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Assignment #1: Rasterization 

You are given a triangle with projected vertices 

  
    

    
      

These points are already given in screen coordinates [pixels]; however, the points can be placed an-

ywhere – no guarantees. Further, your screen consists of     pixels. 

Develop an algorithm, in pseudo-code, that rasterizes the triangle to the screen. The algorithm 

should be asymptotically optimal in the sense that the processing cost for a triangle are      if the 

triangle has   fragments within the screen area (in other words, do not generate fragments outside 

the screen, or simply reject them after generation; this could have arbitrarily high run-times!). 

Your solution does not need to make specific optimizations (integer arithmetic, incremental calcula-

tions etc.). 

Hint: We did not talk about this in the lecture yet – so be creative! Any correct solution with      

runtime is acceptable. 

 

 

  



Solution 

A very simple solution could look like that: 

Algorithm 1: Parallelogram rasterizer – rasterizes parallelograms with top and 

             bottom side parallel to the x-axis, and arbitrary points within 

             the screen boundaries 

Input:  Points p_upperLeft, p_upperRight, p_lowerLeft, p_lowerRight     

Output: list of fragments (would write to framebuffer in real implementation). 

Assert(p_upperLeft.y = p_upperRight.y); 

Assert(p_lowerLeft.y = p_lowerRight.y); 

Assert(p_lowerLeft.y >= p_upperLeft.y); 

Assert(all inputs within screen coordinates, [0…w-1]   [0…h] 

for (int y=p_upperLeft.y; y <= p_lowerRight.y; y++) { 

 int x_start = round ( (p_upperLeft.x – p_LowerLeft.x) 

                   / (p_upperLeft.y – p_lowerLeft.y) * (y - p_upperLeft.y) ); 

 int x_end = round ( (p_upperRight.x – p_LowerRight.x) 

                   / (p_upperRight.y – p_lowerRight.y) * (y - p_upperRight.y) ); 

 for (int x=x_start; x<x_end; x++) { 

  output_fragment(x,y); // write to framebuffer  

                              // or call pixelshader and then write the result 

 } 

} 

 

Remark: some details are not fully worked out below – work out the details yourselves! 

Algorithm 2: Convert triangle into parallelograms 

Input:  Points p1,p2,p3 

Output: calls Algorithm 1 for output of fragments 

Data structure: 

    parallelogram (upperLeft, upperRight, lowerLeft, lowerRight) (4 points) 

Sort points p1,p2,p3 by y-coordinate 

p2_mid = point on line p1-p3 at y-coordinate p2.y 

parallelogram pg1 = (p1, p1, p2, p2_mid) 

parallelogram pg2 = (p2, p2_mid, p3, p3) 

parallelogram_list pgl1 = clipParallelogram(pg1); 

parallelogram_list pgl2 = clipParallelogram(pg2); 

if (visible1) parallelogramRasterizer(pg1); 

if (visible2) parallelogramRasterizer(pg2); 

 

  



Remark: some details are not fully worked out below – work out the details yourselves! 

Algorithm 3: Clip parallelogram against screen 

Input:  Points p_upperLeft, p_upperRight, p_lowerLeft, p_lowerRight     

Output: list of parallelograms 

If (y-coordinates fully above or below screen) { 

 return (empty list). 

} 

If (p_upperLeft.y <0) { 

 clip upper boundary of parallelogram at screen top, rewrite points accordingly 

} 

If (p_upperLeft.y >= h) { 

 clip lower boundary of parallelogram at bottom of the screen, 

    rewrite points accordingly 

} 

If (left edge left right of screen or right edge left of screen) { 

 return (empty list); 

} otherwise { 

 if (left edge intersects screen) { 

  split parallelogram into two separate ones at the intersection y-coordinate 

  store in result list 

 } otherwise { 

  store original parallelogram in result list 

 } 

 for (all parallelograms in result list) 

 if (right edge intersects screen) { 

  remove from result list 

  split parallelogram into two separate ones at the intersection y-coordinate 

  store the two resulting ones in the result list 

 } 

} 

 

Remark: 

This algorithm can be made quite fast by precomputing the slopes of the line equations in the inner 

loop of algorithm one. The only operation that is required in the two inner loops is a single addition. 

This one can be made very fast with fixed point arithmetics, or, more sophisticated, with a mid-

point/Bresenham algorithm (not covered in the lecture so far). 

On the other hand, we have GPUs these days; who does still implement such things in software… :-) 

 

 

 

  



Assignment #2: No overpaint allowed! – a variant of the painter’s algorithm. 

Imagine we need to create a variant of the painter’s algorithm where no overwriting is 

allowed: Given the projection of   triangles into 2D, we have to cut the scene into 

smaller triangles such that invisible area is never drawn (in other words, if area over-

laps with another triangle, it must be removed; the output are still triangles). Such an algorithm 

might for example be necessary to drive a plotter (a devise that draws wire-frame drawings of a 3D 

scene and cannot erase anything it has ever drawn). 

Prove a quadratic lower-bound for the worst-case complexity. Show that there exists scenes with 

     input triangles that create       output triangles. 

Hint: One can construct a scene (more specifically, a family of similar scenes with an arbitrary num-

ber of triangles) such that the number of required pieces grows quadratically. 

Solution 

 

Example scene: n/2 horizontal and n/2 vertical triangles 

 

Assignment #3: The real painter’s algorithm, and why it can be slow… 

Now we permit overdraw. Consider again a “correct” painters algorithm that cuts tri-

angles into smaller pieces until the triangles can be brought into a fixed order such that 

painting them in that order makes sure that the parts always overwrite parts that are 

further away. 

Prove that such an algorithm has also a quadratic worst-case complexity. More specifically, show 

that at least one scene exists, consisting of   triangles where       sub-triangle (pieces) must be 

generated before such an ordering can be obtained. 

Hint: One can construct a scene (more specifically, a family of similar scenes with an arbitrary num-

ber of triangles) such that the number of required pieces grows quadratically. 

Remark: Assignment 3 is more difficult than assignment 2 – the example is not as easy to find as be-

fore. 

 



                 

Example scene: n/2 horizontal and n/2 vertical triangles,  

intersecting each other in a stack of increasing depth.  

Making this in PPT was actually a lot of work! (painter’s solution – right image) 

 

 

Assignment #4: Normals and back-face culling 

a) Calculate the unit normal vector of the following triangles! Use the CCW rule – 

points are given in counter-clockwise direction if viewed from the outside. The 

normal should point outside (towards the viewer) when looking at the visible side. 
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Solution: t1: (0,0,-1)T. 

Solution: t2: use cross product of sides to compute. Orient points according to CCW for ordering 

the input to the cross-product. 

b) Our rendering system implements back-face culling – triangles for which the normal vector (or-

thogonal to the triangle plane). The camera is located in the origin and looking down the positive 

z-axis. Which of the two following triangles is visible after CCW-back-face culling? 
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Explain briefly why. 

Solution: Only the first one. Because it is oriented CCW. 

 

Assignment #5: Diffuse shading 

Consider the diffuse (“Lambertian”) shading model. Explain why the 

brightness of the surfaces decreases with     , where   is the angle 

between the incident light direction   and the surface normal  . 

Hint: Consider a parallel ray bundle that hits a small piece of surface. Then vary the incident angle   

and describe what happens (does not need to be formally strict; formally strict would be very much 

rated “red”). 

Solution: 

Consider the following image: 

 

Assuming that each light ray has constant power density, the overall power arriving is proportional 

to the height h of the yellow ray bundle. This height is proportional to     . 

Remark: A strictly formal argument involves defining radiance (power density of rays) as infinitesimal 

density quantity with respect to solid angle and area. Then, by integrating over the finite area (bold 

red) and considering a suitable directional light source (e.g., a point light source in the limit of mov-

ing farer away and scaling up in brightness by dist² to compensate), we can get the same result with 

physically well-defined quantities. The required radiometric quantities such as radiance have not 

been formally defined in this lecture; therefore, this is for now going too far; the intuition above 

should be sufficient. 

 


