
UU Graphics
academic year 2013/14 – 4th period

Theoretical Assignment #5:
Rasterization & Shading

June 10 2014

Assignment #1: Rasterization

You are given a triangle with projected vertices

These points are already given in screen coordinates [pixels]; however, the points can be placed an-

ywhere – no guarantees. Further, your screen consists of pixels.

Develop an algorithm, in pseudo-code, that rasterizes the triangle to the screen. The algorithm

should be asymptotically optimal in the sense that the processing cost for a triangle are if the

triangle has fragments within the screen area (in other words, do not generate fragments outside

the screen, or simply reject them after generation; this could have arbitrarily high run-times!).

Your solution does not need to make specific optimizations (integer arithmetic, incremental calcula-

tions etc.).

Hint: We did not talk about this in the lecture yet – so be creative! Any correct solution with

runtime is acceptable.

Solution

A very simple solution could look like that:

Algorithm 1: Parallelogram rasterizer – rasterizes parallelograms with top and

 bottom side parallel to the x-axis, and arbitrary points within

 the screen boundaries

Input: Points p_upperLeft, p_upperRight, p_lowerLeft, p_lowerRight

Output: list of fragments (would write to framebuffer in real implementation).

Assert(p_upperLeft.y = p_upperRight.y);

Assert(p_lowerLeft.y = p_lowerRight.y);

Assert(p_lowerLeft.y >= p_upperLeft.y);

Assert(all inputs within screen coordinates, [0…w-1] [0…h]

for (int y=p_upperLeft.y; y <= p_lowerRight.y; y++) {

 int x_start = round ((p_upperLeft.x – p_LowerLeft.x)

 / (p_upperLeft.y – p_lowerLeft.y) * (y - p_upperLeft.y));

 int x_end = round ((p_upperRight.x – p_LowerRight.x)

 / (p_upperRight.y – p_lowerRight.y) * (y - p_upperRight.y));

 for (int x=x_start; x<x_end; x++) {

 output_fragment(x,y); // write to framebuffer

 // or call pixelshader and then write the result

 }

}

Remark: some details are not fully worked out below – work out the details yourselves!

Algorithm 2: Convert triangle into parallelograms

Input: Points p1,p2,p3

Output: calls Algorithm 1 for output of fragments

Data structure:

 parallelogram (upperLeft, upperRight, lowerLeft, lowerRight) (4 points)

Sort points p1,p2,p3 by y-coordinate

p2_mid = point on line p1-p3 at y-coordinate p2.y

parallelogram pg1 = (p1, p1, p2, p2_mid)

parallelogram pg2 = (p2, p2_mid, p3, p3)

parallelogram_list pgl1 = clipParallelogram(pg1);

parallelogram_list pgl2 = clipParallelogram(pg2);

if (visible1) parallelogramRasterizer(pg1);

if (visible2) parallelogramRasterizer(pg2);

Remark: some details are not fully worked out below – work out the details yourselves!

Algorithm 3: Clip parallelogram against screen

Input: Points p_upperLeft, p_upperRight, p_lowerLeft, p_lowerRight

Output: list of parallelograms

If (y-coordinates fully above or below screen) {

 return (empty list).

}

If (p_upperLeft.y <0) {

 clip upper boundary of parallelogram at screen top, rewrite points accordingly

}

If (p_upperLeft.y >= h) {

 clip lower boundary of parallelogram at bottom of the screen,

 rewrite points accordingly

}

If (left edge left right of screen or right edge left of screen) {

 return (empty list);

} otherwise {

 if (left edge intersects screen) {

 split parallelogram into two separate ones at the intersection y-coordinate

 store in result list

 } otherwise {

 store original parallelogram in result list

 }

 for (all parallelograms in result list)

 if (right edge intersects screen) {

 remove from result list

 split parallelogram into two separate ones at the intersection y-coordinate

 store the two resulting ones in the result list

 }

}

Remark:

This algorithm can be made quite fast by precomputing the slopes of the line equations in the inner

loop of algorithm one. The only operation that is required in the two inner loops is a single addition.

This one can be made very fast with fixed point arithmetics, or, more sophisticated, with a mid-

point/Bresenham algorithm (not covered in the lecture so far).

On the other hand, we have GPUs these days; who does still implement such things in software… :-)

Assignment #2: No overpaint allowed! – a variant of the painter’s algorithm.

Imagine we need to create a variant of the painter’s algorithm where no overwriting is

allowed: Given the projection of triangles into 2D, we have to cut the scene into

smaller triangles such that invisible area is never drawn (in other words, if area over-

laps with another triangle, it must be removed; the output are still triangles). Such an algorithm

might for example be necessary to drive a plotter (a devise that draws wire-frame drawings of a 3D

scene and cannot erase anything it has ever drawn).

Prove a quadratic lower-bound for the worst-case complexity. Show that there exists scenes with

 input triangles that create output triangles.

Hint: One can construct a scene (more specifically, a family of similar scenes with an arbitrary num-

ber of triangles) such that the number of required pieces grows quadratically.

Solution

Example scene: n/2 horizontal and n/2 vertical triangles

Assignment #3: The real painter’s algorithm, and why it can be slow…

Now we permit overdraw. Consider again a “correct” painters algorithm that cuts tri-

angles into smaller pieces until the triangles can be brought into a fixed order such that

painting them in that order makes sure that the parts always overwrite parts that are

further away.

Prove that such an algorithm has also a quadratic worst-case complexity. More specifically, show

that at least one scene exists, consisting of triangles where sub-triangle (pieces) must be

generated before such an ordering can be obtained.

Hint: One can construct a scene (more specifically, a family of similar scenes with an arbitrary num-

ber of triangles) such that the number of required pieces grows quadratically.

Remark: Assignment 3 is more difficult than assignment 2 – the example is not as easy to find as be-

fore.

Example scene: n/2 horizontal and n/2 vertical triangles,

intersecting each other in a stack of increasing depth.

Making this in PPT was actually a lot of work! (painter’s solution – right image)

Assignment #4: Normals and back-face culling

a) Calculate the unit normal vector of the following triangles! Use the CCW rule –

points are given in counter-clockwise direction if viewed from the outside. The

normal should point outside (towards the viewer) when looking at the visible side.

 (

) (

) (

)

 (

) (

) (

)

Solution: t1: (0,0,-1)T.

Solution: t2: use cross product of sides to compute. Orient points according to CCW for ordering

the input to the cross-product.

b) Our rendering system implements back-face culling – triangles for which the normal vector (or-

thogonal to the triangle plane). The camera is located in the origin and looking down the positive

z-axis. Which of the two following triangles is visible after CCW-back-face culling?

 (

) (

) (

)

 (

) (

) (

)

Explain briefly why.

Solution: Only the first one. Because it is oriented CCW.

Assignment #5: Diffuse shading

Consider the diffuse (“Lambertian”) shading model. Explain why the

brightness of the surfaces decreases with , where is the angle

between the incident light direction and the surface normal .

Hint: Consider a parallel ray bundle that hits a small piece of surface. Then vary the incident angle

and describe what happens (does not need to be formally strict; formally strict would be very much

rated “red”).

Solution:

Consider the following image:

Assuming that each light ray has constant power density, the overall power arriving is proportional

to the height h of the yellow ray bundle. This height is proportional to .

Remark: A strictly formal argument involves defining radiance (power density of rays) as infinitesimal

density quantity with respect to solid angle and area. Then, by integrating over the finite area (bold

red) and considering a suitable directional light source (e.g., a point light source in the limit of mov-

ing farer away and scaling up in brightness by dist² to compensate), we can get the same result with

physically well-defined quantities. The required radiometric quantities such as radiance have not

been formally defined in this lecture; therefore, this is for now going too far; the intuition above

should be sufficient.

