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Introduction
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Motivation: Terrains by interpolation

To build a model of the terrain surface,

we can start with a number of sample

points where we know the height.
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Motivation: Terrains

How do we interpolate the height at other

points?

• Nearest neighbor interpolation

• Piecewise linear interpolation by a

triangulation

• Moving windows interpolation

• Natural neighbor interpolation

• . . .
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Triangulations
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Triangulation

Let P = {p1, . . . , pn} be a point set. A

triangulation of P is a maximal planar

subdivision with vertex set P.

Complexity:

• 2n−2− k triangles

• 3n−3− k edges

where k is the number of points in P on

the convex hull of P
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Triangulation

But which triangulation?
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Triangulation

But which triangulation?

For interpolation, it is good if triangles are not long and skinny. We will try to use

large angles in our triangulation.
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Angle Vector of a Triangulation

• Let T be a triangulation of P with m triangles. Its angle vector is

A(T) = (α1, . . . ,α3m) where α1, . . . ,α3m are the angles of T sorted by

increasing value.

• Let T′ be another triangulation of P. We

define A(T)> A(T′) if A(T) is
lexicographically larger than A(T′)

• T is angle optimal if A(T)≥ A(T′) for all

triangulations T′ of P
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Edge Flipping

edge flip
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• Change in angle vector:

α1, . . . ,α6 are replaced by α ′
1, . . . ,α ′
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• The edge e = pi p j is illegal if min1≤i≤6 αi < min1≤i≤6 α ′
i

• Flipping an illegal edge increases the angle vector
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Characterisation of Illegal Edges

How do we determine if an edge is illegal?

Lemma: The edge pi p j is illegal if and

only if pl lies in the interior of the circleC.
pi
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pk

pl

illegal
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The inscribed angle Theorem

Theorem: LetC be a circle, ℓ a line intersectingC in

points a and b, and p,q,r,s points lying on the

same side of ℓ. Suppose that p,q lie onC, r lies

insideC, and s lies outsideC. Then

∡arb > ∡apb = ∡aqb > ∡asb,

where∡abc denotes the smaller angle (at b)
defined by three points a,b,c.
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Legal Triangulations

A legal triangulation is a triangulation that does not contain any illegal edge.

Algorithm LegalTriangulation(T)

Input. A triangulation T of a point set P.

Output. A legal triangulation of P.

1. while T contains an illegal edge pi p j

2. do (∗ Flip pi p j ∗)
3. Let pi p j pk and pi p j pl be the two triangles adjacent to pi p j .

4. Remove pi p j from T, and add pk pl instead.

5. return T

Question: Why does this algorithm terminate?
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Delaunay Triangulations
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Voronoi Diagram and Delaunay Graph

Let P be a set of n points in the plane

The Voronoi diagram Vor(P) is the subdivision

of the plane into Voronoi cellsV(p) for all p ∈ P

Let G be the dual graph of Vor(P)

The Delaunay graphDG(P) is the straight line

embedding of G
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Delaunay Triangulations

Properties
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Planarity of the Delaunay Graph

Theorem: The Delaunay graph of a planar point set is a plane graph.
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Delaunay Triangulation

If the point set P is in general position then the Delaunay graph is a

triangulation.

vf
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Empty Circle Property

Theorem: Let P be a set of points in the plane, and let T be a triangulation of P.

Then T is a Delaunay triangulation of P if and only if the circumcircle of any triangle

of T does not contain a point of P in its interior.
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Delaunay Triangulations and Legal Triangulations

Theorem: Let P be a set of points in the plane. A triangulation T of P is

legal if and only if T is a Delaunay triangulation.
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Angle Optimality and Delaunay Triangulations

Theorem: Let P be a set of points in the plane.

Any angle-optimal triangulation of P is a Delaunay triangulation of P. Furthermore,

any Delaunay triangulation of P maximizes the minimum angle over all

triangulations of P.
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Computing Delaunay Triangulations

There are several ways to compute the Delaunay triangulation:

• By iterative flipping from any triangulation

• By plane sweep

• By randomized incremental construction

• By conversion from the Voronoi diagram

The last three run in O(n logn) time [expected] for n points in the plane
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Applications
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Using Delaunay Triangulations

Delaunay triangulations help in constructing various things:

• Euclidean Minimum Spanning Trees

• Approximations to the Euclidean

Traveling Salesperson Problem

• α -Hulls
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Applications

Minimum spanning trees
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Euclidean Minimum Spanning Tree

For a set P of n points in the plane, the

Euclidean Minimum Spanning Tree is the

graph with minimum summed edge length

that connects all points in P and has only the

points of P as vertices

29



Euclidean Minimum Spanning Tree

For a set P of n points in the plane, the

Euclidean Minimum Spanning Tree is the

graph with minimum summed edge length

that connects all points in P and has only the

points of P as vertices

30



Euclidean Minimum Spanning Tree

Lemma: The Euclidean Minimum Spanning Tree does not

have cycles (it really is a tree)

Proof: Suppose G is the shortest connected graph and it has a

cycle. Removing one edge from the cycle makes a new graph

G′ that is still connected but which is shorter. Contradiction
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Euclidean Minimum Spanning Tree

Lemma: Every edge of the Euclidean

Minimum Spanning Tree

is an edge in the Delaunay graph

Proof: Suppose T is an EMST with an

edge e = pq that is not Delaunay

Consider the circleC that has e as its

diameter. Since e is not Delaunay,C must

contain another point r in P (different

from p and q)

p

q

r
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Euclidean Minimum Spanning Tree

Lemma: Every edge of the Euclidean

Minimum Spanning Tree

is an edge in the Delaunay graph

Proof: (continued)

Either the path in T from r to p passes

through q, or vice versa.

The cases are symmetric, so we can

assume the former case

p

q

r
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Euclidean Minimum Spanning Tree

Lemma: Every edge of the Euclidean

Minimum Spanning Tree

is an edge in the Delaunay graph

Proof: (continued)

Then removing e and inserting pr instead

will give a connected graph again (in fact,

a tree)

Since q was the furthest point from p
insideC, r is closer to q, so T was not a

minimum spanning tree. Contradiction

p

q

r
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Euclidean Minimum Spanning Tree

How can we compute a Euclidean Minimum Spanning Tree efficiently?

From your Data Structures course: A data structure exists that maintains

disjoint sets and allows the following two operations:

• Union: Takes two sets and makes one new set that is the union

(destroys the two given sets)

• Find: Takes one element and returns the name of the set that

contains it

If there are n elements in total, then all Unions together take O(n logn)
time and each Find operation takes O(1) time
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Euclidean Minimum Spanning Tree

Let P be a set of n points in the plane for which we want to compute the EMST

1. Make a Union-Find structure where every point of P is in a separate set

2. Construct the Delaunay triangulation DT of P

3. Take all edges of DT and sort them by length

4. For all edges e from short to long:

• Let the endpoints of e be p and q
• If Find(p) ̸= Find(q), then put e in the EMST, and Union(Find(p),Find(q))
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Euclidean Minimum Spanning Tree

Step 1 takes linear time, the other three steps take O(n logn) time

Theorem: Let P be a set of n points in the plane.

The Euclidean Minimum Spanning Tree of P can be computed in O(n logn) time
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Applications

Traveling Salesperson
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The traveling salesperson problem

Given a set P of n points in the plane, the Euclidean Traveling Salesperson Problem

is to compute a tour (cycle) that visits all points of P and has minimum length

A tour is an order on the points of P (more precisely: a cyclic order). A set of n points

has (n−1)! different tours
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The traveling salesperson problem

We can determine the length of each tour in O(n) time: a brute-force algorithm to

solve the Euclidean Traveling Salesperson Problem (ETSP) takes

O(n) ·O((n−1)!) = O(n!) time

How bad is n!?
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Efficiency

n n2 2n n!

6 36 64 720

7 49 128 5040

8 64 256 40K

9 81 512 360K

10 100 1024 3.5M

15 225 32K 2,000,000T

20 400 1M

30 900 1G

Clever algorithms can solve instances in O(n2 ·2n) time
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Approximation algorithms

If an algorithm A solves an optimization problem always within a factor k of the

optimum, then A is called an k-approximation algorithm

If an instance I of ETSP has an optimal solution of length L, then a k-approximation

algorithm will find a tour of length≤ k ·L
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Approximation algorithms

Consider the diameter problem of a set of n
points. We can compute the real value of the

diameter in O(n logn) time

Suppose we take any point p, determine its

furthest point q, and return their distance. This

takes only O(n) time

Question: Is this an approximation algorithm?
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Approximation algorithms

Suppose we determine the point with minimum

x-coordinate p and the point with maximum

x-coordinate q, and return their distance. This takes

only O(n) time

Question: Is this an approximation algorithm?
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Approximation algorithms

Suppose we determine the point with minimum

x-coordinate p and the point with maximum

x-coordinate q.
Then we determine the point with minimum

y-coordinate r and the point with maximum

y-coordinate s.
We return max(d(p,q), d(r,s)).
This takes only O(n) time

Question: Is this an approximation algorithm?
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Approximation algorithms
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x-coordinate q.
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Approximation algorithms

Back to Euclidean Traveling Salesperson:

We will use the EMST to approximate the

ETSP

start at any vertex
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Approximation algorithms

Back to Euclidean Traveling Salesperson:

We will use the EMST to approximate the

ETSP

follow an edge on one side
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Approximation algorithms

Back to Euclidean Traveling Salesperson:

We will use the EMST to approximate the

ETSP

. . . to get to another vertex
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Approximation algorithms
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We will use the EMST to approximate the

ETSP

proceed this way
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Approximation algorithms

Back to Euclidean Traveling Salesperson:

We will use the EMST to approximate the

ETSP

and close the tour
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Approximation algorithms

Why is this tour an approximation?

• The walk visits every edge twice, so

it has length 2 · |EMST |
• The tour skips vertices, which means

the tour has length≤ 2 · |EMST |
• The optimal ETSP-tour is a spanning

tree if you remove any edge!!!

So |EMST |< |ET SP|
optimal ETSP-tour
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Approximation algorithms

Theorem: Given a set of n points in the plane, a tour visiting all points whose length

is at most twice the minimum possible can be computed in O(n logn) time

In other words: an O(n logn) time, 2-approximation for ETSP exists
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Applications

Shape Approximation
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α -Shapes

Suppose that you have a set of points in

the plane that were sampled from a

shape

We would like to reconstruct the shape
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α -Shapes

Suppose that you have a set of points in

the plane that were sampled from a

shape

We would like to reconstruct the shape
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α -Shapes

An α -disk is a disk of radius α

The α -shape of a point set P is the graph

with the points of P as the vertices, and

two vertices p,q are connected by an

edge if there exists an α -disk with p and

q on the boundary but no other points if

P inside or on the boundary
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α -Shapes

Because of the empty disk property of

Delaunay triangulations (each Delaunay

edge has an empty disk through its

endpoints), every α -shape edge is also a

Delaunay edge

Hence: there are O(n) α -shape edges,

and they cannot properly intersect
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α -Shapes

Given the Delaunay triangulation, we can

determine for any edge all sizes of empty

disks through the endpoints in O(1) time

So the α -shape can be computed in

O(n logn) time
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Conclusions

The Delaunay triangulation is a versatile structure that can be computed in

O(n logn) time for a set of n points in the plane

Approximation algorithms are like heuristics, but they come with a guarantee on the

quality of the approximation. They are useful when an optimal solution is too

time-consuming to compute
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