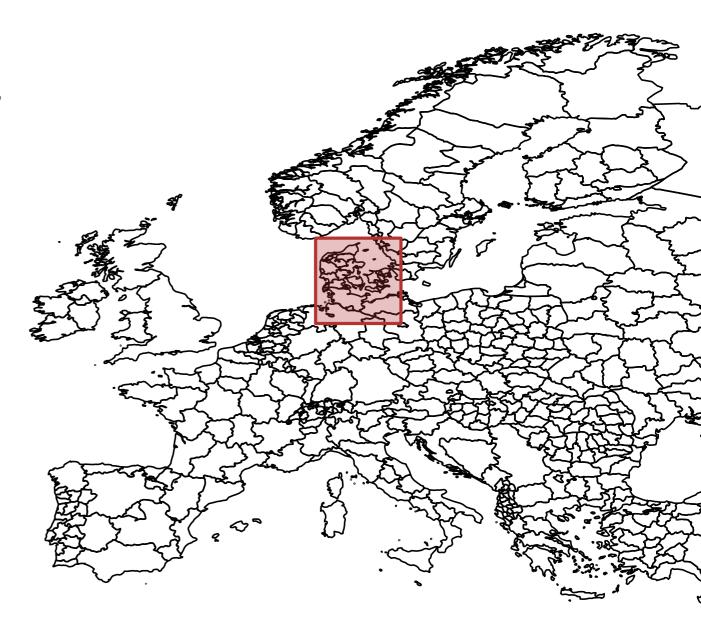
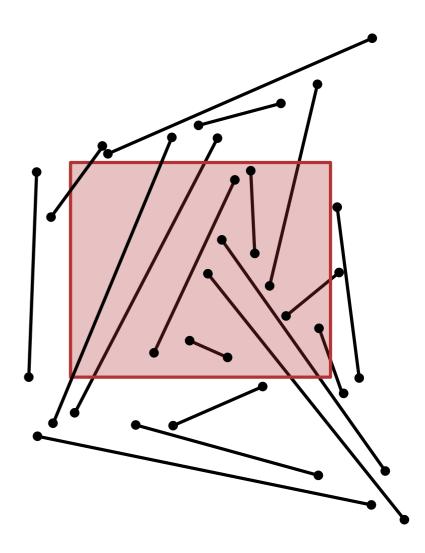
Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.



Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.



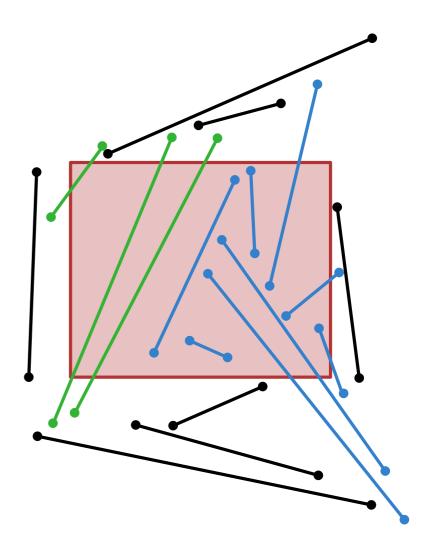
Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.

The segments that intersect R

1) have an endpoint in R, or

2) intersect the boundary of *R*.

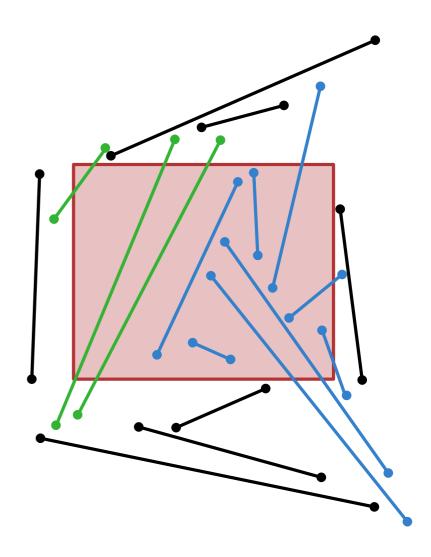


Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.

The segments that intersect R

- have an endpoint in R, or find them using a range query with R on the set of end points
- 2) intersect the boundary of *R*.

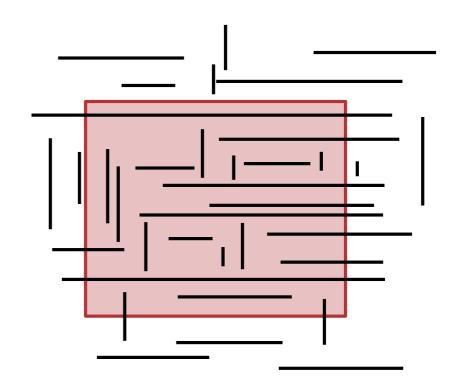


Given a set S of n disjoint orthogonal line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.

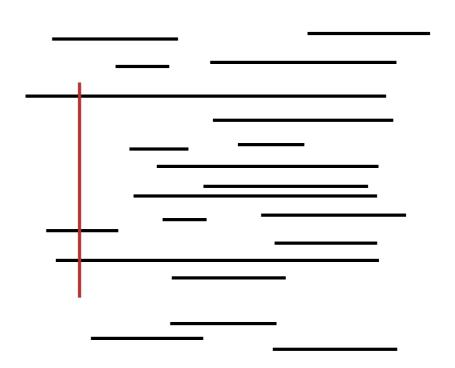
The segments that intersect R

- have an endpoint in R, or find them using a range query with R on the set of end points
- 2) intersect the boundary of *R*.



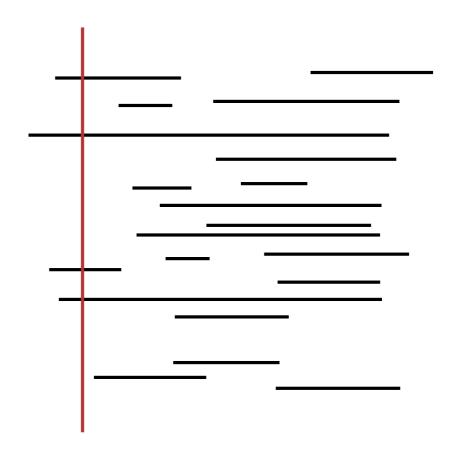
Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.



Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.



Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store *S* in an interval tree *T*

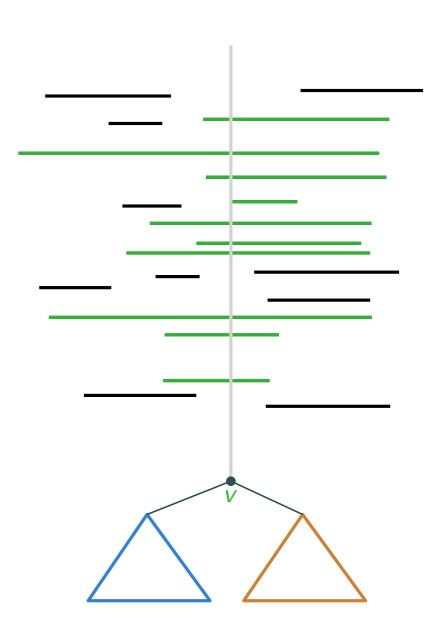
Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store *S* in an interval tree *T*

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the intervals I(v) that contain v



Given a set S of n intervals in \mathbb{R}^1

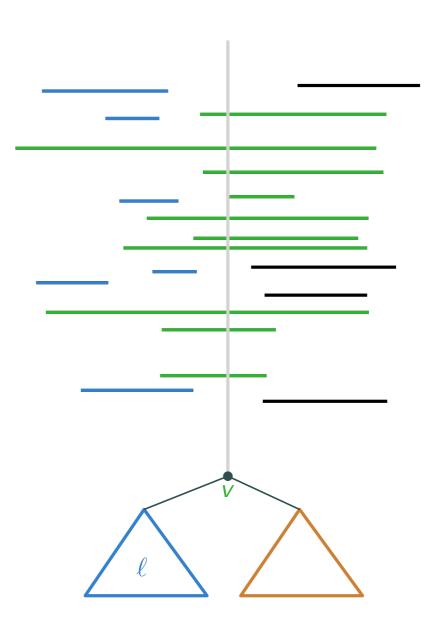
Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store *S* in an interval tree *T*

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the intervals I(v) that contain v

The left subtree ℓ of v stores the intervals that lie completely left of v.



Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

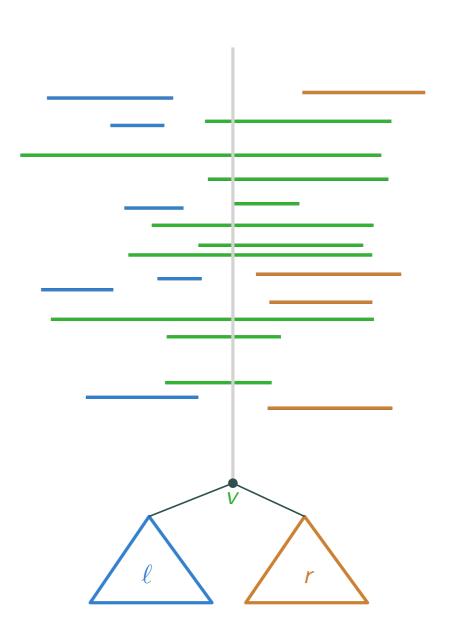
We store *S* in an interval tree *T*

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the intervals I(v) that contain v

The left subtree ℓ of v stores the intervals that lie completely left of v.

The right subtree r of v stores the intervals that lie completely right of v.



Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

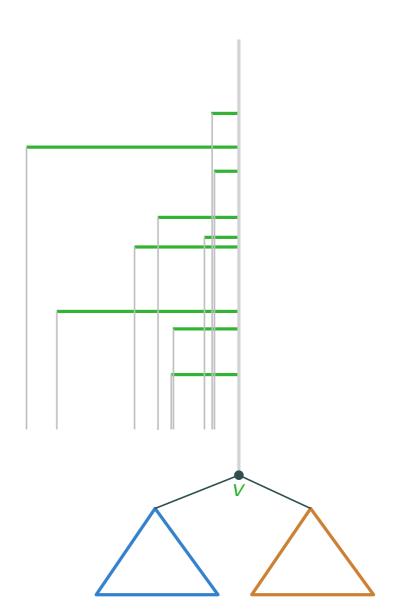
We store *S* in an interval tree *T*

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the intervals I(v) that contain v

store these intervals twice:

- 1) sorted on increasing left endpoint
- 2) sorted on decreasing right endpoint



Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the intervals I(v) that contain v

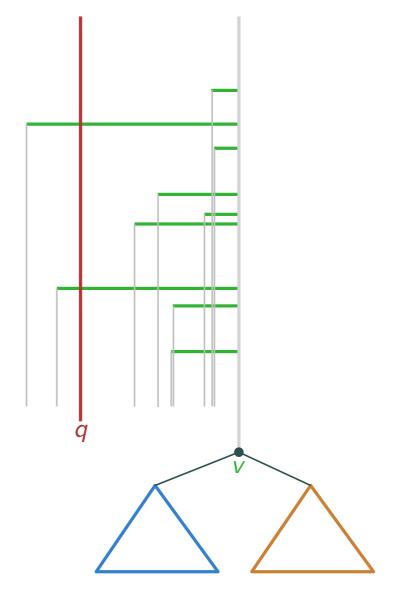
```
Query(q, T)

if q left of v then

report intervals from I(v) using the list of left-end points, stop at the first interval right of q.

Query(q, \ell)

else if q right of v
```



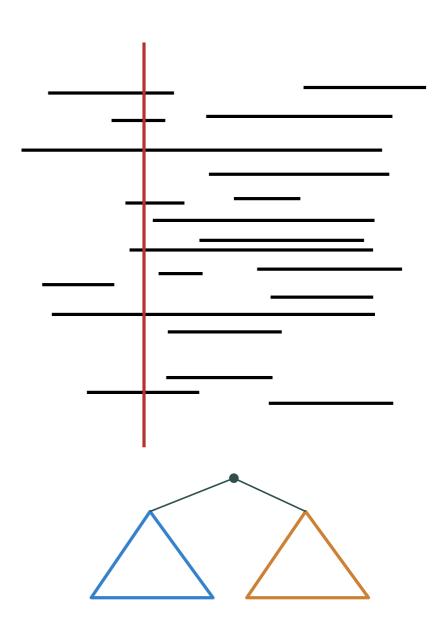
Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store S in an interval tree T

Space usage:

Query time:



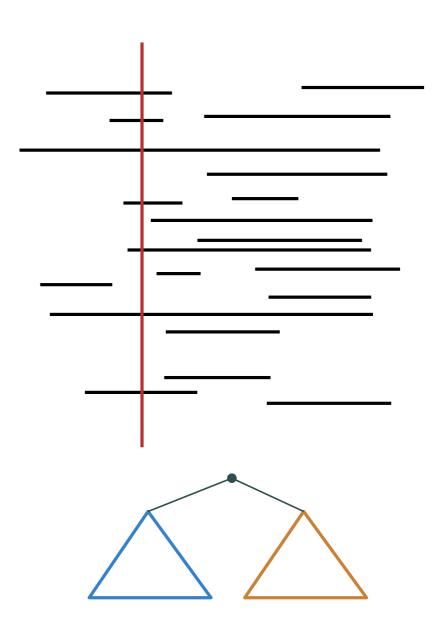
Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store *S* in an interval tree *T*

Space usage: O(n)

Query time:



Given a set S of n intervals in \mathbb{R}^1

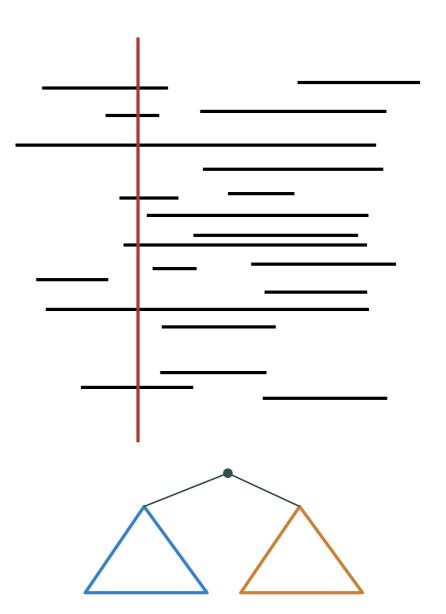
Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store *S* in an interval tree *T*

Space usage: O(n)

Query time: $O(\log n + k)$

k =#intervals reported



Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

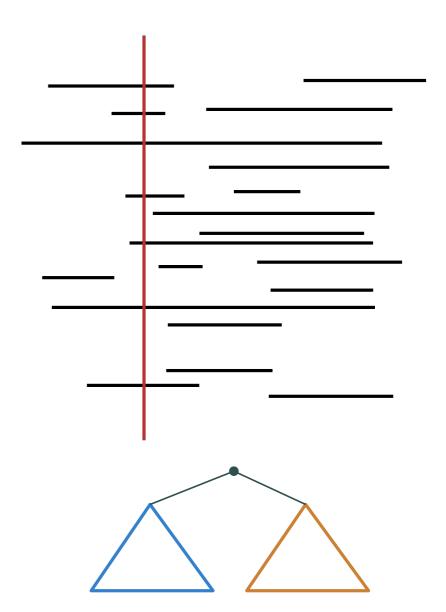
We store *S* in an interval tree *T*

Space usage: O(n)

Query time: $O(\log n + k)$

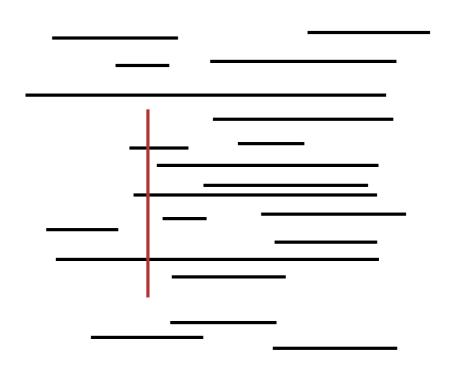
k = #intervals reported

Preprocessing time: $O(n \log n)$



Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.



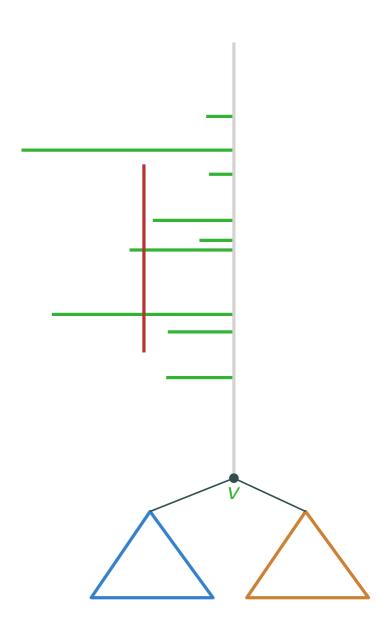
Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

We store *S* in an interval tree *T*

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the intervals I(v) that contain v



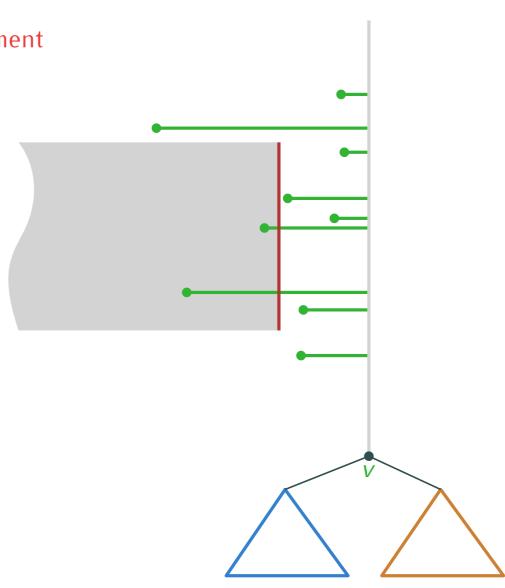
Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

We store *S* in an interval tree *T*

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the intervals I(v) that contain v



Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

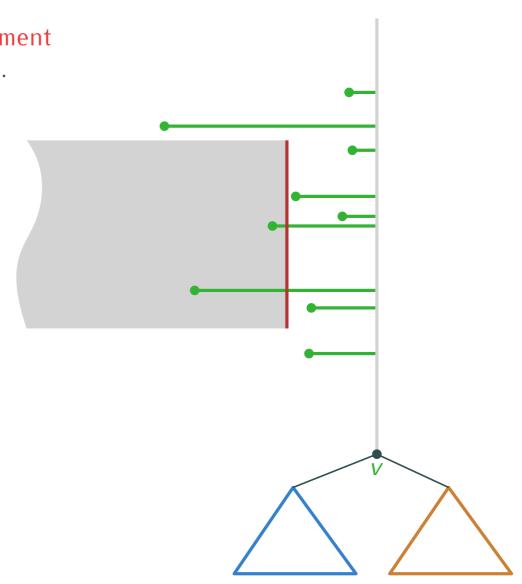
We store *S* in an interval tree *T*

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the intervals I(v) that contain v

store these intervals twice:

- 1) a range tree on their left endpoints
- 2) a range tree on the right endpoints



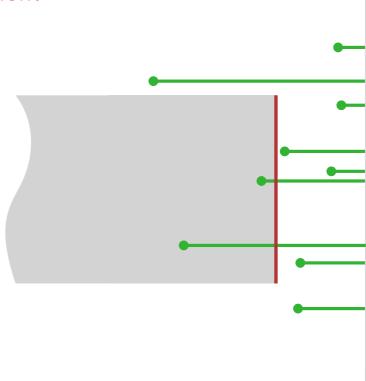
Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

We store *S* in an interval tree *T*

Space usage:

Query time:



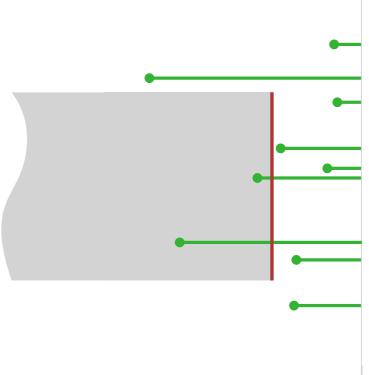
Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

We store S in an interval tree T

Space usage: $O(n \log n)$

Query time:



Given a set S of n disjoint horizontal line segments in the plane.

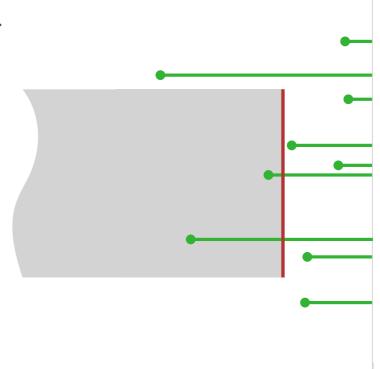
Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

We store S in an interval tree T

Space usage: $O(n \log n)$

Query time: $O(\log^2 n + k)$

k = #intervals reported



Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

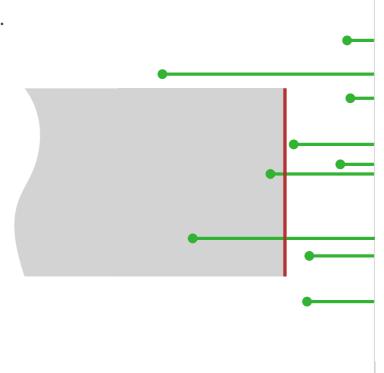
We store S in an interval tree T

Space usage: $O(n \log n)$

Query time: $O(\log^2 n + k)$

k = #intervals reported

Preprocessing time: $O(n \log n)$



Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

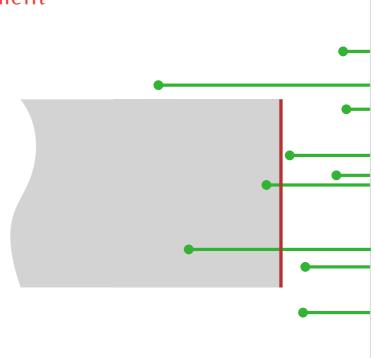
We store S in an interval tree T

Space usage: O(n) using priority search trees

Query time: $O(\log^2 n + k)$

k = #intervals reported

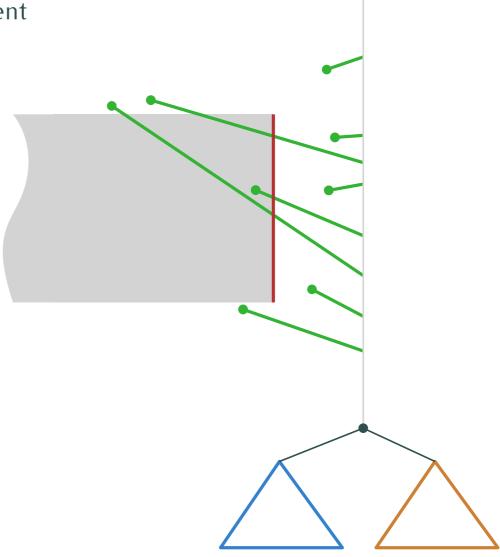
Preprocessing time: $O(n \log n)$



Given a set S of n disjoint line segments in the plane.

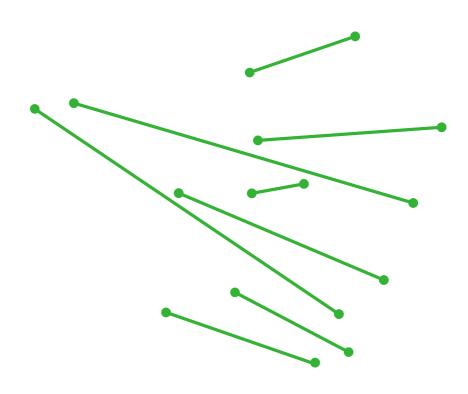
Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

Our solution using an interval tree + range tree (or priority search tree) no longer works



Given a set S of n disjoint line segments in the plane.

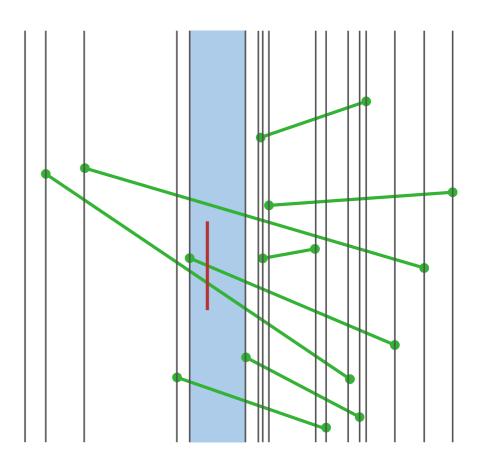
Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.



Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

Split into elementary intervals in which a vertical line intersects the same segments.

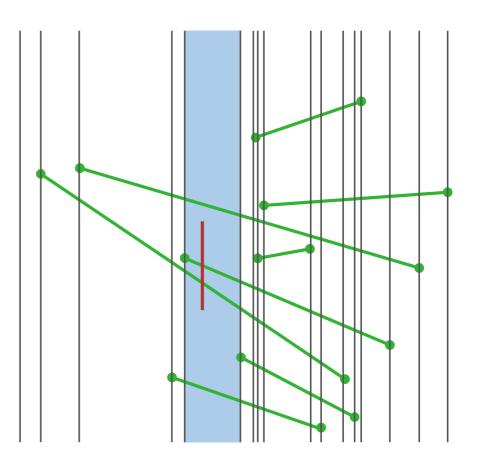


Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

Split into elementary intervals in which a vertical line intersects the same segments.

Storing all segments segments in all elementary intervals uses $\Theta(n^2)$ space

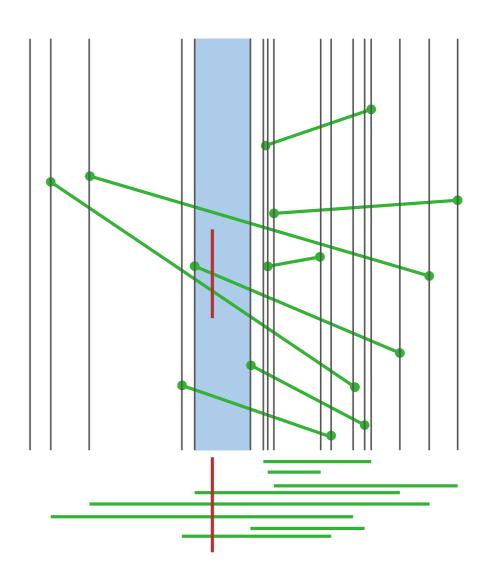


Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

Split into elementary intervals in which a vertical line intersects the same segments.

Project the segments onto the x-axis, yielding intervals. We build a different data structure for interval stabbing.

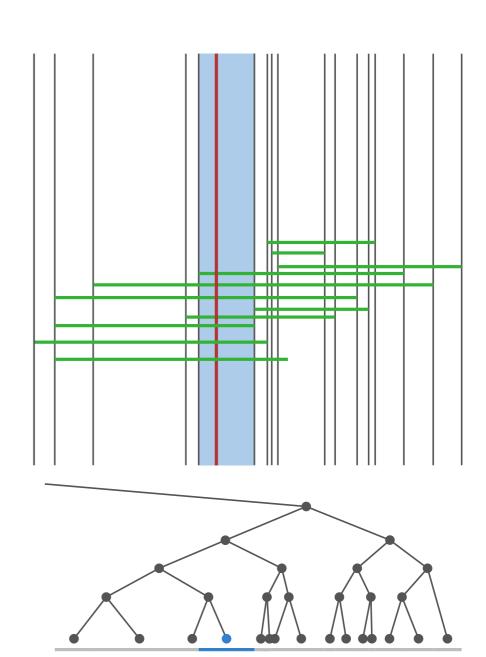


Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split into elementary intervals in which a vertical line intersects the same segments.

Store the elementary intervals as leaves in a balanced BST T.



Given a set S of n intervals in \mathbb{R}^1

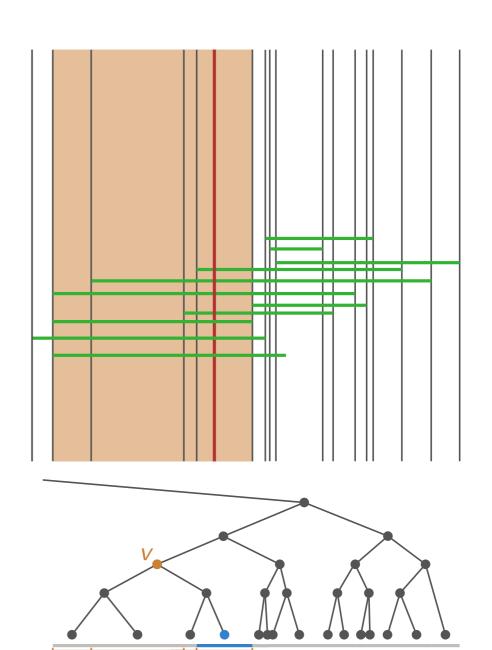
Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split into elementary intervals in which a vertical line intersects the same segments.

Store the elementary intervals as leaves in a balanced BST T.

Every node v

corresponds to an interval I_v , which is the union of the elementary intervals stored in its subtree.



Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

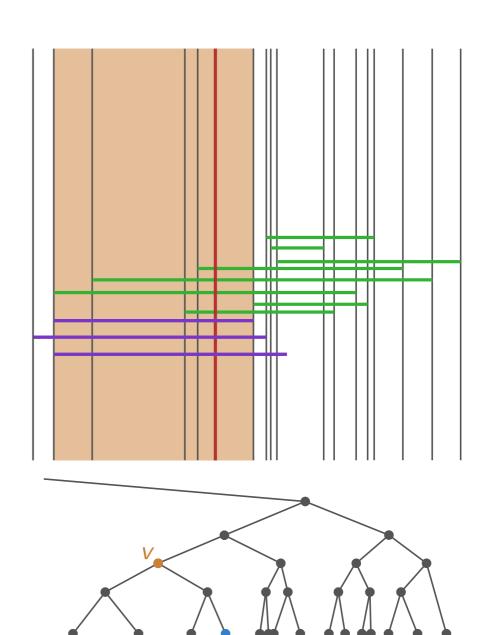
Split into elementary intervals in which a vertical line intersects the same segments.

Store the elementary intervals as leaves in a balanced BST T.

Every node v

corresponds to an interval I_v , which is the union of the elementary intervals stored in its subtree.

stores a canonical subset $S(v) \subseteq S$ of intervals s.t. $s \in S(v)$ if and only if $I_v \subseteq s$ but $parent(v)_I \not\subseteq s$



Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

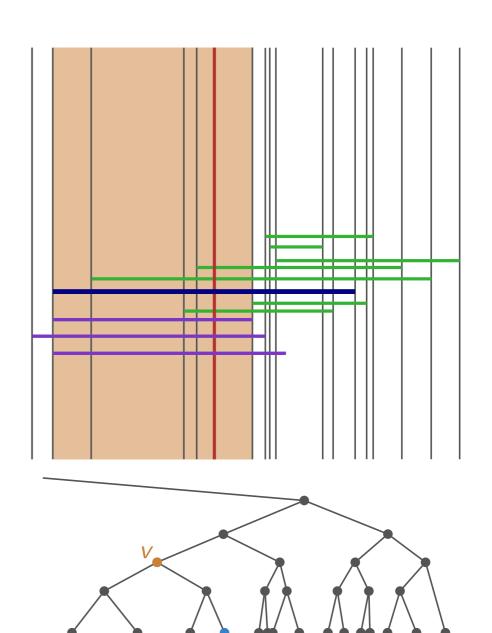
Split into elementary intervals in which a vertical line intersects the same segments.

Store the elementary intervals as leaves in a balanced BST T.

Every node v

corresponds to an interval I_v , which is the union of the elementary intervals stored in its subtree.

stores a canonical subset $S(v) \subseteq S$ of intervals s.t. $s \in S(v)$ if and only if $I_v \subseteq s$ but $parent(v)_I \not\subseteq s$



Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split into elementary intervals in which a vertical line intersects the same segments.

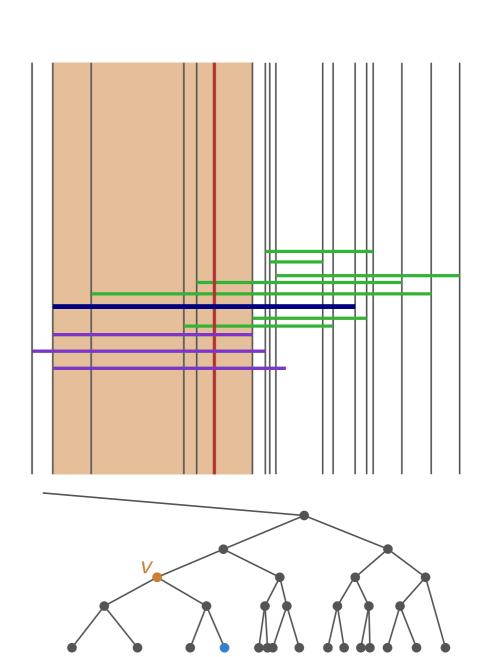
Store the elementary intervals as leaves in a balanced BST T.

Every node v

corresponds to an interval I_v , which is the union of the elementary intervals stored in its subtree.

stores a canonical subset $S(v) \subseteq S$ of intervals s.t. $s \in S(v)$ if and only if $I_v \subseteq s$ but $parent(v)_I \not\subseteq s$

T is a segment tree

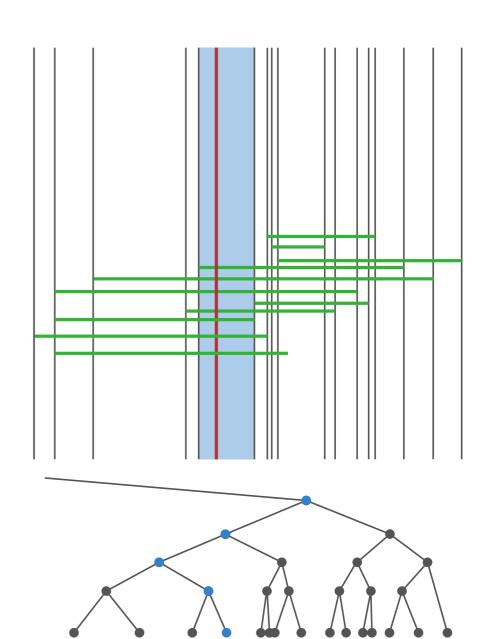


Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split into elementary intervals in which a vertical line intersects the same segments.

Query: find all nodes v s.t. $q \in I_v$, and for each such node report all intervals in S(v).



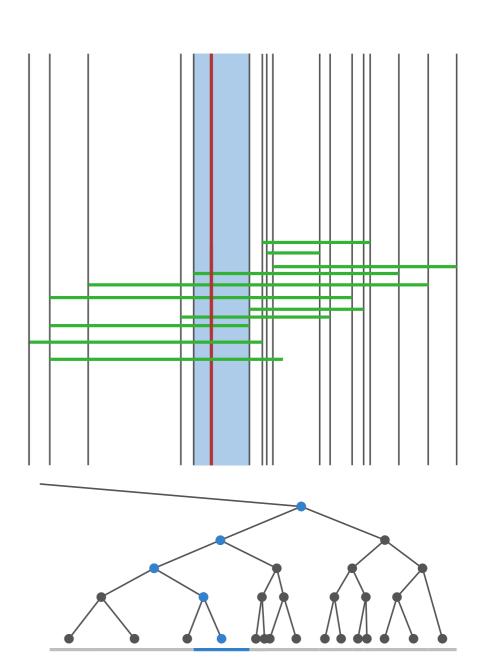
Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split into elementary intervals in which a vertical line intersects the same segments.

Query: find all nodes v s.t. $q \in I_v$, and for each such node report all intervals in S(v).

Query time: $O(\log n + k)$, where k is the output size.

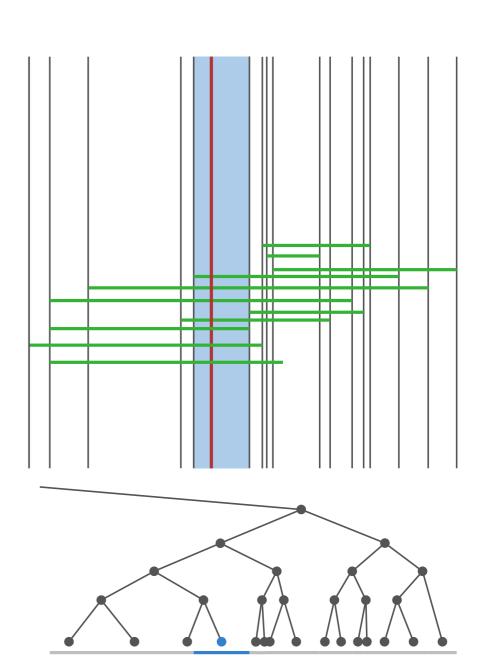


Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split into elementary intervals in which a vertical line intersects the same segments.

Question: How much storage do we use?



Given a set S of n intervals in \mathbb{R}^1

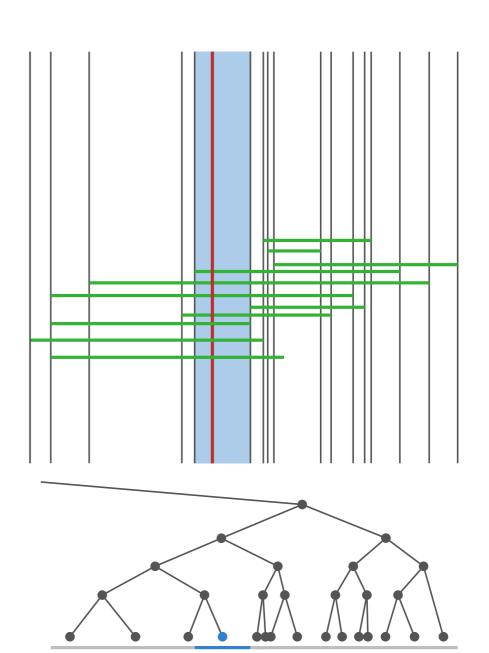
Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split into elementary intervals in which a vertical line intersects the same segments.

Question: How much storage do we use?

Claim: Every interval is stored $O(\log n)$ times; at most twice per level.

 \implies space usage is $O(n \log n)$.



Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

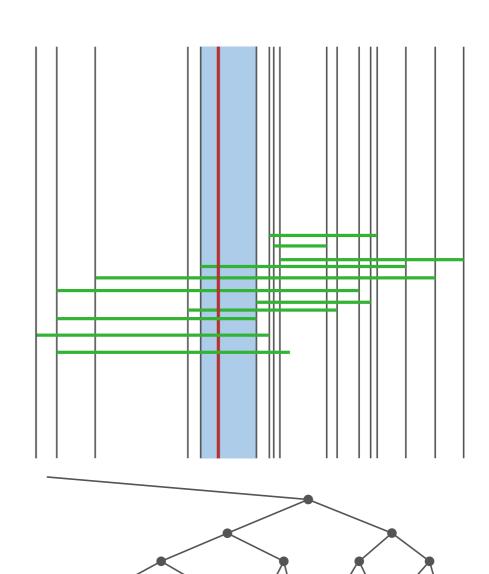
Split into elementary intervals in which a vertical line intersects the same segments.

Question: How much storage do we use?

Claim: Every interval is stored $O(\log n)$ times; at most twice per level.

 \implies space usage is $O(n \log n)$.

Question: How do we build T?



Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split into elementary intervals in which a vertical line intersects the same segments.

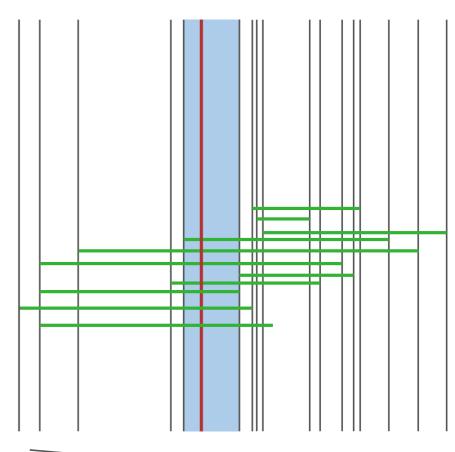
Question: How much storage do we use?

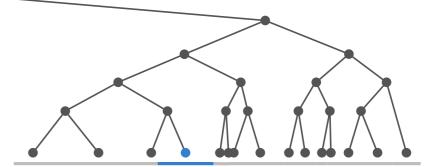
Claim: Every interval is stored $O(\log n)$ times; at most twice per level.

 \implies space usage is $O(n \log n)$.

Question: How do we build T?

Build a BST on the elementary intervals, insert the intervals in $s \in S$ one by one.





Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split into elementary intervals in which a vertical line intersects the same segments.

Question: How much storage do we use?

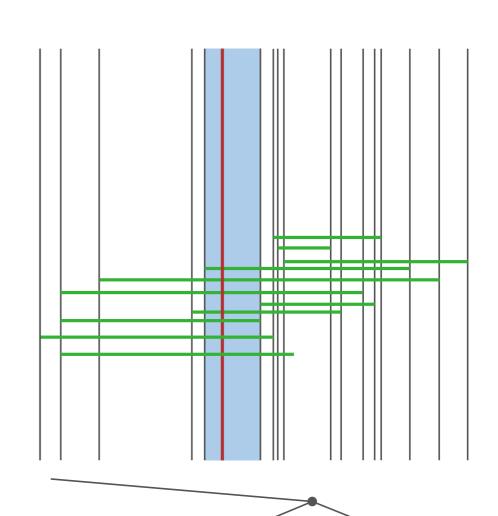
Claim: Every interval is stored $O(\log n)$ times; at most twice per level.

 \implies space usage is $O(n \log n)$.

Question: How do we build T?

Build a BST on the elementary intervals, insert the intervals in $s \in S$ one by one.

To insert *s* we visit at most 4 nodes per level



Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

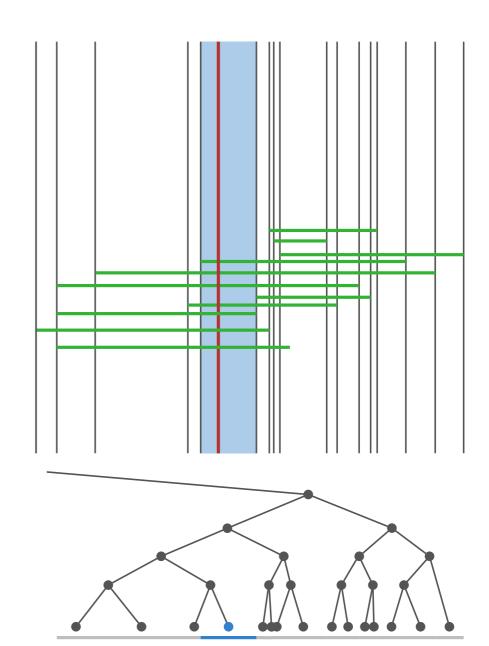
We store S in an segment tree T

Space usage: $O(n \log n)$

Query time: $O(\log n + k)$

k =#intervals reported

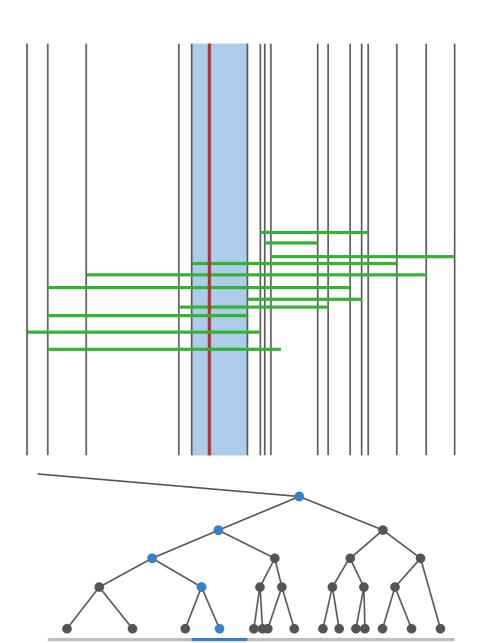
Preprocessing time: $O(n \log n)$



Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Query: find all nodes v s.t. $q \in I_v$, and for each such node report all intervals in S(v).

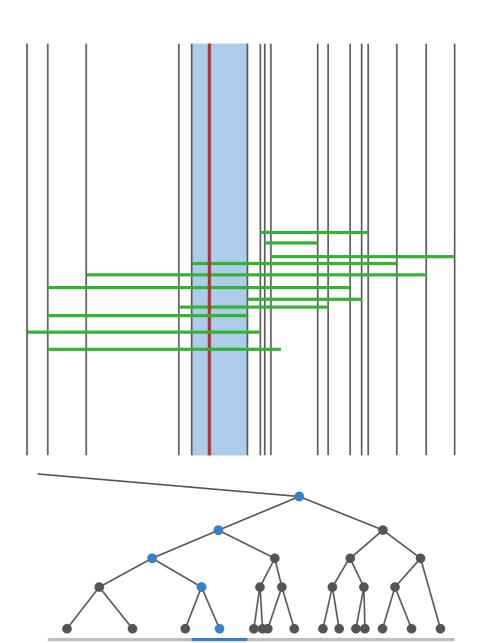


Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Query: find all nodes v s.t. $q \in I_v$, and for each such node report all intervals in S(v).

 \implies we can store S(v) any way we like, since we have to report all intervals in S(v).



Segment Stabbing Queries

Given a set S of n horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

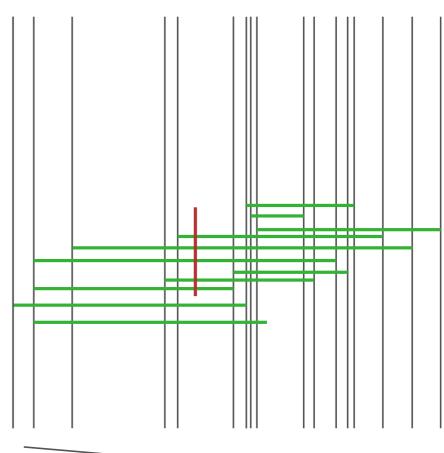
Query: find all nodes v s.t. $q \in I_v$, and for each such node report all intervals in S(v).

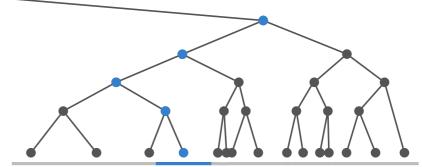
 \implies we can store S(v) any way we like, since we have to report all intervals in S(v).

Store S(v) in a balanced BST.

 \Longrightarrow

We can report all segments intersected by q in $O(\log^2 n + k)$ time.





Segment Stabbing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

Query: find all nodes v s.t. $q \in I_v$, and for each such node report all intervals in S(v).

 \implies we can store S(v) any way we like, since we have to report all intervals in S(v).

Store S(v) in a balanced BST.

 \Longrightarrow

We can report all segments intersected by q in $O(\log^2 n + k)$ time.



Segment Stabbing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

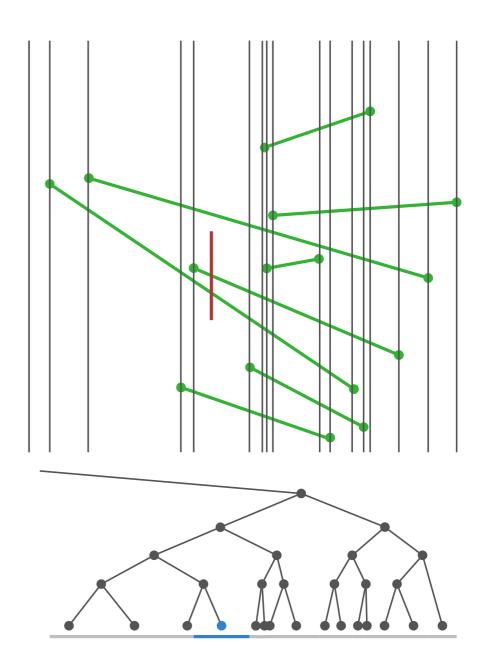
We store S in an segment tree T

Space usage: $O(n \log n)$

Query time: $O(\log^2 n + k)$

k =#intervals reported

Preprocessing time: $O(n \log n)$



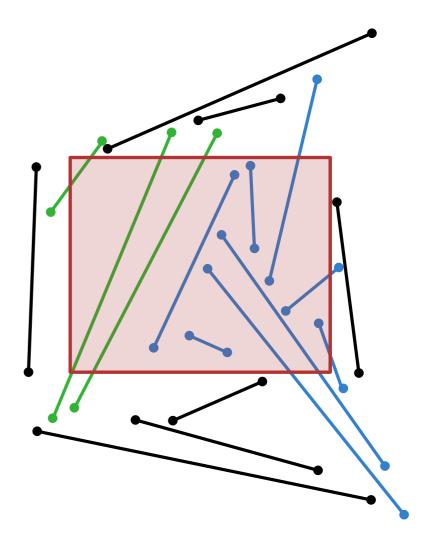
Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.

The segments that intersect R

- 1) have an endpoint in R, or find them using a range query with R on the set of end points $\Longrightarrow O(\log^2 n + k)$ query, $O(n \log n)$ space.
- 2) intersect the boundary of R. find them using a segment tree $\implies O(\log^2 n + k)$ query, $O(n \log n)$ space.



Windowing Queries

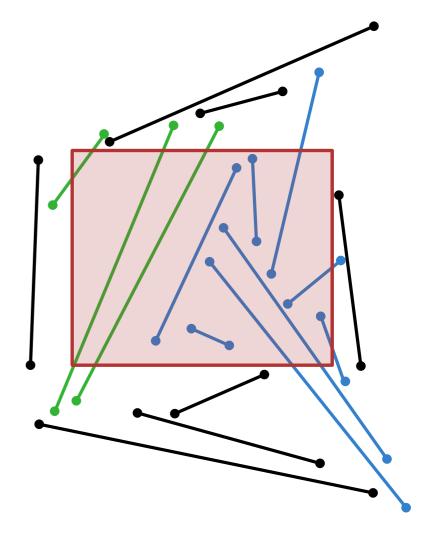
Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.

The segments that intersect R

- 1) have an endpoint in R, or find them using a range query with R on the set of end points $\Longrightarrow O(\log^2 n + k)$ query, $O(n \log n)$ space.
- 2) intersect the boundary of *R*.

find them using a segment tree $\implies O(\log^2 n + k)$ query, $O(n \log n)$ space.



Thm. We can solve windowing queries in $O(\log^2 n + k)$ time, using $O(n \log n)$ space after $O(n \log n)$ preprocessing time.

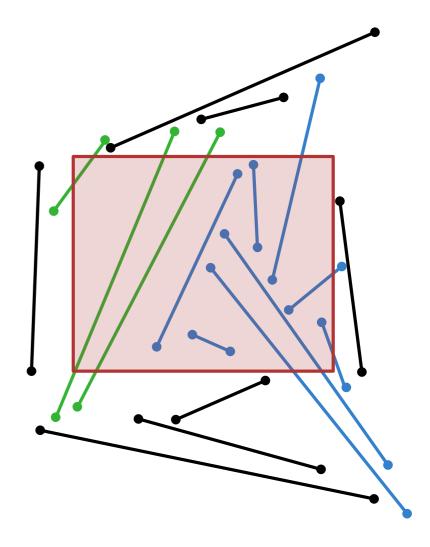
Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.

The segments that intersect R

- 1) have an endpoint in R, or find them using a range query with R on the set of end points $\Longrightarrow O(\log n + k)$ query, $O(n \log n)$ space.
- 2) intersect the boundary of R. find them using a segment tree $\implies O(\log n + k)$ query, $O(n \log n)$ space.



Thm. We can solve windowing queries in $O(\log n + k)$ time, using $O(n \log n)$ space after $O(n \log n)$ preprocessing time.