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Introduction



Motivation: Terrains by interpolation

To build a model of the terrain surface,

we can start with a number of sample

points where we know the height.



How do we interpolate the height at other

points? ° ¢
° [ ]
+ Nearest neighbor interpolation ¢ 21
+ Piecewise linear interpolation by a 233. °? o
triangulation a 246
°235 258
+ Moving windows interpolation °
L4 240 ® 251

+ Natural neighbor interpolation



Triangulations



LetP = {p1,...,pn} be a point set. A
triangulation of P is a maximal planar

subdivision with vertex set P.

Complexity:
+ 2n—2 — k triangles
+ 3n—3 — k edges
where k is the number of points in P on

the convex hull of P



Triangulation

But which triangulation?



But which triangulation?

For interpolation, it is good if triangles are not long and skinny. We will try to use
large angles in our triangulation.



Angle Vector of a Triangulation

+ Let T be a triangulation of P with m triangles. Its angle vector is

A(T) = (au,...,03,) where Qy,..., 03, are the angles of T sorted by
increasing value.

« Let T’ be another triangulation of P. We
define A(T) > A(T") ifA(T) is
lexicographically larger than A(T")

- T'is angle optimal if A(T) > A(T”) for all
triangulations J’ of P




+ Change in angle vector:

oy,...,0 are replaced by @, ..., 0t

* The edge e = p;p; is illegal if min| <j<¢ 0; < minj<j<¢ 0

+ Flipping an illegal edge increases the angle vector



How do we determine if an edge is illegal?

Lemma: The edge p;p; is illegal if and

only if py lies in the interior of the circle C.




The inscribed angle Theorem

Theorem: Let C be a circle, £ a line intersecting C in
points a and b, and p, g, r, s points lying on the
same side of /. Suppose that p,q lie on C, r lies

inside C, and s lies outside C. Then
Larb > Lapb = Lagb > Lasb,

where £abc denotes the smaller angle (at b)

defined by three points a, b, c.




Legal Triangulations

Alegal triangulation is a triangulation that does not contain any illegal edge.
Algorithm LegalTriangulation(J)

Input. A triangulation T of a point set P.

Output. A legal triangulation of P.

1. while T contains an illegal edge p;p;

2 do (x Flip p;p; *)

3 Let p;ipjpr and p;pjp; be the two triangles adjacent to p;p;.
4, Remove p;p; from T, and add pypy instead.

5. returnT

Question: Why does this algorithm terminate?



Delaunay Triangulations



Let P be a set of n points in the plane

The Voronoi diagram Vor(P) is the subdivision .
of the plane into Voronoi cells V(p) forall p € P °

Let G be the dual graph of Vor(P)

The Delaunay graph DG(P) is the straight line
embedding of G
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Delaunay Triangulations

Properties



Theorem: The Delaunay graph of a planar point set is a plane graph.

contained in V(p;)

pj

contained in V(p;)
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If the point set P is in general position then the Delaunay graph is a
triangulation.
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Empty Circle Property

Theorem: Let P be a set of points in the plane, and let J be a triangulation of P.
Then T is a Delaunay triangulation of P if and only if the circumcircle of any triangle

of T does not contain a point of P in its interior.
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Theorem: Let P be a set of points in the plane. A triangulation T of P is
legal if and only if T is a Delaunay triangulation.
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Theorem: Let P be a set of points in the plane.
Any angle-optimal triangulation of P is a Delaunay triangulation of P. Furthermore,
any Delaunay triangulation of P maximizes the minimum angle over all

triangulations of P.
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There are several ways to compute the Delaunay triangulation:
+ By iterative flipping from any triangulation
* By plane sweep
+ By randomized incremental construction

* By conversion from the Voronoi diagram

The last three run in O(nlogn) time [expected] for n points in the plane
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Applications
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Delaunay triangulations help in constructing various things:
+ Euclidean Minimum Spanning Trees

* Approximations to the Euclidean

Traveling Salesperson Problem

* O¢-Hulls

27



Applications

Minimum spanning trees
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For a set P of n points in the plane, the a
Euclidean Minimum Spanning Tree is the

graph with minimum summed edge length o
that connects all points in P and has only the

points of P as vertices
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For a set P of n points in the plane, the
Euclidean Minimum Spanning Tree is the
graph with minimum summed edge length

that connects all points in P and has only the

points of P as vertices
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Lemma: The Euclidean Minimum Spanning Tree does not

have cycles (it really is a tree)

Proof: Suppose G is the shortest connected graph and it has a
cycle. Removing one edge from the cycle makes a new graph

G’ that is still connected but which is shorter. Contradiction
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Euclidean Minimum Spanning Tree

Lemma: Every edge of the Euclidean
Minimum Spanning Tree

is an edge in the Delaunay graph

Proof: Suppose T is an EMST with an
edge e = pq that is not Delaunay

Consider the circle C that has e as its
diameter. Since e is not Delaunay, C must
contain another point r in P (different

from p and q)
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Lemma: Every edge of the Euclidean

Minimum Spanning Tree //, :/

is an edge in the Delaunay graph l\ e

Proof: (continued) \ N
\

Either the path in T from r to p passes Z ‘u

through g, or vice versa. A ’ /:'

The cases are symmetric, so we can T

assume the former case
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Euclidean Minimum Spanning Tree

Lemma: Every edge of the Euclidean
Minimum Spanning Tree

is an edge in the Delaunay graph
Proof: (continued)

Then removing e and inserting pr instead
will give a connected graph again (in fact,

atree)

Since g was the furthest point from p
inside C, ris closer to ¢, so T was not a

minimum spanning tree. Contradiction
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Euclidean Minimum Spanning Tree

How can we compute a Euclidean Minimum Spanning Tree efficiently?

From your Data Structures course: A data structure exists that maintains
disjoint sets and allows the following two operations:
+ Union: Takes two sets and makes one new set that is the union
(destroys the two given sets)
+ Find: Takes one element and returns the name of the set that
contains it
If there are n elements in total, then all Unions together take O(nlogn)

time and each Find operation takes O(1) time
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Euclidean Minimum Spanning Tree

Let P be a set of n points in the plane for which we want to compute the EMST

1. Make a Union-Find structure where every point of P is in a separate set

2. Construct the Delaunay triangulation DT of P
3. Take all edges of DT and sort them by length

4. For all edges e from short to long:

+ Let the endpoints of e be p and g
+ If Find(p) 5& Find(g), then put e in the EMST, and Union(Find(p),Find(q))
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Step 1 takes linear time, the other three steps take O(nlogn) time

Theorem: Let P be a set of n points in the plane.
The Euclidean Minimum Spanning Tree of P can be computed in O(nlogn) time
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Applications

Traveling Salesperson
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The traveling salesperson problem

Given a set P of n points in the plane, the Euclidean Traveling Salesperson Problem

is to compute a tour (cycle) that visits all points of P and has minimum length

A tour is an order on the points of P (more precisely: a cyclic order). A set of n points
has (n — 1)! different tours
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We can determine the length of each tour in O(n) time: a brute-force algorithm to

solve the Euclidean Traveling Salesperson Problem (ETSP) takes

O(n)-O((n—1)!) = O(n!) time

How bad is n!?

40



| n | n? | 2" | n!

6 36 64 720

7 49 128 5040

8 64 256 40K

9 81 512 360K

10 | 100 | 1024 3.5M

15 | 225 32K | 2,000,000T
20 | 400 ™
30 | 900 1G

Clever algorithms can solve instances in O(n? - 2") time
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If an algorithm A solves an optimization problem always within a factor k of the

optimum, then A is called an k-approximation algorithm

If an instance I of ETSP has an optimal solution of length L, then a k-approximation

algorithm will find a tour of length < k- L
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Consider the diameter problem of a set of n
points. We can compute the real value of the
diameter in O(nlogn) time

Suppose we take any point p, determine its
furthest point ¢, and return their distance. This
takes only O(n) time

Question: Is this an approximation algorithm?
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Approximation algorithms

Consider the diameter problem of a set of n
points. We can compute the real value of the

diameter in O(nlogn) time

Suppose we take any point p, determine its
furthest point ¢, and return their distance. This

takes only O(n) time

Question: Is this an approximation algorithm?
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Suppose we determine the point with minimum
x-coordinate p and the point with maximum
x-coordinate ¢, and return their distance. This takes

only O(n) time

Question: Is this an approximation algorithm?
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Suppose we determine the point with minimum

x-coordinate p and the point with maximum
x-coordinate ¢, and return their distance. This takes

only O(n) time

Question: Is this an approximation algorithm?
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Suppose we determine the point with minimum
x-coordinate p and the point with maximum
x-coordinate q.

Then we determine the point with minimum
y-coordinate r and the point with maximum
y-coordinate s.

We return max(d(p,q), d(r,s)).

This takes only O(n) time

Question: Is this an approximation algorithm?
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Approximation algorithms

Suppose we determine the point with minimum
x-coordinate p and the point with maximum
x-coordinate g.

Then we determine the point with minimum
y-coordinate r and the point with maximum
y-coordinate s.

We return max(d(p,q), d(r,s)).

This takes only O(n) time

Question: Is this an approximation algorithm?
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Back to Euclidean Traveling Salesperson:

We will use the EMST to approximate the
ETSP

start at any vertex
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Back to Euclidean Traveling Salesperson:

We will use the EMST to approximate the
ETSP

follow an edge on one side
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Back to Euclidean Traveling Salesperson:

We will use the EMST to approximate the
ETSP

... to get to another vertex
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Back to Euclidean Traveling Salesperson: \

We will use the EMST to approximate the
ETSP

proceed this way
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Back to Euclidean Traveling Salesperson:

We will use the EMST to approximate the
ETSP

skipping visited vertices
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N/
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Back to Euclidean Traveling Salesperson:

We will use the EMST to approximate the
ETSP

skipping visited vertices
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Back to Euclidean Traveling Salesperson:

We will use the EMST to approximate the
ETSP

and close the tour
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Back to Euclidean Traveling Salesperson:

We will use the EMST to approximate the
ETSP

and close the tour
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Why is this tour an approximation?

» The walk visits every edge twice, so
it has length 2 - |[EMST |

* The tour skips vertices, which means
the tour has length < 2 - |EMST |

* The optimal ETSP-tour is a spanning
tree if you remove any edge!!!
So |[EMST| < |ETSP|

optimal ETSP-tour
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Theorem: Given a set of n points in the plane, a tour visiting all points whose length
is at most twice the minimum possible can be computed in O(nlogn) time

In other words: an O(nlogn) time, 2-approximation for ETSP exists
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Applications

Shape Approximation
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Suppose that you have a set of points in e
the plane that were sampled from a * e
shape Q
o o °
We would like to reconstruct the shape 50° o .
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Suppose that you have a set of points in
the plane that were sampled from a

shape

We would like to reconstruct the shape
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An o-disk is a disk of radius o

The &t-shape of a point set P is the graph
with the points of P as the vertices, and
two vertices p, g are connected by an
edge if there exists an Q-disk with p and
g on the boundary but no other points if

P inside or on the boundary
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An o-disk is a disk of radius o

The &t-shape of a point set P is the graph
with the points of P as the vertices, and
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Because of the empty disk property of
Delaunay triangulations (each Delaunay
edge has an empty disk through its
endpoints), every 0¢-shape edge is also a

Delaunay edge

Hence: there are O(n) o-shape edges,

and they cannot properly intersect
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Given the Delaunay triangulation, we can
determine for any edge all sizes of empty
disks through the endpoints in O(1) time

So the a-shape can be computed in
O(nlogn) time
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The Delaunay triangulation is a versatile structure that can be computed in
O(nlogn) time for a set of n points in the plane

Approximation algorithms are like heuristics, but they come with a guarantee on the
quality of the approximation. They are useful when an optimal solution is too
time-consuming to compute
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