Graphics 2014

Linear Algebra II

Linear Maps & Matrices

[Faculty of Science]
Information and
Computing Sciences

Linear Maps & Matrices

Linear Combinations

$$\mathbf{y} = \sum_{i=1}^{n} \lambda_i \mathbf{x}_i$$

Linear Combinations

Algebra

Linear Combinations as Mappings

- Fix vectors $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^m$.
- Factors $\lambda_1, \dots, \lambda_n \rightarrow \mathbf{y}$

Linear Mappings

Linear Map

Fix vectors

$$\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^m$$

Input coordinates

$$\lambda_1, \ldots, \lambda_n$$

Output vector

$$\mathbf{y} \in \mathbb{R}^m$$

$$\mathbf{y} = \sum_{i=1}^{n} \lambda_i \mathbf{x}_i$$

Map $\lambda_1, \dots, \lambda_n \to \mathbf{y}$ is called a *linear map*

Linear Mappings

Linear Map

Fix vectors

$$\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^m$$

Input coordinates

$$\lambda_1, \ldots, \lambda_n$$

Output vector

$$\mathbf{y} \in \mathbb{R}^m$$

$$\mathbf{y} = \sum_{i=1}^{n} \lambda_i \mathbf{x}_i$$

Map $\lambda_1, \dots, \lambda_n \to \mathbf{y}$ is called a *linear map*

Linear Mappings

Matrix Representation

$$\mathbf{y} = \sum_{i=1}^{n} \lambda_i \mathbf{x}_i$$

Matrix Representation

$$\mathbf{y} = \sum_{i=1}^{n} \lambda_i \mathbf{x}_i$$

$$= \begin{bmatrix} | & & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ | & | \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}$$

$$= \sum_{i=1}^{n} \lambda_{i} \begin{bmatrix} x_{1,i} \\ \vdots \\ x_{m,i} \end{bmatrix}$$

$$= \begin{bmatrix} x_{1,1} & \cdots & x_{1,n} \\ \vdots & & \vdots \\ x_{m,1} & \cdots & x_{m,n} \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}$$

Short

$$\mathbf{y} = \mathbf{X} \cdot \boldsymbol{\lambda}$$

Matrix

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,n} \\ \vdots & & \vdots \\ x_{m,1} & \cdots & x_{m,n} \end{bmatrix}$$

Vectors

$$\lambda = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_m \end{bmatrix}$$

Convention

Taken from Textbook [Shirley et al.]

Matrix elements

$$x_{row,column}$$

- Row first, then column
 - "y"-coordinate of the array first (unintuitive, but common convention)

Matrix Representation

Matrix-vector product

$$\mathbf{y}(\lambda) = \begin{bmatrix} | & & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ | & & | \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}$$

Construction

- Maps from $\mathbb{R}^n \to \mathbb{R}^m$
 - $\lambda \in \mathbb{R}^n$
 - $\mathbf{x}_i \in \mathbb{R}^m \Rightarrow \mathbf{y} \in \mathbb{R}^m$
- Columns of X = images of the basis vectors of \mathbb{R}^n

Example

Example: rotation matrix

$$\mathbf{M}_{rot} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Algebraic rule:

Algebraic rule:

Algebraic rule:

Algebraic rule:

Algebraic rule:

Matrix Representation

Matrix-Vector Multiplication

$$\begin{bmatrix} x_{1,1} & \cdots & x_{1,1} \\ \vdots & & \vdots \\ x_{m,1} & \cdots & x_{m,n} \end{bmatrix} \cdot \begin{vmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{vmatrix} \coloneqq \sum_{i=1}^n \lambda_i \begin{bmatrix} x_{1,i} \\ \vdots \\ x_{m,i} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 \cdot x_{1,1} + \dots + \lambda_n \cdot x_{1,n} \\ \vdots \\ \lambda_1 \cdot x_{m,1} + \dots + \lambda_n \cdot x_{m,n} \end{bmatrix}$$

Standard Transformations

Identity Transform

Example: identity matrix

$$\mathbf{M}_{identity} = \mathbf{I} = \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$$

$$\mathbf{I} \colon \mathbb{R}^{n} \to \mathbb{R}^{n}, \qquad \mathbf{I} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Scaling (Center = Origin)

$$\mathbf{S}_{\lambda} \colon \mathbb{R}^{n} \to \mathbb{R}^{n}, \qquad \mathbf{S}_{\lambda} = \begin{bmatrix} \lambda & 0 & \lambda & 0 \\ 0 & \lambda & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{bmatrix}$$

Non-Uniform Scaling

$$S_{\lambda}: \mathbb{R}^n \to \mathbb{R}^n$$
,

$$\mathbf{S}_{\lambda} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_3 \end{bmatrix}$$

Rotation (2D)

$$\mathbf{M}_{rot} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Rotation (3D)

Rotation (3D)

$$\mathbf{R}_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

$$\mathbf{R}_{z} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R}_{y} = \begin{pmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{pmatrix}$$

Reflection

$$S_{\lambda}: \mathbb{R}^n \to \mathbb{R}^n$$
,

Shearing

$$\mathbf{M}_{shear} = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$$

General Case

You can combine all of these

Example: General axis of rotation

- First rotate rotation axis to x-axis
- Rotate around x
- Rotate back

Question

• How to combine multiple matrix multiplications?

Combining Transformations Matrix Products

Execute multiple linear maps, one after another

- Written as product
- $\bullet (\mathbf{B} \cdot \mathbf{A}) \cdot \mathbf{x}$
 - Apply A to x first
 - Then B
 - $(\mathbf{B} \cdot \mathbf{A})$ is again a matrix

How does it work?

Consider (B · A):

- Rotate first (A)
- Then scale (B)

How does it work?

How to compute $(\mathbf{B} \cdot \mathbf{A})$?

- Transform basis vectors
- Transform again

Matrix product:

Matrix product:

General matrix products:

B · A: possible if#Row(A) = #Columns(B)

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} b_{1,1} & \cdots & b_{1,m} \\ \vdots & & \vdots \\ b_{k,1} & \cdots & b_{k,m} \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} \mathbf{r}_{1,1} & \cdots & \mathbf{r}_{1,n} \\ \vdots & & \vdots \\ \mathbf{r}_{k,1} & \cdots & \mathbf{r}_{k,n} \end{bmatrix}$$

$$r_{i,j} = \sum_{q=1}^{m} a_{q,j} \cdot b_{i,q}$$

Rules for Matrix Multiplication

Matrix-Multiplication

Associative

$$(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$$

Includes vector-multiplication

$$(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{v} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{v})$$

In general, not commutative:

It might be that
$$\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$$

Linear

$$\mathbf{A} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{A} \cdot \mathbf{v} + \mathbf{A} \cdot \mathbf{w}$$
$$\mathbf{A} \cdot (\lambda \cdot \mathbf{v}) = \lambda \cdot (\mathbf{A} \cdot \mathbf{v})$$

(Remark: linearity is used to define linear maps axiomatically)

Settings

λ∈ℝ

A, B, C - matrices

v, w - vectors

Reversing Transformations Matrix Inversion

Can we find the inverse matrix?

- "Undo effect"
- Formally

$$\mathbf{M}^{-1} \cdot \mathbf{M} = \mathbf{I}$$

Examples

Rotation matrix

$$\mathbf{M}_{rot} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

$$\mathbf{M}_{rot}^{-1} = \begin{pmatrix} \cos(-\alpha) & -\sin(-\alpha) \\ \sin(-\alpha) & \cos(-\alpha) \end{pmatrix}$$

Examples

Null matrix

$$\mathbf{0} = \begin{pmatrix} 0 & \mathbf{0} \\ 0 & \mathbf{0} \end{pmatrix}$$

Examples

Projection matrix (remove x-component)

$$\mathbf{M}_{prj} = \begin{pmatrix} 0 & \mathbf{0} \\ 0 & 1 \end{pmatrix}$$

Examples

Projection matrix (remove x-component)

$$\mathbf{M}_{fancy} = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$$

Invertible Matrices

Invertible matrices

- Are always square (#rows = #columns)
- In addition
 - Columns are linearly independent

Equivalent characterizations:

- Square and rows are linearly independent
- Columns form basis of vector space
- Rows form basis of vector space

Invertible Matrices

Rank

- Number of linearly independent columns
- Dimension of span{column_vectors}

Theorem

Rank = number of linearly independent rows

Full rank

- $\operatorname{rank}(\mathbf{M}) = \dim(V)$
- Then: M is invertible

Linear Systems of Equations

First consider simpler case

Say, we know that

$$\mathbf{M} \cdot \mathbf{x} = \mathbf{y}$$

- Square matrix $\mathbf{M} \in \mathbb{R}^{d \times d}$
- Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d \times d}$

Knowns & Unknowns

- We are given M, y
- We should compute x
- Linear system of equations

Linear Systems of Equations

Linear System of Equations

$$\mathbf{M} \cdot \mathbf{x} = \mathbf{y}$$

$$\Leftrightarrow$$

$$\begin{bmatrix} m_{1,1} & \cdots & m_{1,d} \\ \vdots & & \vdots \\ m_{d,1} & \cdots & m_{d,d} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_d \end{bmatrix}$$

$$\Leftrightarrow$$

$$m_{1,1}x_1 + \cdots + m_{1,d} x_d = y_1$$
and
$$m_{2,1}x_1 + \cdots + m_{2,d} x_d = y_2$$

$$\vdots$$
and
$$m_{d,1}x_1 + \cdots + m_{d,d} x_d = y_d$$

Gaussian Elimination

Linear System

$$m_{1,1}x_1 + \dots + m_{1,d} x_d = y_1$$
 $\wedge m_{2,1}x_1 + \dots + m_{2,d} x_d = y_2$
 \vdots
 $\wedge m_{d,1}x_1 + \dots + m_{d,d} x_d = y_d$

Row Operations

- Swap rows r_i , r_j
- Scale row r_i by factor $\lambda \neq 0$
- Add multiple of row r_i to row r_j , $i \neq j$ (i.e., $r_i += \lambda r_i$)

Convert to Upper Triangle Matrix

0				_	
0	0		•		
0	0	0			

(use row-operations)

Convert to Diagonal Matrix

(use row-operations)

Gauss-Algorithm

Gauss-Algorithm

- Substract rows to cancel front-coefficient
 - Create upper triangle matrix first
 - Then create diagonal matrix
- If current row starts with 0
 - Swap with another row
 - If all rows start with 0: matrix not invertible
- Diagonal form: Solution can be read-off
- Data structure
 - Modify matrix M, "right-hand-side" y.
 - x remains unknown (no change)

Matrix Inverse

Solve for

$$\mathbf{M} \cdot \mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \qquad \mathbf{M} \cdot \mathbf{x}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \qquad \mathbf{M} \cdot \mathbf{x}_d = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

• The resulting $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_d$ are the columns of \mathbf{M}^{-1} :

$$\mathbf{M}^{-1} = \begin{pmatrix} \mathbf{I} & & \mathbf{I} \\ \mathbf{x}_1 & \cdots & \mathbf{x}_d \\ \mathbf{I} & & \mathbf{I} \end{pmatrix}$$

Matrix Inverse

Algorithm

- Simultaneous Gaussian elimination
- Start as follows:

- Handle all right-hand sides simultaneously
- After Gauss-algorithm, the right-hand matrix is the inverse

Alternative: Kramer's Rule

Small Matrices

- Direct formula based on determinants
- "Kramer's rule"
- (more later)
 - Naive implementation has run-time O(d!)
 - Gauss: $O(d^3)$
 - Not advised for d > 3

More Vector Operations: Scalar Products

"length" or "norm" ||v|| yields real number ≥ 0

angle
$$\angle(\mathbf{v_1}, \mathbf{v_2})$$

yields real number
 $[0, ..., 2\pi) = [0, ..., 360^\circ)$

Projection: determine length of **v** along direction of **w**

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \cdot \|\mathbf{w}\| \cdot \cos \angle (\mathbf{v}, \mathbf{w})$$

also: $\langle \mathbf{v}, \mathbf{w} \rangle$

*) also known as *inner product* or *dot-product*

Signature

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \cdot \|\mathbf{w}\| \cdot \cos \angle (\mathbf{v}, \mathbf{w})$$

also: $\langle \mathbf{v}, \mathbf{w} \rangle$

*) also known as *inner product* or *dot-product*

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \cdot \|\mathbf{w}\| \cdot \cos \angle (\mathbf{v}, \mathbf{w})$$

Comprises: length, projection, angles

*) also known as *inner product* or *dot-product*

Length:
$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

Angle:
$$\angle(\mathbf{v}, \mathbf{w}) = \arccos(\mathbf{v} \cdot \mathbf{w})$$

Projection: "
$$\mathbf{v}$$
 prj on \mathbf{w} " = $\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|}$

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \cdot \|\mathbf{w}\| \cdot \cos \angle (\mathbf{v}, \mathbf{w})$$

Comprises: length, projection, angles

Algebraic Representation (Implementation)

Scalar Product

$$\mathbf{v} \cdot \mathbf{w} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \coloneqq v_1 \cdot w_1 + v_2 \cdot w_2$$

Theorem:

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \cdot \|\mathbf{w}\| \cdot \cos \angle (\mathbf{v}, \mathbf{w})$$

Scalar Product

Scalar product

$$\mathbf{v} \cdot \mathbf{w} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

Scalar Product

2D Scalar product

$$\mathbf{v} \cdot \mathbf{w} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \coloneqq v_1 \cdot w_1 + v_2 \cdot w_2$$

d-dim scalar product

$$\mathbf{v} \cdot \mathbf{w} = \begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ \vdots \\ w_d \end{pmatrix} \coloneqq v_1 \cdot w_1 + \dots + v_d \cdot w_d$$

Algebraic Properties

Properties

Symmetry (commutativity)

$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$

Bilinearity

$$\langle \lambda \mathbf{v}, \mathbf{w} \rangle = \lambda \langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, \lambda \mathbf{w} \rangle$$

 $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
(symmetry: same for second argument)

Positive definite

$$\langle \mathbf{u}, \mathbf{u} \rangle \ge 0, \qquad [\langle \mathbf{u}, \mathbf{u} \rangle = \mathbf{0}] \Rightarrow [\mathbf{u} = \mathbf{0}]$$

These three: axiomatic definition

Attention!

Do not mix

- Scalar-vector product
- Inner (scalar) product

In general

$$\langle \mathbf{x}, \mathbf{y} \rangle \cdot \mathbf{z} \neq \mathbf{x} \cdot \langle \mathbf{y}, \mathbf{z} \rangle$$

Beware of notation:

$$(\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z} \neq \mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z})$$

(no violation of associativity: different operations; details later)

Applications of the Scalar Product

Applications

Obvious applications

- Measuring length
- Measuring angles
- Projections

More complex applications

- Creating orthogonal (90°) pairs of vectors
- Creating orthogonal bases

Projection

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \cdot \|\mathbf{w}\| \cdot \cos \angle (\mathbf{v}, \mathbf{w})$$

Projection

Projection:
$$\mathbf{v} \cdot \frac{\mathbf{w}}{\sqrt{\mathbf{w} \cdot \mathbf{w}}}$$
 Prj.-Vector: $\langle \mathbf{v}, \frac{\mathbf{w}}{\sqrt{\langle \mathbf{w}, \mathbf{w} \rangle}} \rangle \cdot \frac{\mathbf{w}}{\sqrt{\langle \mathbf{w}, \mathbf{w} \rangle}}$ = $\langle \mathbf{v}, \mathbf{w} \rangle \cdot \frac{\mathbf{w}}{\langle \mathbf{w}, \mathbf{w} \rangle}$

Orthogonalization

Orthogonalize v wrt. w:

$$\mathbf{v}' = \mathbf{v} - \langle \mathbf{v}, \mathbf{w} \rangle \cdot \frac{\mathbf{w}}{\langle \mathbf{w}, \mathbf{w} \rangle}$$

Orthogonalization

Orthogonalize v wrt. w:

$$\mathbf{v}' = \mathbf{v} - \langle \mathbf{v}, \mathbf{w} \rangle \cdot \frac{\mathbf{w}}{\langle \mathbf{w}, \mathbf{w} \rangle}$$

Gram-Schmidt Orthogonalization

Orthogonal basis

All vectors in 90° angle to each other

$$\langle \mathbf{b}_i, \mathbf{b}_j \rangle = 0 \text{ for } i \neq j$$

Create orthogonal bases

- Start with arbitrary one
- Orthogonalize b₂ by b₁
- Orthogonalize \mathbf{b}_3 by \mathbf{b}_1 , then by \mathbf{b}_2
- Orthogonalize \mathbf{b}_4 by \mathbf{b}_1 , then by \mathbf{b}_2 , then by \mathbf{b}_3
- • •

Orthonormal Basis

Orthonormal bases

Orthogonal and all vectors have unit length

Computation

- Orthogonalize first
- Then scale each vector \mathbf{b}_i by $1/\|\mathbf{b}_i\|$.

Matrices

Orthogonal Matrices

- A matrix with orthonormal columns is called orthogonal matrix
 - Yes, this terminology is not quite logical...

Orthogonal Matrices are always

- Rotation matrices
- Or reflection matrices
- Or products of the two

Further Operations

Cross Product

Cross-Product: Exists Only For 3D Vectors!

• $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$

$$\mathbf{x} \times \mathbf{y} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix} \times \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \end{pmatrix} \coloneqq \begin{pmatrix} \mathbf{x}_2 \mathbf{y}_3 - \mathbf{x}_3 \mathbf{y}_2 \\ \mathbf{x}_3 \mathbf{y}_1 - \mathbf{x}_1 \mathbf{y}_3 \\ \mathbf{x}_1 \mathbf{y}_2 - \mathbf{x}_2 \mathbf{y}_1 \end{pmatrix}$$

Geometrically: Theorem

- $\mathbf{x} \times \mathbf{y}$ orthogonal to \mathbf{x} , \mathbf{y}
- Right-handed system $(x, y, x \times y)$

Cross-Product Properties

Bilinearity

- Distributive: $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$
- Scalar-Mult.: $(\lambda \mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (\lambda \mathbf{v}) = \lambda (\mathbf{u} \times \mathbf{v})$

But beware of

- Anti-Commutative: $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$
- Not associative;
 we can have (u × v) × w ≠ u × (v × w)

Determinants

$$\mathbf{M} = \begin{pmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\ | & | & | \end{pmatrix}$$

Determinants

- Square matrix M
- det(M) = |M| = volume of parallelepiped of column vectors

Determinants

$$\mathbf{M} = \begin{pmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\ | & | & | \end{pmatrix}$$

$$\mathbf{M}' = \begin{pmatrix} | & | & | \\ \mathbf{v}_2 & \mathbf{v}_1 & \mathbf{v}_3 \\ | & | & | \end{pmatrix}$$

Sign:

- Positive for right handed coordinates
- Negative for left-handed coordinates

negative determinant

→ map contains reflection

Properties

A few properties:

- $det(A) det(B) = det(A \cdot B)$
- $\det(\lambda \mathbf{A}) = \lambda^d \det(\mathbf{A}) \ (d \times d \text{ matrix } \mathbf{A})$
- $\det(\mathbf{A}^{-1}) = \det(\mathbf{A})^{-1}$
- $det(\mathbf{A}^T) = det(\mathbf{A})$
- $[\det(\mathbf{A}) \neq 0] \Leftrightarrow [\mathbf{A} \text{ invertible}]$
- Efficient computation using Gaussian elimination

sign flips!

→ reflections cancel each other (parity)

Computing Determinants

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = +a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

Recursive Formula

- Sum over first row
- Multiply element there with subdeterminant
 - Subdeterminant:
 Leave out row and column of selected element
 - Recursion ends with |a| = a
- Alternate signs +/-/+/-/...

$$|a| = a$$

Beware of O(dim!) complexity

Computing Determinants

Result in 3D Case

$$\det \begin{pmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - ceg - bdi - afh$$

Solving Linear Systems

Consider

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$$

- Invertible matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$
- Known vector $\mathbf{b} \in \mathbb{R}^d$
- Unknown vector $\mathbf{x} \in \mathbb{R}^d$

Solution with Determinants (Cramar's rule):

$$x_{i} = \frac{\det(\mathbf{A}_{i})}{\det(\mathbf{A})} \qquad \mathbf{A}_{i} = \begin{pmatrix} \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{v}_{1} & \cdots \mathbf{b} & \cdots & \mathbf{v}_{3} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \end{pmatrix}$$

$$column i \qquad \bullet$$

Addendum Matrix Algebra

Matrix Algebra

Define three operations

Matrix addition

$$\begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{bmatrix} + \begin{bmatrix} b_{1,1} & \cdots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{m,1} & \cdots & b_{m,n} \end{bmatrix} = \begin{bmatrix} a_{1,1} + b_{1,1} & \cdots & a_{1,n} + b_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} + b_{m,1} & \cdots & a_{m,n} + b_{m,n} \end{bmatrix}$$

Scalar matrix multiplication

$$\lambda \cdot \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{bmatrix} = \begin{bmatrix} \lambda \cdot a_{1,1} & \cdots & \lambda \cdot a_{1,n} \\ \vdots & \ddots & \vdots \\ \lambda \cdot a_{m,1} & \cdots & \lambda \cdot a_{m,n} \end{bmatrix}$$

Matrix-matrix multiplication

$$\begin{bmatrix} \mathbf{a}_{1,1} & \cdots & \mathbf{a}_{1,n} \\ \vdots & \ddots & \vdots \\ \mathbf{a}_{m,1} & \cdots & \mathbf{a}_{m,n} \end{bmatrix} \cdot \begin{bmatrix} b_{1,1} & \cdots & b_{1,m} \\ \vdots & \ddots & \vdots \\ b_{k,1} & \cdots & b_{k,m} \end{bmatrix} = \begin{bmatrix} \ddots & & \ddots & \\ \ddots & & \ddots & \\ \vdots & & \ddots & \ddots & \\ \ddots & & \ddots & & \\ \ddots & & \ddots & & \\ \ddots & & \ddots & & \\ \vdots & & \ddots & & \\ \end{pmatrix}$$

Transposition

Matrix Transposition

- Swap rows and columns
- Formally:

$$\begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & a_{\mathbf{i},j} & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & a_{j,\mathbf{i}} & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Vectors

Vectors

- Column matrices
- Matrix-Vector product consistent

Co-Vectors

"projectors", "dual vectors", "linear forms", "row vectors"

Vectors to be projected on

Transposition

Convert vectors into projectors and vice versa

Vectors

Inner product (as a generalized "projection")

Matrix-product column · row

$$_{"}\mathbf{x}\cdot\mathbf{y}"=\langle\mathbf{x},\mathbf{y}\rangle=\mathbf{x}^{\mathrm{T}}\cdot\mathbf{y}$$

- People use all three notations
 - Meaning of "·" clear from context

Matrix-Vector Products

Two Interpretations

- Linear combination of column vectors
- Projection on row (co-)vectors

Matrix Algebra

We can add and scalar multiply

Matrices and vectors (special case)

We can matrix-multiply

- Matrices with other matrices (execute one-after-another)
- Vectors in certain cases (next)

We can "divide" by some (not all) matrices

- Determine inverse matrix
- Full-rank, square matrices only

Algebraic Rules: Addition

Addition: like real numbers ("commutative group")

Settings

A, B, C $\in \mathbb{R}^{n \times m}$ (matrices, same size)

- Prerequisites:
 - Number of rows match
 - Number of columns match
- Associative: (A + B) + C = A + (B + C)
- Commutative: A + B = B + A
- Subtraction: $\mathbf{A} + (-\mathbf{A}) = \mathbf{0}$
- Neutral Op.: $\mathbf{A} + \mathbf{0} = \mathbf{A}$

Algebraic Rules: Scalar Multiplication

Scalar Multiplication: Vector space

- Prerequisites:
 - Always possible
- Repeated Scaling: $\lambda(\mu \mathbf{A}) = \lambda \mu(\mathbf{A})$
- Neutral Operation: $1 \cdot A = A$
- Distributivity 1: $\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B}$
- Distributivity 2: $(\lambda + \mu)\mathbf{A} = \lambda \mathbf{A} + \mu \mathbf{A}$

So far:

- Matrices form vector space
- Just different notation, same semantics!

Settings $\lambda \in \mathbb{R}$ $A, B \in \mathbb{R}^{n \times m}$ (same size)

Algebraic Rules: Multiplication

Multiplication: Non-Commutative Ring / Group

- Prerequisites:
 - Number of columns right= number of rows left
- Associative: $(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$
- Not commutative: often $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$
- Neutral Op.: $\mathbf{A} \cdot \mathbf{I} = \mathbf{A}$
- Inverse: $\mathbf{A} \cdot (\mathbf{A}^{-1}) = \mathbf{I}$
 - Additional prerequisite:
 - Matrix must be square!
 - Matrix must have full rank

Set of invertible matrices:

$$GL(d) \subset \mathbb{R}^{d \times d}$$

"general linear group"

Algebraic Rules: Multiplication

Multiplication: Non-Commutative Ri

- Prerequisites:
 - Number of columns right= number of rows left

- Settings
- $A \in \mathbb{R}^{n \times m}$
- $\mathbf{B} \in \mathbb{R}^{m \times k}$
- $\mathbf{C} \in \mathbb{R}^{k \times l}$

Associative:

$$(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$$

- Not commutative: often $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$
- Neutral Op.:

$$\mathbf{A} \cdot \mathbf{I} = \mathbf{A}$$

Inverse:

$$\mathbf{A}\cdot(\mathbf{A}^{-1})=\mathbf{I}$$

- Additional prerequisite:
 - Matrix must be square!
 - Matrix must have full rank

Set of invertible matrices:

$$GL(d) \subset \mathbb{R}^{d \times d}$$

"general linear group"

Transposition Rules

Transposition

• Addition:

 $(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} + \mathbf{A}^{\mathrm{T}}$

Scalar-mult.:

- $(\lambda \mathbf{A})^{\mathrm{T}} = \lambda \mathbf{A}^{\mathrm{T}}$
- Multiplication:
- $(\mathbf{A} \cdot \mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} \cdot \mathbf{A}^{\mathrm{T}}$

Self-inverse:

 $\left(\mathbf{A}^{\mathrm{T}}\right)^{\mathrm{T}} = \mathbf{A}$

(Inversion:)

- $(\mathbf{A} \cdot \mathbf{B})^{-1} = \mathbf{B}^{-1} \cdot \mathbf{A}^{-1}$
- Inverse-transp.:
- $\left(\mathbf{A}^{\mathrm{T}}\right)^{-1} = \left(\mathbf{A}^{-1}\right)^{\mathrm{T}}$

- Othogonality:
- $[\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{-1}] \Leftrightarrow [\mathbf{A} \text{ is orthogonal}]$

Matrix Multiplication

Matrix Multiplication

$$\mathbf{A} \cdot \mathbf{B}$$

$$= \begin{pmatrix} - & \mathbf{a}_1 & - \\ & \vdots & \\ - & \mathbf{a}_d & - \end{pmatrix} \cdot \begin{pmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_d \\ | & & | \end{pmatrix}$$

$$= \begin{pmatrix} \ddots & & \ddots \\ & \langle \mathbf{a}_i, \mathbf{b}_j \rangle & \ddots \end{pmatrix}$$

$$\vdots \cdot & \ddots \cdot & \ddots$$

Scalar products of rows and columns

Orthogonal Matrices

Othogonal Matrices

• (i.e., column vectors ortho*normal*)

$$\mathbf{M}^T = \mathbf{M}^{-1}$$

Proof: previous slide.

Matrix Algebra:

Scalar product is a special case

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\mathrm{T}} \cdot \mathbf{y}$$

Caution when mixing with scalar-vector product!

What does work:

Associativity with outer product

$$\mathbf{x} \cdot \langle \mathbf{y}, \mathbf{z} \rangle = \mathbf{x} \cdot (\mathbf{y}^{\mathrm{T}} \cdot \mathbf{z})$$
$$= (\mathbf{x} \cdot \mathbf{y}^{\mathrm{T}}) \cdot \mathbf{z}$$

Addendum Axiomatic Mathematics

(This is not a core topic of the course; material is provided just for your information.)

"Class Diagram" for Real Numbers

```
binary operation
                                                           Real Numbers
binary operation:
template <set T, operator >>
T operator"o"(T, T) throws DoesNotCompute
      magma
closed binary operation:
T operator"○"(T, T) no-exceptions
                                                   operator +
    semi-group
                                                                            field
associativity:
(A \circ B) \circ C = A \circ (B \circ C)
                                                   operator •
                                                                    set with two operations
                                                                    template<set F>
      monoid
                                                                    F operator+(F, F)
                                                                    F operator*(F, F)
identity element "id":
id \circ A = A \circ id = A
                                                                       ordered field
       group
                                                                    full order:
                                                                    template<set F>
inverse "T-1":
                                                                    bool operator<(F, F)</pre>
A \circ A^{-1} = A^{-1} \circ A = id
                                                                       Real Numbers
   abelian group
                                                                    completeness:
commutativity:
                                                                    "all Cauchy series converge"
A \circ B = B \circ A
```

Structure: Vector Space

Vector Spaces

Vector space:

- Set of vectors V
- Based on field F (we use only $F = \mathbb{R}$)
- Two operations:
 - Adding vectors $\mathbf{u} = \mathbf{v} + \mathbf{w} (\mathbf{u}, \mathbf{v}, \mathbf{w} \in V)$
 - Scaling vectors $w = \lambda v (\mathbf{u} \in V, \lambda \in F)$

Vector Spaces

Vector space axioms:

- Vector addition Abelian group:
 - $\forall u, v, w \in V$: (u + v) + w = u + (v + w)
 - $\forall \mathbf{u}, \mathbf{v} \in \mathbf{V}$: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
 - $= \exists 0 \in V : \forall v \in V : v + 0 = v$
 - $\forall v \in V: \exists''-v'' \in V: v'+(-v) = 0$
- Compatibility with scalar multiplication:
 - $\forall \mathbf{v} \in \mathbf{V}, \lambda, \mu \in F$: $\lambda(\mu \mathbf{u}) = \lambda \mu(\mathbf{u})$
 - $\forall \mathbf{v} \in \mathbf{V}$: $1 \cdot \mathbf{v} = \mathbf{v}$
 - $\forall \mathbf{v}, \mathbf{w} \in \mathbf{V}, \lambda \in F$: $\lambda(\mathbf{v} + \mathbf{w}) = \lambda \mathbf{v} + \lambda \mathbf{w}$
 - $\forall \mathbf{v} \in \mathbf{V}, \lambda, \mu \in F$: $(\lambda + \mu)\mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v}$

Settings

V: vector space

F: field (e.g., \mathbb{R})

Properties

Some differences to our definition

- Abstract vector spaces can have infinite dimension
 - For example: The set of all functions $f: \mathbb{R} \to \mathbb{R}$

forms an ∞-dimensional vector space

- But they always have a basis
 → coordinate representation
- We can use other fields than \mathbb{R} , such as \mathbb{C} or finite fields such as $(\mathbb{Z} \mod p, p \text{ prime})$
- We can recognize them before we have a coordinate representation

Theorem

Theorem ("Basis-Isomorphism")

- Any finite-dimensional vector space can be represented by columns of numbers
 - Use the d coordinates of the d basis vectors (dim= d)

Our definition makes sense

Special case

Structure: Scalar Product

Aximatic Definition: Scalar Product

- Function
 - two vector arguments (input)
 - one scalar output
 - $b: V \times V \rightarrow F$
 - think b == "operator ∘"
 - V is a vector space, F is a field (such as ℝ)

Settings

V: vector space

F: field (e.g., \mathbb{R})

Axiomatic Definition: Scalar Product

Properties

Symmetry

$$b(\mathbf{u}, \mathbf{v}) = b(\mathbf{v}, \mathbf{u})$$

Settings $\lambda \in F$ $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$

Bilinearity

$$b(\mathbf{u} + \lambda \mathbf{v}, \mathbf{w}) = b(\mathbf{u}, \mathbf{w}) + b(\lambda \mathbf{v}, \mathbf{w})$$
 (linearity in second argument follows from symmetry)

Positive definite

$$b(\mathbf{u},\mathbf{u}) \geq 0, \qquad [b(\mathbf{u},\mathbf{u}) = \mathbf{0}] \Rightarrow [\mathbf{u} = \mathbf{0}]$$

Symmetric, positive-definite, bilinear function

General Scalar Product

Theorem

 In a finite-dimensional vector space, any scalar product has the following form:

$$b(\mathbf{x}, \mathbf{y}) = (\mathbf{M}\mathbf{x}) \cdot (\mathbf{M}\mathbf{y}) = \mathbf{x}^{\mathrm{T}} (\mathbf{M}^{\mathrm{T}}\mathbf{M})\mathbf{y}$$

- "·" is the standard scalar product as we defined it
- M is a square matrix with linearly-independent columns
 - I.e., M transforms to a different coordinate frame

Our definition still makes sense...

- Special case: undistorted coordinates
- General scalar products can take non-standard coordinate frames into account

Structure: Linear Map

Definition of Linear Maps

Axioms

Linear Map: A function

$$A: V_1 \rightarrow V_2$$

Settings

A – linear map $\mathbf{v} \in V_1$ - vector

maps from one vector space (V_1) to another (V_2)

Linearity requires

$$\mathbf{A}(\mathbf{v} + \mathbf{w}) = \mathbf{A} \cdot \mathbf{v} + \mathbf{A} \cdot \mathbf{w}$$
$$\mathbf{A} \cdot (\lambda \cdot \mathbf{v}) = \lambda \cdot (\mathbf{A} \cdot \mathbf{v})$$

Theorem

- Linear maps in finite-dimensional vector spaces can always be represented by matrices
- Our definition makes sense: special case