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Assignment #1: Compute the following products 

a) Matrix-vector multiplication 

[
   
   

]  [
 

  
 

] 

Solution 

[
     
     

]  [
 
 
] 

b) Matrix-vector multiplication 

[

   
   
   

]  [
 
 
 
] 

(write-out the symbolic solution) 

Solution 

[

       
        
        

] 

c) Matrix-matrix multiplication. Compute: 

[
    
    

    
]  [

   
   

    
] 

Solution 

just do it. 

d) Proof that a uniform scaling matrix   always commutes with any other matrix, i.e.,        . 

For simplicity, just consider the 2D case: 



[
  
  

]
⏟  

 

 [
      

      
]

⏟      
 

 

Instructions: Compute the matrix-matrix product in both ways and compare. There might be easier 

proofs, but this assignment is meant to exercise matrix-vector products. 

Solution 

[
  
  

]  [
      

      
]  [

        

        
] 

[
      

      
]  [

  
  

]  [
        

        
] 

non-uniform? no 
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]  [
      

      
]  [

          

          
] 

[
      

      
]  [

   
   

]  [
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Assignment #2: Matrix Inversion 

a) Consider the following linear system of equations  

[
    

     
    

]  [
 
 
 
]  [

 
   
  

] 

Compute       using Gaussian elimination! 

Solution 

[
    

     
    

]  [
 
 
 
]  [

 
   
  

] 
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]  [
 
 
 
]  [

 
 
 
] 
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]  [
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Remark: The same example is also discussed at http://en.wikipedia.org/wiki/Gaussian_elimination. 

b) Compute the inverse of the following matrix using Gaussian elimination: 

[
    
    
    

] 

Solution 

(
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) 
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http://en.wikipedia.org/wiki/Gaussian_elimination
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Assignment #3: Orthogonalization 

a) Consider the following three vectors  

   [
 
 
 
]     [

 
 
 
]     [

 
 
 
] 

Convert the three vectors into an orthogonal coordinate system using the Gram-Schmidt Algorithm. 

Specifically, consider    fixed and modify    such that it is orthonormal to   . Then modify    such 

that it is orthogonal to      . Hint: Check first, if pairs of vectors are already orthogonal to save 

some work! 

Solution 

   and    are already orthogonal. So we can continue with   :    is orthogonal to   ; we only need to 

orthogonalize with     
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]  ([
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]  [

    
 

   
]  [

    
 

    
] 

b) Consider the vector  

   [
 
 
 
] 

Build an orthogonal basis of    that contains    as one basis vector. (Now) use the cross-product for 

this (a solution with the scalar product has been obtained in (a)). Hint: See textbook chapter 2.4.6. 

Solution 

Compute for example 

      (
 
 
 
)           

 

  



Assignment #4: Implicit modeling 

Geometric objects can be modeled by parametric equations or by implicit equations. We 

have seen parametric equations already in the lecture. For example, a line in    can be 

represented parametrically as 

  ( )                    (1) 

The scalar parameter   allows us to move along the line. This is the reason for calling the format para-

metric – the describe primitive (the line) can be scanned by varying the parameter. 

In contrast, implicit equations express only a logical condition that allows us to test whether we are on 

the object or not. For example, an implicit line equation will look like that: 

                                            (2) 

This equation also describes a line in   , but it does not give us a parameter to walk along the line. On 

the other hand, we can directly test whether some point   is located on the line without solving a sys-

tem of equations. Further, the implicit form is often easer to setup for complicated shapes. 

With these remarks on the background, solve the following assign to understand the concept better. 

a) Consider a line through the origin. How will equations (1) and (2) above (always) look like in this 

case? 

Solution: 

p = 0, d = 0 

b) What is the geometric meaning of the vectors   and   in equation (1) and (2), respectively? Similarly, 

what is the meaning of point   and the scalar  ? Hint: In case you do not see the relation, try a few 

examples and draw the situation (including all of the points and vectors). 

Solution: 

  is a vector that is normal to the line.   is a vector that is tangential to the line (direction vector). 

  is the offset vector and   is a distance vector projected on the normal. 

 

c) Convert between the representations of Eq. (1) and Eq. (2). What is the general rule here? 

Hint: This assignment is easy after answering (b). 

Solution: 

For example:   (
   
  

)  ; other direction:   (
   
  

)  



     ; other direction:   
 

‖ ‖  . 

d) Does the implicit representation of a line still work in   ? Hint – no, but what does such an equation 

describe here? Could you think of a way to fix this (i.e., come up with a modified, implicit formulation 

that still describes a line)? Hint: Use more than one equation. 

Solution: 

Of course not – the equation describes a plane. We could still retain an implicit line representation by 

using the intersection of two planes (e.g., constructing to orthogonal normal vectors using the method 

from 3b). 

 

Assignment #5: Non-linear objects 

Hint: Work on Assignment 4 before this one. 

a) Use the scalar product to create an equation that describes all point on a unit circle in 

the plane around the origin (i.e., radius =  , center =  ). 

Solution: 

‖ ‖  √            (short:     ) 

b) Create the same equation for an arbitrary circle with any radius     and arbitrary center     . 

Solution: 

 (   )     

c) Develop a formula for intersecting the general circle with a line. Hint: Express the line in parametric 

form and compute the intersection. 

Solution: 

(   )            

 (      )     

       (   )       (   )    

Solving the quadratic equation in t: 

  
   √      
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Assignment #6: Solution spaces of linear systems 

We are given a linear system of equations 

                              

The matrix   is a general matrix with   columns and   rows; it is not necessarily invertible. This means 

that the system might have no solution at all, exactly one solution, or even more than one solution. We 

now want to understand the structure of the solution space. 

a) Show that the system has a solution if and only if       ( )  

Solution 

F  s : ” ” 

      ( )             ∑  

 

   

   (            )     

T   : ” ”    d       gum     b v  b ckw  ds. 

b) Let         be solutions of the system of equations. Then, show that the vector 

                

is also a solution for any coefficients           with 

           

This type of constrained linearly combination (weights sum to one) is also called an affine combina-

tion. Any affine subspace is closed under affine combinations (but not general linear combinations – 

can you give a counter example?). In a more general framework, the property above can also be used 

to characterize the affine spaces. 

Solution: 

                                 for solutions         

We know that 

       

Hence, 

       (           )                                  

 

Remark: What we have learned here is that the solution space of a linear system of equations is either 

empty or an affine subspace of   . This means, it is the empty set, a single point, a line, a plane, or a  

d-dimensional hyperplane with d up to n (i.e., the whole   ). 


