. do Split f , and set f to be the next face intersected by ℓi
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Incremental Construction

Face split:

f

`i

=⇒

`i
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Incremental Construction

Runtime analysis:

1. O(n2)

2. constant

3. & 4. ?

Algorithm ConstructArrangement(L)
Input. Set L of n lines

Output. DCEL forA(L) inB(L)
1. Compute bounding boxB(L)
2. Construct DCEL for subdivision

induced byB(L)
3. for i← 1 to n
4. do insert ℓi
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Zone Theorem

The zone of a line ℓ in an arrangementA(L) is the set of faces ofA(L) whose

closure intersects ℓ

`

Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m)
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Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m)
Proof:

• We can assume ℓ horizontal and no other line is

horizontal

• We count number of left-bounding edges

• We show by induction on m that this at most 5m:

• m = 1 : trivially true
• m > 1 : only at most 3 new edges if ℓ1 is unique,

at most 5 if ℓ1 is not unique

5(m−1)+5 = 5m

`

19



Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m)
Proof:

• We can assume ℓ horizontal and no other line is

horizontal

• We count number of left-bounding edges

• We show by induction on m that this at most 5m:

• m = 1 : trivially true
• m > 1 : only at most 3 new edges if ℓ1 is unique,

at most 5 if ℓ1 is not unique

5(m−1)+5 = 5m

`

19



Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m)
Proof:

• We can assume ℓ horizontal and no other line is

horizontal

• We count number of left-bounding edges

• We show by induction on m that this at most 5m:

• m = 1 : trivially true
• m > 1 : only at most 3 new edges if ℓ1 is unique,

at most 5 if ℓ1 is not unique

5(m−1)+5 = 5m

`

19



Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m)
Proof:

• We can assume ℓ horizontal and no other line is

horizontal

• We count number of left-bounding edges

• We show by induction on m that this at most 5m:

• m = 1 : trivially true

• m > 1 : only at most 3 new edges if ℓ1 is unique,

at most 5 if ℓ1 is not unique

5(m−1)+5 = 5m

`

19



Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m)
Proof:

• We can assume ℓ horizontal and no other line is

horizontal

• We count number of left-bounding edges

• We show by induction on m that this at most 5m:

• m = 1 : trivially true
• m > 1 : only at most 3 new edges if ℓ1 is unique,

at most 5 if ℓ1 is not unique

5(m−1)+5 = 5m

`w

v

`2`1

19



Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m)
Proof:

• We can assume ℓ horizontal and no other line is

horizontal

• We count number of left-bounding edges

• We show by induction on m that this at most 5m:

• m = 1 : trivially true
• m > 1 : only at most 3 new edges if ℓ1 is unique,

at most 5 if ℓ1 is not unique

5(m−1)+5 = 5m

`w

v

`2`1

19



Incremental Construction

Run time analysis:

1. O(n2)

2. constant

3. & 4. ∑n
i=1 O(i) = O(n2)

In total O(n2)

Algorithm ConstructArrangement(L)
Input. Set L of n lines.

Output. DCEL forA(L) inB(L).
1. Compute bounding boxB(L).
2. Construct DCEL for subdivision

induced byB(L).
3. for i← 1 to n
4. do insert ℓi.
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3 Points on a Line

Algorithm:

• run incremental construction algorithm for dual problem

• stop when 3 lines pass through a point

Run time: O(n2)
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Arrangements

Motion Planning

22



Example: Motion Planning

Where can the rod move by translation (no rotations) while avoiding obstacles?

• pick a reference point:

lower end-point of rod

• shrink rod to a point,

expand obstacles accordingly:

locus of semi-free placements

• reachable configurations:

cell of initial configuration in

arrangement of line segments
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Arrangements

k-Levels
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k-levels in Arrangements

The level of a point in an arrangement of lines is the number of lines strictly above it

Open problem: What is the complexity of

k-levels?

Dual problem: What is the number of

k-sets in a point set?

Known bounds:

• Erdös et al. ’73:

Ω(n logk) and O(nk1/2)

• Dey ’97: O(nk1/3)

3

1

0

2
2

2

1

3

3
3 4
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Three dimensions

In 3D, we have point-plane duality; lines dualize to other lines

An arrangement induced by n planes in 3D has complexity O(n3)

Deciding whether a set of points in 3D has four or more co-planar points can be

done in O(n3) time (dualize and construct the arrangement)
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More Duality

A geometric interpretation:

• parabolaU : y = x2/2

• point p = (px, py) onU

• derivative ofU at p is px, i.e., p∗ has
same slope as the tangent line

• the tangent line intersects y-axis at
(0,−p2

x/2)

• ⇒ p∗ is the tangent line at p

p

q

q′

p∗

q∗

U

27
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Summary

Duality is a useful tool to reformulate certain problems on points in the plane to

lines in the plane, and vice versa

Dualization of line segments is especially useful

Arrangements, zones of lines in arrangements, and levels in arrangements are

useful concepts in computational geometry

All of this exists in three and higher dimensional spaces too
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