
Windowing Queries
Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R ,
we can find the segments in S intersecting R efficiently.



Windowing Queries
Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R ,
we can find the segments in S intersecting R efficiently.



Windowing Queries
Given a set S of n disjoint line segments in the plane.

1) have an endpoint in R , or

The segments that intersect R

2) intersect the boundary of R .

Store S in a data structure s.t. given a query rectangle R ,
we can find the segments in S intersecting R efficiently.



Windowing Queries
Given a set S of n disjoint line segments in the plane.

1) have an endpoint in R , or

The segments that intersect R

2) intersect the boundary of R .

find them using a range query
with R on the set of end points

Store S in a data structure s.t. given a query rectangle R ,
we can find the segments in S intersecting R efficiently.



Windowing Queries

1) have an endpoint in R , or

The segments that intersect R

2) intersect the boundary of R .

find them using a range query
with R on the set of end points

Given a set S of n disjoint orthogonal line segments in the plane.

Store S in a data structure s.t. given a query rectangle R ,
we can find the segments in S intersecting R efficiently.



Windowing Queries

Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Given a set S of n disjoint horizontal line segments in the plane.



Given a set S of n intervals in R1

Store S in a data structure s.t. given a query value q, we can find
the intervals in S intersecting q efficiently.

Interval Stabbing Queries



Given a set S of n intervals in R1

Store S in a data structure s.t. given a query value q, we can find
the intervals in S intersecting q efficiently.

Interval Stabbing Queries

We store S in an interval tree T



Given a set S of n intervals in R1

Store S in a data structure s.t. given a query value q, we can find
the intervals in S intersecting q efficiently.

Interval Stabbing Queries

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the
intervals I (v) that contain v

v



Given a set S of n intervals in R1

Store S in a data structure s.t. given a query value q, we can find
the intervals in S intersecting q efficiently.

Interval Stabbing Queries

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the
intervals I (v) that contain v

The left subtree ℓ of v stores the intervals that lie completely
left of v .

ℓ

v



Given a set S of n intervals in R1

Store S in a data structure s.t. given a query value q, we can find
the intervals in S intersecting q efficiently.

Interval Stabbing Queries

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the
intervals I (v) that contain v

The left subtree ℓ of v stores the intervals that lie completely
left of v .

The right subtree r of v stores the intervals that lie
completely right of v .

ℓ r

v



Given a set S of n intervals in R1

Store S in a data structure s.t. given a query value q, we can find
the intervals in S intersecting q efficiently.

Interval Stabbing Queries

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the
intervals I (v) that contain v

store these intervals twice:

v

1) sorted on increasing left endpoint

2) sorted on decreasing right endpoint



Given a set S of n intervals in R1

Store S in a data structure s.t. given a query value q, we can find
the intervals in S intersecting q efficiently.

Interval Stabbing Queries

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the
intervals I (v) that contain v

v

q

Query(q,T )
if q left of v then

report intervals from I (v) using the list of left-end points,
stop at the first interval right of q.
Query(q, ℓ)

else if q right of v
...



Given a set S of n intervals in R1

Store S in a data structure s.t. given a query value q, we can find
the intervals in S intersecting q efficiently.

Interval Stabbing Queries

Space usage:

Query time:

Preprocessing time:

We store S in an interval tree T



Given a set S of n intervals in R1

Store S in a data structure s.t. given a query value q, we can find
the intervals in S intersecting q efficiently.

Interval Stabbing Queries

Space usage: O(n)

Query time:

Preprocessing time:

We store S in an interval tree T



Given a set S of n intervals in R1

Store S in a data structure s.t. given a query value q, we can find
the intervals in S intersecting q efficiently.

Interval Stabbing Queries

Space usage: O(n)

O(log n + k)

k = #intervals reported
Query time:

Preprocessing time:

We store S in an interval tree T



Given a set S of n intervals in R1

Store S in a data structure s.t. given a query value q, we can find
the intervals in S intersecting q efficiently.

Interval Stabbing Queries

Space usage: O(n)

O(log n + k)

k = #intervals reported
Query time:

Preprocessing time: O(n log n)

We store S in an interval tree T



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Given a set S of n disjoint horizontal line segments in the plane.

Segment Stabbing Queries



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Given a set S of n disjoint horizontal line segments in the plane.

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the
intervals I (v) that contain v

v

Segment Stabbing Queries



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Given a set S of n disjoint horizontal line segments in the plane.

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the
intervals I (v) that contain v

v

Segment Stabbing Queries



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Given a set S of n disjoint horizontal line segments in the plane.

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the
intervals I (v) that contain v

v

Segment Stabbing Queries

store these intervals twice:
1) a range tree on their left endpoints

2) a range tree on the right endpoints



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Given a set S of n disjoint horizontal line segments in the plane.

We store S in an interval tree T

Space usage:

Query time:

Preprocessing time:

We store S in an interval tree T

Segment Stabbing Queries



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Given a set S of n disjoint horizontal line segments in the plane.

We store S in an interval tree T

Space usage:

Query time:

Preprocessing time:

We store S in an interval tree T

Segment Stabbing Queries

O(n log n)



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Given a set S of n disjoint horizontal line segments in the plane.

We store S in an interval tree T

Space usage:

Query time:

Preprocessing time:

We store S in an interval tree T

Segment Stabbing Queries

O(log2 n + k)

k = #intervals reported

O(n log n)



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Given a set S of n disjoint horizontal line segments in the plane.

We store S in an interval tree T

Space usage:

Query time:

Preprocessing time: O(n log n)

We store S in an interval tree T

Segment Stabbing Queries

O(log2 n + k)

k = #intervals reported

O(n log n)



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Given a set S of n disjoint horizontal line segments in the plane.

We store S in an interval tree T

Space usage: O(n)

Query time:

Preprocessing time: O(n log n)

We store S in an interval tree T

Segment Stabbing Queries

O(log2 n + k)

k = #intervals reported

using priority search trees



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Segment Stabbing Queries

Our solution using an interval tree + range tree (or
priority search tree) no longer works

Given a set S of n disjoint line segments in the plane.

Segment Stabbing Queries



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Segment Stabbing Queries
Given a set S of n disjoint line segments in the plane.

Segment Stabbing Queries



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Segment Stabbing Queries

Split into elementary intervals in which a vertical line
intersects the same segments.

Given a set S of n disjoint line segments in the plane.

Segment Stabbing Queries



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Segment Stabbing Queries

Split into elementary intervals in which a vertical line
intersects the same segments.

Storing all segments segments in all elementary intervals
uses Θ(n2) space

Given a set S of n disjoint line segments in the plane.

Segment Stabbing Queries



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Segment Stabbing Queries

Split into elementary intervals in which a vertical line
intersects the same segments.

Project the segments onto the x-axis, yielding intervals.
We build a different data structure for interval stabbing.

Given a set S of n disjoint line segments in the plane.

Segment Stabbing Queries



Split into elementary intervals in which a vertical line
intersects the same segments.

Store the elementary intervals as leaves in a balanced
BST T .

Given a set S of n intervals in R1

Store S in a data structure s.t. given a query point q, we can
find the intervals in S intersecting q efficiently.

Interval Stabbing Queries



Split into elementary intervals in which a vertical line
intersects the same segments.

Store the elementary intervals as leaves in a balanced
BST T .

Every node v

corresponds to an interval Iv , which is the union of the
elementary intervals stored in its subtree.

Given a set S of n intervals in R1

Store S in a data structure s.t. given a query point q, we can
find the intervals in S intersecting q efficiently.

Interval Stabbing Queries

v



Split into elementary intervals in which a vertical line
intersects the same segments.

Store the elementary intervals as leaves in a balanced
BST T .

Every node v

stores a canonical subset S(v) ⊆ S of intervals s.t.
s ∈ S(v) if and only if Iv ⊆ s but parent(v)I ̸⊆ s

corresponds to an interval Iv , which is the union of the
elementary intervals stored in its subtree.

Given a set S of n intervals in R1

Store S in a data structure s.t. given a query point q, we can
find the intervals in S intersecting q efficiently.

Interval Stabbing Queries

v



Split into elementary intervals in which a vertical line
intersects the same segments.

Store the elementary intervals as leaves in a balanced
BST T .

Every node v

stores a canonical subset S(v) ⊆ S of intervals s.t.
s ∈ S(v) if and only if Iv ⊆ s but parent(v)I ̸⊆ s

corresponds to an interval Iv , which is the union of the
elementary intervals stored in its subtree.

Given a set S of n intervals in R1

Store S in a data structure s.t. given a query point q, we can
find the intervals in S intersecting q efficiently.

Interval Stabbing Queries

v



Split into elementary intervals in which a vertical line
intersects the same segments.

Store the elementary intervals as leaves in a balanced
BST T .

Every node v

stores a canonical subset S(v) ⊆ S of intervals s.t.
s ∈ S(v) if and only if Iv ⊆ s but parent(v)I ̸⊆ s

corresponds to an interval Iv , which is the union of the
elementary intervals stored in its subtree.

T is a segment tree

Given a set S of n intervals in R1

Store S in a data structure s.t. given a query point q, we can
find the intervals in S intersecting q efficiently.

Interval Stabbing Queries

v



Split into elementary intervals in which a vertical line
intersects the same segments.

Query: find all nodes v s.t. q ∈ Iv , and for each such node
report all intervals in S(v).

Given a set S of n intervals in R1

Store S in a data structure s.t. given a query point q, we can
find the intervals in S intersecting q efficiently.

Interval Stabbing Queries



Split into elementary intervals in which a vertical line
intersects the same segments.

Query: find all nodes v s.t. q ∈ Iv , and for each such node
report all intervals in S(v).

Query time: O(log n + k), where k is the output size.

Given a set S of n intervals in R1

Store S in a data structure s.t. given a query point q, we can
find the intervals in S intersecting q efficiently.

Interval Stabbing Queries



Split into elementary intervals in which a vertical line
intersects the same segments.

Question: How much storage do we use?

Given a set S of n intervals in R1

Store S in a data structure s.t. given a query point q, we can
find the intervals in S intersecting q efficiently.

Interval Stabbing Queries



Split into elementary intervals in which a vertical line
intersects the same segments.

Question: How much storage do we use?

Claim: Every interval is stored O(log n) times; at most twice
per level.

=⇒ space usage is O(n log n).

Given a set S of n intervals in R1

Store S in a data structure s.t. given a query point q, we can
find the intervals in S intersecting q efficiently.

Interval Stabbing Queries



Split into elementary intervals in which a vertical line
intersects the same segments.

Question: How much storage do we use?

Claim: Every interval is stored O(log n) times; at most twice
per level.

=⇒ space usage is O(n log n).

Given a set S of n intervals in R1

Store S in a data structure s.t. given a query point q, we can
find the intervals in S intersecting q efficiently.

Interval Stabbing Queries

Question: How do we build T?



Split into elementary intervals in which a vertical line
intersects the same segments.

Question: How much storage do we use?

Claim: Every interval is stored O(log n) times; at most twice
per level.

=⇒ space usage is O(n log n).

Given a set S of n intervals in R1

Store S in a data structure s.t. given a query point q, we can
find the intervals in S intersecting q efficiently.

Interval Stabbing Queries

Question: How do we build T?

Build a BST on the elementary intervals, insert the intervals in
s ∈ S one by one.



Split into elementary intervals in which a vertical line
intersects the same segments.

Question: How much storage do we use?

Claim: Every interval is stored O(log n) times; at most twice
per level.

=⇒ space usage is O(n log n).

Given a set S of n intervals in R1

Store S in a data structure s.t. given a query point q, we can
find the intervals in S intersecting q efficiently.

Interval Stabbing Queries

Question: How do we build T?

Build a BST on the elementary intervals, insert the intervals in
s ∈ S one by one.
To insert s we visit at most 4 nodes per level



Space usage: O(n log n)

Query time:

Preprocessing time: O(n log n)

We store S in an segment tree T

O(log n + k)

k = #intervals reported

Given a set S of n intervals in R1

Store S in a data structure s.t. given a query point q, we can
find the intervals in S intersecting q efficiently.

Interval Stabbing Queries



Query: find all nodes v s.t. q ∈ Iv , and for each such node
report all intervals in S(v).

Given a set S of n intervals in R1

Store S in a data structure s.t. given a query point q, we can
find the intervals in S intersecting q efficiently.

Interval Stabbing Queries



Query: find all nodes v s.t. q ∈ Iv , and for each such node
report all intervals in S(v).

Given a set S of n intervals in R1

Store S in a data structure s.t. given a query point q, we can
find the intervals in S intersecting q efficiently.

Interval Stabbing Queries

=⇒ we can store S(v) any way we like, since we have to
report all intervals in S(v).



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Segment Stabbing Queries

Query: find all nodes v s.t. q ∈ Iv , and for each such node
report all intervals in S(v).

=⇒ we can store S(v) any way we like, since we have to
report all intervals in S(v).

Store S(v) in a balanced BST.

We can report all segments intersected by q in
O(log2 n + k) time.

=⇒

Given a set S of n horizontal line segments in
the plane.



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Segment Stabbing Queries

Query: find all nodes v s.t. q ∈ Iv , and for each such node
report all intervals in S(v).

=⇒ we can store S(v) any way we like, since we have to
report all intervals in S(v).

Store S(v) in a balanced BST.

We can report all segments intersected by q in
O(log2 n + k) time.

=⇒

Given a set S of n disjoint line segments in the plane.

Segment Stabbing Queries



Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting q efficiently.

Space usage: O(n log n)

Query time:

Preprocessing time: O(n log n)

We store S in an segment tree T

Segment Stabbing Queries

k = #intervals reported

Given a set S of n disjoint line segments in the plane.

O(log2 n + k)

Segment Stabbing Queries



Windowing Queries
Given a set S of n disjoint line segments in the plane.

1) have an endpoint in R , or

The segments that intersect R

2) intersect the boundary of R .

find them using a range query
with R on the set of end points

Store S in a data structure s.t. given a query rectangle R , we
can find the segments in S intersecting R efficiently.

find them using a segment tree

=⇒ O(log2 n + k) query, O(n log n) space.

=⇒ O(log2 n + k) query, O(n log n) space.



Windowing Queries
Given a set S of n disjoint line segments in the plane.

1) have an endpoint in R , or

The segments that intersect R

2) intersect the boundary of R .

find them using a range query
with R on the set of end points

Store S in a data structure s.t. given a query rectangle R , we
can find the segments in S intersecting R efficiently.

find them using a segment tree

Thm. We can solve windowing queries in O(log2 n+ k) time, using O(n log n)
space after O(n log n) preprocessing time.

=⇒ O(log2 n + k) query, O(n log n) space.

=⇒ O(log2 n + k) query, O(n log n) space.



Windowing Queries
Given a set S of n disjoint line segments in the plane.

1) have an endpoint in R , or

The segments that intersect R

2) intersect the boundary of R .

find them using a range query
with R on the set of end points

Store S in a data structure s.t. given a query rectangle R , we
can find the segments in S intersecting R efficiently.

find them using a segment tree

=⇒ O(log n + k) query, O(n log n) space.

=⇒ O(log n + k) query, O(n log n) space.

Thm. We can solve windowing queries in O(log n + k) time, using O(n log n)
space after O(n log n) preprocessing time.


