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Theoretical Assignment #5:
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Assignment #1: Rasterization

You are given a triangle with projected vertices
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P1. P2, Ps € R%
These points are already given in screen coordinates [pixels]; however, the points can be placed an-

ywhere — no guarantees. Further, your screen consists of w X h pixels.

Develop an algorithm, in pseudo-code, that rasterizes the triangle to the screen. The algorithm
should be asymptotically optimal in the sense that the processing cost for a triangle are O (k) if the
triangle has k fragments within the screen area (in other words, do not generate fragments outside
the screen, or simply reject them after generation; this could have arbitrarily high run-times!).

Your solution does not need to make specific optimizations (integer arithmetic, incremental calcula-
tions etc.).

Hint: We did not talk about this in the lecture yet — so be creative! Any correct solution with O (k)
runtime is acceptable.

Assignment #2: No overpaint allowed! — a variant of the painter’s algorithm.

Imagine we need to create a variant of the painter’s algorithm where no overwriting is
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allowed: Given the projection of n triangles into 2D, we have to cut the scene into important

smaller triangles such that invisible area is never drawn (in other words, if area over-

laps with another triangle, it must be removed; the output are still triangles). Such an algorithm
might for example be necessary to drive a plotter (a devise that draws wire-frame drawings of a 3D
scene and cannot erase anything it has ever drawn).

Prove a quadratic lower-bound for the worst-case complexity. Show that there exists scenes with
O(n) input triangles that create 0 (n?) output triangles.

Hint: One can construct a scene (more specifically, a family of similar scenes with an arbitrary num-
ber of triangles) such that the number of required pieces grows quadratically.



Assignment #3: The real painter’s algorithm, and why it can be slow... /4\

Now we permit overdraw. Consider again a “correct” painters algorithm that cuts tri-
angles into smaller pieces until the triangles can be brought into a fixed order such that sevneed ones
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painting them in that order makes sure that the parts always overwrite parts that are
further away.

Prove that such an algorithm has also a quadratic worst-case complexity. More specifically, show
that at least one scene exists, consisting of n triangles where 0 (n?) sub-triangle (pieces) must be
generated before such an ordering can be obtained.

Hint: One can construct a scene (more specifically, a family of similar scenes with an arbitrary num-
ber of triangles) such that the number of required pieces grows quadratically.

Remark: Assignment 3 is more difficult than assignment 2 — the example is not as easy to find as be-
fore.

Assignment #4: Normals and back-face culling

a) Calculate the unit normal vector of the following triangles! Use the CCW rule —
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points are given in counter-clockwise direction if viewed from the outside. The study complerely

normal should point outside (towards the viewer) when looking at the visible side.

t; = (P1, P2, P3)
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b) Our rendering system implements back-face culling — triangles for which the normal vector (or-
thogonal to the triangle plane). The camera is located in the origin and looking down the positive
z-axis. Which of the two following triangles is visible after CCW-back-face culling?
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Explain briefly why.



Assignment #5: Diffuse shading
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Consider the diffuse (“Lambertian”) shading model. Explain why the

brightness of the surfaces decreases with cos 8, where 6 is the angle | S e ‘ | ke ‘
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between the incident light direction 1 and the surface normal n.

Hint: Consider a parallel ray bundle that hits a small piece of surface. Then vary the incident angle 6
and describe what happens (does not need to be formally strict; formally strict would be very much
rated “red”).



