Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R,
we can find the segments in S intersecting R efficiently.

Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R,

we can find the segments in S intersecting R efficiently.

J/i

///\

Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R,

we can find the segments in S intersecting R efficiently. / /
[/

The segments that intersect R

1) have an endpoint in R, or \\/
J. >N\

2) intersect the boundary of R. / / \

59—

Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R,
we can find the segments in S intersecting R efficiently.

The segments that intersect R

1) have an endpoint in R, or

find them using a range query
with R on the set of end points

2) intersect the boundary of R.

[

Windowing Queries

Given a set S of n disjoint orthogonal line segments in the plane.

Store S in a data structure s.t. given a query rectangle R,
we can find the segments in S intersecting R efficiently.

The segments that intersect R

1) have an endpoint in R, or

find them using a range query
with R on the set of end points

2) intersect the boundary of R.

Windowing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting g efficiently.

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query value g, we can find
the intervals in S intersecting q efficiently.

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query value g, we can find
the intervals in S intersecting q efficiently.

We store S in an interval tree T

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query value g, we can find
the intervals in S intersecting g efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the
intervals /(v) that contain v

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query value g, we can find
the intervals in S intersecting g efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the
intervals /(v) that contain v

The left subtree ¢ of v stores the intervals that lie completely
left of v.

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query value g, we can find
the intervals in S intersecting g efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the
intervals /(v) that contain v

The left subtree ¢ of v stores the intervals that lie completely
left of v.

The right subtree r of v stores the intervals that lie
completely right of v.

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query value g, we can find
the intervals in S intersecting g efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the
intervals /(v) that contain v

store these intervals twice:
1) sorted on increasing left endpoint

2) sorted on decreasing right endpoint

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query value g, we can find
the intervals in S intersecting g efficiently.

We store S in an interval tree T .

T is a balanced BST on the endpoints —_—

The root of the tree (the median endpoint) v stores the
intervals /(v) that contain v

QUERY(q, T)

if g left of v then
report intervals from /(v) using the list of left-end points,
stop at the first interval right of g.

QUERY(q, £)
else if g right of v

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query value g, we can find
the intervals in S intersecting g efficiently.

We store S in an interval tree T

Space usage:

Query time:

Preprocessing time:

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query value g, we can find
the intervals in S intersecting g efficiently.

We store S in an interval tree T
Space usage: O(n)

Query time:

Preprocessing time:

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query value g, we can find
the intervals in S intersecting g efficiently.

We store S in an interval tree T
Space usage: O(n)

Query time: O(log n + k)
k = #intervals reported

Preprocessing time:

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query value g, we can find
the intervals in S intersecting g efficiently.

We store S in an interval tree T
Space usage: O(n)

Query time: O(log n + k)
k = #intervals reported

Preprocessing time: O(nlog n)

Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
q, we can find the segments in S intersecting g efficiently.

Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the
intervals /(v) that contain v

Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the
intervals /(v) that contain v

Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

The root of the tree (the median endpoint) v stores the
intervals /(v) that contain v

store these intervals twice:

1) a range tree on their left endpoints

2) a range tree on the right endpoints

Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

We store S in an interval tree T

Space usage:

Query time:

Preprocessing time:

Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

We store S in an interval tree T
Space usage: O(nlog n)

Query time:

Preprocessing time:

Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

We store S in an interval tree T

Space usage: O(nlog n)

Query time: O(log® n + k)
k = #intervals reported

Preprocessing time:

Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

We store S in an interval tree T

Space usage: O(nlog n)

Query time: O(log® n + k)
k = #intervals reported

Preprocessing time: O(nlog n)

Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

We store S in an interval tree T

Space usage: O(n) using priority search trees

Query time: O(log® n + k)
k = #intervals reported

Preprocessing time: O(nlog n)

Segment Stabbing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

Our solution using an interval tree + range tree (or
priority search tree) no longer works

o

;> /17

Segment Stabbing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

Segment Stabbing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

Split into elementary intervals in which a vertical line
intersects the same segments.

/

v 4
y A

[/ /]

/1

\

Segment Stabbing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

Split into elementary intervals in which a vertical line
intersects the same segments.

Storing all segments segments in all elementary intervals
uses ©(n?) space

/

v 4
y A

[/ /]

/1

\

Segment Stabbing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

Split into elementary intervals in which a vertical line
intersects the same segments.

Project the segments onto the x-axis, yielding intervals.
We build a different data structure for interval stabbing.

/

\

/1

v 4
y A

7777

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query point g, we can
find the intervals in S intersecting g efficiently.

Split into elementary intervals in which a vertical line
intersects the same segments.

Store the elementary intervals as leaves in a balanced
BST T.

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query point g, we can
find the intervals in S intersecting g efficiently.

Split into elementary intervals in which a vertical line
intersects the same segments.

Store the elementary intervals as leaves in a balanced
BST T.

Every node v

corresponds to an interval /,, which is the union of the
elementary intervals stored in its subtree.

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query point g, we can
find the intervals in S intersecting g efficiently.

Split into elementary intervals in which a vertical line
intersects the same segments.

Store the elementary intervals as leaves in a balanced
BST T.

Every node v

corresponds to an interval /,, which is the union of the
elementary intervals stored in its subtree.

stores a canonical subset S(v) C S of intervals s.t.
s € S(v) if and only if /, C s but parent(v); < s

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query point g, we can
find the intervals in S intersecting g efficiently.

Split into elementary intervals in which a vertical line
intersects the same segments.

Store the elementary intervals as leaves in a balanced
BST T.

Every node v

corresponds to an interval /,, which is the union of the
elementary intervals stored in its subtree.

stores a canonical subset S(v) C S of intervals s.t.
s € S(v) if and only if /, C s but parent(v); < s

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query point g, we can
find the intervals in S intersecting g efficiently.

Split into elementary intervals in which a vertical line
intersects the same segments.

Store the elementary intervals as leaves in a balanced
BST T.

Every node v

corresponds to an interval /,, which is the union of the
elementary intervals stored in its subtree.

stores a canonical subset S(v) C S of intervals s.t.
s € S(v) if and only if /, C s but parent(v); < s

T is a segment tree

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query point g, we can
find the intervals in S intersecting g efficiently.

Split into elementary intervals in which a vertical line
intersects the same segments.

Query: find all nodes v s.t. g € I, and for each such node
report all intervals in S(v).

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query point g, we can
find the intervals in S intersecting g efficiently.

Split into elementary intervals in which a vertical line
intersects the same segments.

Query: find all nodes v s.t. g € I, and for each such node
report all intervals in S(v).

Query time: O(log n + k), where k is the output size.

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query point g, we can
find the intervals in S intersecting g efficiently.

Split into elementary intervals in which a vertical line
intersects the same segments.

Question: How much storage do we use?

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query point g, we can
find the intervals in S intersecting g efficiently.

Split into elementary intervals in which a vertical line
intersects the same segments.

Question: How much storage do we use?

Claim: Every interval is stored O(log n) times; at most twice
per level.

—> space usage is O(nlog n).

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query point g, we can
find the intervals in S intersecting g efficiently.

Split into elementary intervals in which a vertical line
intersects the same segments.

Question: How much storage do we use?

Claim: Every interval is stored O(log n) times; at most twice
per level.

—> space usage is O(nlog n).

Question: How do we build 77

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query point g, we can
find the intervals in S intersecting g efficiently.

Split into elementary intervals in which a vertical line
intersects the same segments.

Question: How much storage do we use?

Claim: Every interval is stored O(log n) times; at most twice
per level.

—> space usage is O(nlog n).

Question: How do we build 77

Build a BST on the elementary intervals, insert the intervals in
s € S one by one.

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query point g, we can
find the intervals in S intersecting g efficiently.

Split into elementary intervals in which a vertical line
intersects the same segments.

Question: How much storage do we use?

Claim: Every interval is stored O(log n) times; at most twice
per level.

—> space usage is O(nlog n).

Question: How do we build 77

Build a BST on the elementary intervals, insert the intervals in
s € S one by one.

To insert s we visit at most 4 nodes per level

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query point g, we can
find the intervals in S intersecting g efficiently.

We store S in an segment tree T
Space usage: O(nlog n)

Query time: O(log n + k)
k = #intervals reported

Preprocessing time: O(nlog n)

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query point g, we can
find the intervals in S intersecting g efficiently.

Query: find all nodes v s.t. g € I, and for each such node
report all intervals in S(v).

Interval Stabbing Queries

Given a set S of n intervals in R?

Store S in a data structure s.t. given a query point g, we can
find the intervals in S intersecting g efficiently.

Query: find all nodes v s.t. g € I, and for each such node
report all intervals in S(v).

—> we can store S(v) any way we like, since we have to
report all intervals in S(v).

Segment Stabbing Queries

Given a set S of n horizontal line segments in
the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

Query: find all nodes v s.t. g € I, and for each such node
report all intervals in S(v).

—> we can store S(v) any way we like, since we have to
report all intervals in S(v).

Store S(v) in a balanced BST.

—
We can report all segments intersected by g in

O(log® n + k) time.

Segment Stabbing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

Query: find all nodes v s.t. g € I, and for each such node
report all intervals in S(v).

—> we can store S(v) any way we like, since we have to
report all intervals in S(v).

Store S(v) in a balanced BST.

—
We can report all segments intersected by g in

O(log® n + k) time.

/

v 4
y A

[/ /]

\

/1

Segment Stabbing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment
g, we can find the segments in S intersecting g efficiently.

We store S in an segment tree T

Space usage: O(nlog n)

Query time: O(log® n + k)
k = #intervals reported

Preprocessing time: O(nlog n)

/

v 4
y A

[/ /]

/1

\

Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we

can find the segments in § intersecting R efficiently. /. /
[/

The segments that intersect R T
1) have an endpoint in R, or ‘
find them using a range query
with R on the set of end points /
— O(log” n + k) query, O(nlog n) space. \\\
2) intersect the boundary of R. J' / / l

find them using a segment tree

— O(log® n + k) query, O(nlog n) space. ’\\

R —

Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we

can find the segments in § intersecting R efficiently. /. /
[/

The segments that intersect R T
1) have an endpoint in R, or ‘
find them using a range query
with R on the set of end points /
— O(log” n + k) query, O(nlog n) space. \\\
2) intersect the boundary of R. J' / / l

find them using a segment tree
— O(log” n + k) query, O(nlog n) space. \

Thm. We can solve windowing queries in O(log® n + k) time, using O(nlog n)
space after O(nlog n) preprocessing time.

R —

Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we

can find the segments in § intersecting R efficiently. /. /
[/

The segments that intersect R T
1) have an endpoint in R, or ‘
find them using a range query
with R on the set of end points /
— O(log n + k) query, O(nlog n) space. \\\
2) intersect the boundary of R. J' / / l

find them using a segment tree
— O(log n + k) query, O(nlog n) space. \

Thm. We can solve windowing queries in O(log n + k) time, using O(nlog n)
space after O(nlog n) preprocessing time.

A —

