%% Utrecht University

Lecture 11: Arrangements and Duality

Computational Geometry

Utrecht University



Introduction



Question: In a set of n points, are there 3 points on a line?




Question: In a set of n points, are there 3 points on a line?

Naive algorithm: tests all triples in O(n?) time



Question: In a set of n points, are there 3 points on a line?

Naive algorithm: tests all triples in O(n?) time
Faster algorithm: uses duality and arrangements



Question: In a set of n points, are there 3 points on a line?

Naive algorithm: tests all triples in O(n?) time
Faster algorithm: uses duality and arrangements

Note: other motivation in chapter 8 of the book



Duality



o D= (pmypy)



primal plane dual plane

op:(p:c:py) o I = (m, _b)

point p = (px, py) = line p* : y = pex —py
line £ :y =mx~+b — point £* = (m,—Db)



primal plane dual plane

op:(pmpy) o ¥ =(m,—b)

point p = (px, py) — line p* 1y = pyx —py
line £ : y = mx—+ b+ point £* = (m,—D)

Note: self inverse (p*)* =p, (£*)*=1¢



primal plane dual plane

op:(p:c:py) o I = (m, _b)

point p = (px, py) = line p* : y = pex —py
line £ :y =mx~+b — point £* = (m,—Db)

Note: does not handle vertical lines



primal plane dual plane

f:y:mx—Fb p*:y=pwx_py

mpz +b—py DM — Py + b
P = (Pz, py) * = (m,—b)

Duality preserves vertical distances



primal plane dual plane

f:y:mx—Fb p*:y=pw$_py

mpg +b—py Pam —py +b

p = (Pz,Py) ¢* = (m, —b)

Duality preserves vertical distances
= incidence preserving: p € {ifand only if {* € p*



primal plane dual plane

f:y:mx—kl) P*?y=pw$—py

mpg +b—py Pam —py +b

p = (pz,py) £* = (m,—b)
Duality preserves vertical distances

= incidence preserving: p € {ifand only if {* € p*

= order preserving: p lies below / if and only if £* lies below p*



It can be applied to other objects, like segments

primal plane



It can be applied to other objects, like segments

primal plane dual plane

The dual of a segment is a double wedge

Question: What line would dualize to a point in the right part of the double wedge?



Why use duality? It gives a new perspective!

Detecting three points on a line dualizes to detecting three lines intersecting in a

point
primal plane dual plane
* p3*
y ¢ h y
*
ps® 3 o P2
p2
X o X
P1




Why use duality? It gives a new perspective!

Detecting three points on a line dualizes to detecting three lines intersecting in a

point
primal plane dual plane
* p3*
y ¢ h y
*
p4 @ 3 oyt P2
p2
X o+ X
P1

Next we use arrangements



Arrangements



Arrangement A(L): subdivision induced by a set of lines L

+ consists of faces, edges and vertices (some

unbounded)




Arrangement A(L): subdivision induced by a set of lines L

+ consists of faces, edges and vertices (some

unbounded)

+ arrangements consist of other geometric
objects too, like line segments, circles,

higher-dimensional objects




Combinatorial Complexity:

« <n(n—1)/2 vertices




Combinatorial Complexity:
« <n(n—1)/2 vertices

. <n? edges




Combinatorial Complexity:
« <n(n—1)/2 vertices
- <n? edges
« <n?/2+n/2+ 1 faces:
add lines incrementally

n

1+) i=n(n+1)/2+1
i=1




Combinatorial Complexity:
« <n(n—1)/2 vertices
- <n? edges
« <n?/2+n/2+ 1 faces:
add lines incrementally

n

1+) i=n(n+1)/2+1
i=1

+ equality holds in simple arrangements



Combinatorial Complexity:
« <n(n—1)/2 vertices
- <n? edges
« <n?/2+n/2+ 1 faces:
add lines incrementally

n

1+) i=n(n+1)/2+1
i=1

+ equality holds in simple arrangements

Overall O(n*) complexity



Goal: Compute A (L) in boundingbox in DCELrepresentation




Goal: Compute A (L) in boundingbox in DCELrepresentation

- plane sweep for line segment intersection: O((n+ k)logn) = O(n?logn)



Goal: Compute A (L) in boundingbox in DCELrepresentation

- plane sweep for line segment intersection: O((n+ k)logn) = O(n?logn)

« faster: incremental construction



Arrangements

Incremental Construction



Algorithm ConstructArrangement(L)

Input. Set L of n lines

Output. DCEL for A(L) in B(L)

1. Compute bounding box B(L)

2. Construct DCEL for subdivision
induced by B(L)
fori< lton

4, do insert /;



Incremental Construction

Algorithm ConstructArrangement(L)

Input. A set L of n lines in the plane

Output. DCEL for subdivision induced by B(L) and the part of A(L) inside B(L),
where B(L) is a suitable bounding box

1. Compute a bounding box B(L) that contains all vertices of A(L) in its interior
2. Construct DCEL for the subdivision induced by B(L)
3. fori<1ton
4. do Find the edge e on B(L) that contains the leftmost intersection point of
{; and A;
f < the bounded face incident to e
6.

while f is not the unbounded face, that is, the face outside B(L)
7. do Split f, and set f to be the next face intersected by /;






Runtime analysis:

Algorithm ConstructArrangement(L)

Input. Set L of n lines

Output. DCEL for A(L) in B(L)

1. Compute bounding box B (L)

2. Construct DCEL for subdivision
induced by B(L)
fori< lton

4, do insert ¢;



Runtime analysis:

1. 0(n?)

Algorithm ConstructArrangement(L)

Input. Set L of n lines

Output. DCEL for A(L) in B(L)

1. Compute bounding box B (L)

2. Construct DCEL for subdivision
induced by B(L)
fori< lton

4, do insert ¢;



Runtime analysis:

1. 0(n?)
2. constant

Algorithm ConstructArrangement(L)

Input. Set L of n lines

Output. DCEL for A(L) in B(L)

1. Compute bounding box B(L)

2. Construct DCEL for subdivision
induced by B(L)
fori< lton

4, do insert ¢;



Runtime analysis:

1. 0(n?)
2. constant

3.&4.7

Algorithm ConstructArrangement(L)

Input. Set L of n lines

Output. DCEL for A(L) in B(L)

1. Compute bounding box B(L)

2. Construct DCEL for subdivision
induced by B(L)
fori< lton

4, do insert ¢;



The zone of a line £ in an arrangement A (L) is the set of faces of A(L) whose
closure intersects £




The zone of a line £ in an arrangement A (L) is the set of faces of A(L) whose
closure intersects £

Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m)



Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m)

Proof:

« We can assume ¢ horizontal and no other line is
horizontal




Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m)

Proof:

« We can assume ¢ horizontal and no other line is
horizontal

+ We count number of /eft-bounding edges




Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m)

Proof:
+ We can assume £ horizontal and no other line is
horizontal
+ We count number of left-bounding edges

+ We show by induction on m that this at most S5m:




Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m)
Proof:

« We can assume ¢ horizontal and no other line is
horizontal
+ We count number of left-bounding edges

+ We show by induction on m that this at most S5m:

« m=1:trivially true L



Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m)

Proof:
4
« We can assume ¢ horizontal and no other line is
horizontal
+ We count number of left-bounding edges ¥

+ We show by induction on m that this at most S5m:

« m=1:trivially true w l
« m > 1:only at most 3 new edges if £] is unique,



Theorem: The complexity of the zone of a line in an arrangement of m lines is O(m)
Proof:
4
« We can assume ¢ horizontal and no other line is

horizontal

+ We count number of left-bounding edges

+ We show by induction on m that this at most S5m:

« m=1:trivially true w
« m > 1:only at most 3 new edges if £] is unique,

at most 5 if £1 is not unique

5(m—1)+5=>5m



Run time analysis:

Algorithm ConstructArrangement(L)
Input. Set L of n lines.
Output. DCEL for A(L) in B(L).
1. Compute bounding box B(L).
2. Construct DCEL for subdivision
induced by B(L).
fori< lton
4, do insert /;.

20



Run time analysis:

1. 0(n?)

Algorithm ConstructArrangement(L)
Input. Set L of n lines.
Output. DCEL for A(L) in B(L).
1. Compute bounding box B(L).
2. Construct DCEL for subdivision
induced by B(L).
fori< lton
4, do insert /;.

20



Run time analysis:

1. 0(n?)
2. constant

Algorithm ConstructArrangement(L)
Input. Set L of n lines.
Output. DCEL for A(L) in B(L).
1. Compute bounding box B(L).
2. Construct DCEL for subdivision
induced by B(L).
fori< lton
4, do insert /;.

20



Run time analysis:

1. 0(n?)
2. constant

3.8&4. Y% ,0(i) = O(n?)

Algorithm ConstructArrangement(L)
Input. Set L of n lines.
Output. DCEL for A(L) in B(L).
1. Compute bounding box B(L).
2. Construct DCEL for subdivision
induced by B(L).
fori< lton
4, do insert /;.

20



. . Algorithm ConstructArrangement(L)

Run time analysis:

Input. Set L of n lines.

Output. DCEL for A(L) in B(L).
1.0(n?) 1. Compute bounding box B(L).
2. Construct DCEL for subdivision

induced by B(L).

3.&4.31,0(3) = 0(;12) 3. fori<1ton

4, do insert /;.

2. constant

In total O(n?)

20






Algorithm:
+ run incremental construction algorithm for dual problem
+ stop when 3 lines pass through a point

Run time: O(n?)

21



Arrangements

Motion Planning

22



Where can the rod move by translation (no rotations) while avoiding obstacles?

/|

\ 4

23



Where can the rod move by translation (no rotations) while avoiding obstacles?

7

\ 4

+ pick a reference point:

lower end-point of rod

23



Where can the rod move by translation (no rotations) while avoiding obstacles?

+ pick a reference point:
lower end-point of rod

+ shrink rod to a point,
expand obstacles accordingly:
locus of semi-free placements

23



Example: Motion Planning

Where can the rod move by translation (no rotations) while avoiding obstacles?

* pick a reference point:
lower end-point of rod
* shrink rod to a point,

expand obstacles accordingly:

locus of semi-free placements

23



Example: Motion Planning

Where can the rod move by translation (no rotations) while avoiding obstacles?

+ pick a reference point:

lower end-point of rod

* shrink rod to a point,
expand obstacles accordingly:

locus of semi-free placements

* reachable configurations:

cell of initial configuration in

arrangement of line segments

23



Arrangements

k-Levels

24



The level of a point in an arrangement of lines is the number of lines strictly above it

25



The level of a point in an arrangement of lines is the number of lines strictly above it

Open problem: What is the complexity of

k-levels?

25



The level of a point in an arrangement of lines is the number of lines strictly above it

Open problem: What is the complexity of

k-levels?

Dual problem: What is the number of
k-sets in a point set?

25



The level of a point in an arrangement of lines is the number of lines strictly above it

Open problem: What is the complexity of

k-levels?

Dual problem: What is the number of
k-sets in a point set?
Known bounds:

» Erdésetal. '73:
Q(nlogk) and O(nk'/?)

25



The level of a point in an arrangement of lines is the number of lines strictly above it

Open problem: What is the complexity of

k-levels?

Dual problem: What is the number of
k-sets in a point set?
Known bounds:
+ Erdés etal. '73:
Q(nlogk) and O(nk'/?)
- Dey'97: O(nk'/3)

25



In 3D, we have point-plane duality; lines dualize to other lines
An arrangement induced by 7 planes in 3D has complexity 0(n3)

Deciding whether a set of points in 3D has four or more co-planar points can be
donein 0(n3) time (dualize and construct the arrangement)

26



A geometric interpretation:

« parabola U : y = x?/2

27



A geometric interpretation:
« parabola U : y = x?/2
* point p = (px, py) on U

27



A geometric interpretation:
« parabola U : y = x?/2
* point p = (px, py) on U

+ derivative of U at p is py, i.e., p* has
same slope as the tangent line

27



A geometric interpretation:
« parabola U : y = x?/2
* point p = (px, py) on U

+ derivative of U at p is py, i.e., p* has
same slope as the tangent line

+ the tangent line intersects y-axis at
2
(07 _px/2)

27



A geometric interpretation:
« parabola U : y = x?/2
* point p = (px, py) on U

+ derivative of U at p is py, i.e., p* has
same slope as the tangent line

+ the tangent line intersects y-axis at
2
(07 _px/2)
+ = p*isthe tangent line at p

27



Duality is a useful tool to reformulate certain problems on points in the plane to

lines in the plane, and vice versa
Dualization of line segments is especially useful

Arrangements, zones of lines in arrangements, and levels in arrangements are

useful concepts in computational geometry

All of this exists in three and higher dimensional spaces too

28



	Introduction
	Duality
	Arrangements
	Incremental Construction
	Motion Planning
	k-Levels


