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Linear Maps & Matrices

core topics
important




Linear Combinations

2X, + X, n
y= E iXi
=1
Linear Combinations Algebra

Linear Combinations as Mappings
= Fix vectors x4, ..., x,, € R™,
= Factors /4, ...,y =V



Linear Mappings

Linear Map

= Fix vectors
X1, e, X, € R™ 1 n

in “)\)\ in “)\)\

= |nput coordinates fixed:

1) =y /\n e Xp ‘ :
= OQutput vector 4 llinear{Gombination
y € R™
n
y= i Xi
i=1

Map /4, ..., A, = yis called a linear map



Linear Mappings

Linear Map Input Vectors

= Fix vectors
X1, e, Xy € R™ 1 n

in “» in “)\)\

= |nputcourainates fixed:

1y =2\ e Xn
m OULPUL'VeCtL)r 4 linean@
y € R™

n

y = i X

Map /4, ..., A, = yis called a linear map



Linear Mappings
A=</11> V., =R"

] How the machine works
fixed:
Xy, .. /
Xy y = A%, + 12X,
X2 /,{1




Matrix Representation

n
y = z AiX;
im1



Matrix Representation

Short

y=X-

Matrix
X1,1
X = :

Xm,1

Vectors

1

b n—

|

V1

Ym




Convention

columns

-
X110 T Xn ]
m . :
TOWS ) )
Xmai °°° Xmn

Taken from Textbook [Shirley et al.]
= Matrix elements

xrow,column

= Row first, then column

1", 77

y"-coordinate of the array first
(unintuitive, but common convention)



Matrix Representation

Matrix-vector product

yO) = X1 - Xn|-

Construction

= Maps from R"® - R™
€ R™
X; eER™ = YERm

= Columns of X = images of the basis vectors of R"



Example

Example: rotation matrix

N
1 !
A (ONN04 —SIina
e (cos a) Myor =|
sin sin a cos a

N N



General Matrix Product (Notation)

Algebraic rule:
= Vector-matrix product:

y M X

I
=
s
1
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General Matrix Product (Notation)

Algebraic rule:
= Vector-matrix product:

— X
X ]
e ‘
xZ H ) >
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General Matrix Product (Notation)

Algebraic rule:
= Vector-matrix product:

— X
- Va
f%\zj .
>’<~ v
X_—_X_X=_=X
> o




General Matrix Product (Notation)

Algebraic rule:
= Vector-matrix product:

— X
- Va
f%\zj .
>’<~ v
X_—_X_X=_=X
> o




General Matrix Product (Notation)

Algebraic rule:
= Vector-matrix product:

— X

=

PS

]
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[ ;

X1,1

Xm,1

Matrix Representation

Matrix-Vector Multiplication

X1,1

" Xmn

1

e n—




Standard Transformations

BASIC

basic topics
study completely




l[dentity Transform

Example: identity matrix

1 0
(SJ“&EOJ Migentity = I = (O 1)

({f @

0

General case

[: R" - R", I =




Scaling (Center = Origin)

(g) 1‘ :.‘.:’o .,"?; .%eee;eg
. f“{,oo“ » ee® e,
0 (ST
' 1 L 2:. o"“: 0‘0 08
) () - P

General case

S;:R" >R, S, = A




Non-Uniform Scaling

(1)

B

(5)

General case

S)\: R™ — ]Rn,

S)\Z




Rotation (2D)

</<z§135> 7
N e e

COS X —Ssina

Mot = _
SIN & cCos X
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Rotation (3D)




Rotation (3D)

yl/“\ q}/

.w& ® 3
origin | origin X origin *
1 0 0 cosa —sina 0
R,=10 cosa —sina R,=(sina cosa 0
0 sina cosa 0 0 1

cosa 0 —sina
Ry=< 0 1 0 )

sina 0 cosa



General case

S/ll R™ — ]Rn,

Reflection

S)

“%0000“003 :00000““80

0‘0 %0““0 "05 “%o

R S

‘30“ PEERY o

PO wowr
-1 0
Mrefl — ( 0 1)

Reflection
AXIS




Shearing

(0.5) ? L ‘:: :s L :
1 ~ f/x  /
e PPN g PP




General Case

You can combine all of these

Example: General axis of rotation
= First rotate rotation axis to x-axis
= Rotate around x
= Rotate back

Question
= How to combine multiple matrix multiplications?



Combining Transformations
Matrix Products

basic topics
study completely




Matrix Multiplication

Execute multiple linear maps,
one after another
= Written as product
= (B-A)-xt
Apply A to x first

Then B
(B-A) is again a matrix



How does it work?

Consider (B - A):
= Rotate first (A)
= Then scale (B)



How does it work?
(seoen )
(sincr)
(cose ) S G
A B-A

How to compute(B - A)?
= Transform basis vectors
= Transform again



Matrix Multiplication

Matrix product:
d; dp dz d4

A

\\column 4
column 3

column 2
column 1



Matrix Multiplication

Matrix product:

A




Matrix Multiplication

o al’l *ee al,n
General matrix products:  , _| : . ]
= B A: possible if Am,1 Amn
#Row(A) = #Columns(B) 11 - bim]
n B=]1] : :
A _bkl bk,m_
1,1 1n
B - k1 Tkn
o .
k k
ij = Z q,j " big
7=1
=B-A



Rules for Matrix Multiplication

Matrix-Multiplication Settings
L e R
= Associative A B.C - matrices
(A-B)-C=A-(B-0) v, W - vectors

= Includes vector-multiplication
(A-B)-v=A-(B-v)
= |n general, not commutative:
It might be thatA-B#B- A
= Linear

(Remark: linearity is used to define linear maps axiomatically)



Reversing Transformations
Matrix Inversion

core topics
important




INnverse Matrix

Can we find the inverse matrix?
= “"Undo effect”

= Formally
Mt -M=1



INnverse Matrix

(ne) | Ceostca))

Cos(—a))
(~ sin “) _—al A A A sin(—a)
cosa
M., Mo
Examples
= Rotation matrix

cosa —Slna
Mrot — :
Sin a COoS X

" Inversez cos(—a) —sin(—a)
Myor = (sin(—a) cos(—a) )



INnverse Matrix

Examples
= Null matrix

= |nverse?



INnverse Matrix

Examples
= Projection matrix (remove x-component)

_ (0 O
Mp‘rj_(() 1)

= |nverse?



INnverse Matrix

fancy

Examples
= Projection matrix (remove x-component)

_(2 1
Mfancy_(4_ 2)

= |nverse?



INnvertiple Matrices

Invertible matrices
= Are always square (#rows = #columns)

= |n addition
Columns are linearly independent

Equivalent characterizations:
= Square and rows are linearly independent
= Columns form basis of vector space
= Rows form basis of vector space



INnvertiple Matrices

Rank

= Number of linearly independent columns
= Dimension of span{column_vectors}

Theorem
= Rank = number of linearly independent rows

Full rank
= rank(M) = dim(V)
= Then: M is invertible



Linear Systems of Equations

First consider simpler case

= Say, we know that
M:-x =
Square matrix M € R4*4
Vectors x,y € R4*4

Knowns & Unknowns
= We are given M,
= We should compute x
= Linear system of equations



Linear Systems of Equations

Linear System of Equations

M- x =
&
My 7 Mgl (%1 1]
Mg1 - Mgal LX4J V.
&
mqq1Xq T 1TMypgXqg = V1
and MpyqXq T T MpgXqg = V2

and md’1x1 + -+ md’d Xd = Vd



(Gaussian Elimination

Linear System

Mmy1Xqg Tt MygXqg = V1
ANMy1Xy T+ MygXg =V

ANMg1X1 + -t MgagXqg = Va

Row Operations

= Swap rows r;, 7;

= Scale row r; by factor 1 # 0

= Add multiple of row r; torow r;, i # j
(i.e., T; += 7”])



Convert to Upper Triangle Matrix

M X y
O —
= 0|0 -

0/0]0

O —

5 =

0

O —

0|0 -

0|0

(use row-operations)



Convert to Diagonal Matrix

M

X

)

)

O

O

y

O —

00 -
0[{0]0

my4 0|0 | O Vi

0 m22 0|0 _ Y2

0 mé,g 0 - yé

0| 0|0 mad V4
1101010 y1/mj 4
0({1({0]0 _ y2/m3
olofa]o] = [ yi/mis
O[0]0]1 Ya/My 4

(use row-operations)



Gauss-Algorithm

Gauss-Algorithm

= Substract rows to cancel front-coefficient
Create upper triangle matrix first
Then create diagonal matrix

= |f current row starts with O
Swap with another row
If all rows start with 0; matrix not invertible

= Diagonal form: Solution can be read-off

= Data structure
Modify matrix M, “right-hand-side” y.
X remains unknown (no change)



Matrix Inverse

Solve for
1 0 0
M-x, = 9, M-x, = }, : M-x4 = O
0 0 1



Matrix Inverse

Algorithm

= Simultaneous Gaussian elimination
= Start as follows:

M X |
11000
_[o]1]0]0
—10(0]|1]0
ololo]1

= Handle all right-hand sides simultaneously

= After Gauss-algorithm, the right-hand matrix
is the inverse



Alternative: Kramer's Rule

Small Matrices
= Direct formula based on determinants
= “Kramer’s rule”

= (Mmore later)
Naive implementation has run-time O0(d!)
Gauss: 0(d?)
Not advised for d > 3



More Vector Operations:
Scalar Products

basic topics
study completely




Vector Operations

Vo

A4
lv{]| = 2. 3cm/
lvo|| = 4.2cm

Length of Vectors

‘length” or “norm”
|v|| yields real number = 0



Additional Vector Operations

——————

o = A(VIJVZ) = 33°

Angle between Vectors

angle £(vy,vy)
yields real number
[0, ..., 21) = [0, ..., 360°)



Vector Operations

\ )

right angles

Angle between Vectors



Additional Vector Operations

V prjon W

Projection

Projection: determine
length of v along direction of w



Vector Operations

/v

Scalar Product®

v-w=|v] - [w] - cos2(v,w)
also: (v, w)

Y also known as inner product
or dot-product



Signature
Qetv\y yv

| || st R

42.0 —

Scalar Product
(dot product, inner-product)




Vector Operations

Scalar Product®

v-w=|v]-[lw] - cos2(v,w)
also: (v, w)

Y also known as inner product
or dot-product



Vector Operations

Scalar Product™
v-w = [[v]| - [[w] - cos 2(v, w)
Comprises: length, projection, angles

Y also known as inner product
or dot-product



Vector Operations

Length: |lv|]|=+Vv-Vv
Angle: ~(v,w) = arccos(v - w)

Projection: ,vprjonw' = l[wll

v-w = |[v]-[lw]| - cos 2 (v, w)

Comprises: length, projection, angles



Algebra

(I

IC Represe

plementatio

h

h

tation

basic topics
study completely




Scalar Product

V

Scalar Product™

(&1 Wi
V°w_(v2)'(wz) =V W1 T Uy Wy

Theorem:
v-w = [[v]-|lw]| - cos 2(v,w)



Scalar Product




Scalar Product
2D Scalar product
1% w
V:-W= (v;)(wz) =V W1 T Uy Wy

ad-dim scalar product

(%1 Wi
V°W=(§)°< : )==v1-wl+---+vd-wd
Ud Wd



Algebraic Properties

Properties >ettings
e R

= Symmetry (commutativity) 0LV we R4

(u,v) = (v,u)
= Bilinearity
(Av,w) = J{v,w) = (v, w)
(u+v,w) =(uw)+ (v,w)
(symmetry: same for second argument)
= Positive definite
(u,u) = 0, [{(u,u) = 0] = [u = 0]

These three: axiomatic definition



Attention!

Do not mix
= Scalar-vector product
= Inner (scalar) product

In general
(X,y) -z +x-(y,7)

Beware of notation:
(x'y)-z#x-(y-z)

(no violation of associativity: different operations; details later)



Applications of the
Scalar Proauct

core topics
important




Applications

Obvious applications
= Measuring length
= Measuring angles
= Projections

More complex applications
= Creating orthogonal (90°) pairs of vectors
= Creating orthogonal bases



Projection

Scalar Product®

v-w = |[v]l-[lw]| - cos 2 (v, w)



Projection

\%%

”W” \/(w, w)

n

/ prj.-vector

prOJectlon

Scalar Product™

W

" V(w, W)> . V{w,w)

_ W
= (v, w) po—

action' V- —— _
Projection: v- — Prj, Vector: (v



Orthogonalization

. w w
A’”——v wn —_ — =
v/ Wil /(w, w)
/ w
///’ prj.-vector

projection

Scalar Product™

Orthogonalize v wrt. w:
W

v’ :v—(v,w)-<W w



Orthogonalization

Scalar Product™

Orthogonalize v wrt. w:
W

v’ :v—(v,w)-<W w



Gram-Schmidt Orthogonalization

Orthogonal basis
= All vectors in 90° angle to each other
<bl,b]> = (0 fori -_:tj

Create orthogonal bases
= Start with arbitrary one

= Orthogona
= Orthogona

= Orthogona

ize b,
ize b,
ize b,

0y by
oy b,, then by b,

oy b,, then by b,, then by b,



Orthonormal Basis

Orthonormal bases
= Orthogonal and all vectors have unit length

Computation
= Orthogonalize first
= Then scale each vector b; by 1/]|b;|l.



Matrices

Orthogonal Matrices

= A matrix with orthonormal columns
is called orthogonal matrix

Yes, this terminology is not quite logical...

Orthogonal Matrices are always
= Rotation matrices
= Or reflection matrices
= Or products of the two




Further Operations

core topics
important




Cross Product

Cross-Product: Exists Only For 3D Vectors!
= X,y € R3

X1 V1 X2Y3 — X3)2
" XXy = <X2> X (3’2 = | X3Y1 — X1)3
X3 Y3 X1Y2 — X2)1

Geometrically: Theorem
= x X yorthogonal to x,y

A X)(y

= Right-handed system (x,y,x X y) /'Hxxy”
* lIx xyll = x| - llyll - sinz(x,y) x




Cross-Product Properties

Bilinearity
= Distributive: uxX(v+w)=uXv+uxw
= Scalar-Mult.: (Jlu)xv=ux(v) =/1(uxv)

But beware of
= Anti-Commutative: u xv=-vxu

= Not associative;
we can have (uXv)Xw#ux(vxw)



Determinants

I
M = (Vl \'%) V3
I .

Determinants
= Square matrix M

= det(M) = |M| = volume of parallelepiped
of column vectors



Determinants
det(M) > 0

Y :
—~ 2 det(M’) <0
negative
| determinant
Sign: Vq — Map
" : : contains
= Positive for right handed coordinates reflection

= Negative for left-handed coordinates



Properties

A few properties: sign flips!
4—  .
= det(A)det(B) = det(A-B) — reflections
cancel each

det(/1A) = 19det(A) (dxd matrix A) other (parity)
det(A1) = det(A)
det(A') = det(A)
[det(A) # 0] & [A invertible]
Efficient computation using Gaussian elimination



Computing Determinants

H=—F
a b c
d e f=+a‘z f—b‘d ];+cd Z
g h 1 y Y Y signs
+a —-b +c
Recursive Formula d e f
g I
= Sum over first row
. bd i
 Multiply element there B
with subdeterminant d e f| — ‘z {
Subdeterminant : g h i
Leave out row and column
la|=a

of selected element

Recursion ends with |a|=a
Beware of 0(dim!)

= Alternate signs +/—/+/—/... complexity



Computing Determinants

Resultin 3D Ca_se

det (

a
d
9

b

e
h

c
4
l_

)z aei + bfg + cdh — ceg — bdi — afh



Solving Linear Systems

Consider
A-x=Db
= Invertible matrix A € R%*4
= Known vector b € R¢
= Unknown vector x € R?

Solution with Determinants (Cramar’s rule):

det(Al) A | l|) |
. - . — V coe cee V
& det(A) l |1 | |3
)




AQ

Matri

dendum

X Algebra

ADY,

advanced topics
main ideas




Matrix Algebra

Define three operations
= Matrix addition

[al,l o Qi bi1 - bin a1 +byy 0 ay,t+bigy

_|_

Am1 + bm,l  Amn + bm,n

am,l . am,n bm,l . bm,n

= Scalar matrix multiplication

|:a1,1 coe al,n] .a'l,l coe 'al,n
am’1 coe am’n . am’l cee . am’n

= Matrix-matrix multiplication

al,l al}n bl,l bl,m k
: R B Z Ag,j * big
am,l am,n bk,l bk,m

q=1




Transposition

1T

Matrix Transposition
= Swap rows and columns

= Formally:
i oqT

. al,] . — [. . a],l . .“




Vectors

Vectors
= Column matrices
= Matrix-Vector product consistent

Co-Vectors
= “projectors”, “dual vectors”,

n i

“linear forms”, “row vectors”
= Vectors to be projected on

Transposition

x € R4

= Convert vectors into projectors and vice versa



Vectors

xI .y >R

Inner product (as a generalized “projection”)
= Matrix-product column - row
Xy =(xy)=x"y

= People use all three notations
Meaning of “ - " clear from context



Matrix-Vector Products

X
M'X=y . + . + . +
I ~ [ Yaman,
21
M vy EEEE - [0 mumn =

Two Interpretations
= Linear combination of column vectors

= Projection on row (co-)vectors




Matrix Algebra

We can add and scalar multiply
= Matrices and vectors (special case)

We can matrix-multiply

= Matrices with other matrices
(execute one-after-another)

= Vectors in certain cases (next)

We can “divide” by some (not all) matrices
= Determine inverse matrix
= Full-rank, square matrices only



Algebraic Rules:

Addition: like real numbers Settings

(“commutative group”) ABCeR™™

(matrices, same size)

= Prerequisites:
Number of rows match
Number of columns match

= Associative: (A+B)+C=A+(B+0C)
= Commutative:A+B=B+ A

= Subtraction: A4+ (—A)=0

= Neutral Op.:. A+0=A



Algebraic Rules: Scalar Multiplication

Scalar Multiplication: Vector space

= Prerequisites: Settings
Always possible €ER

= Repeated Scaling:  A(1A) = 1u(A) A'(?arfe[;!?:m

= Neutral Operation: 1-A=A

= Distributivity 1: (A+B)=/A+/B

= Distributivity 2: (1+u)A=/1A+ LA

So far:
= Matrices form vector space
= Just different notation, same semantics!



Algebraic Rules:

Multiplication: Non-Commutative Ring / Group

= Prerequisites:

Number of columns right
= number of rows left

= Associative: (A-B)-C=A-(B:-0)
= Not commutative: oftenA-B#B-A
= Neutral Op.: A-I1=A
" Inverse: A-(A™H) =1] setofinvertible
Additional prerequisite: i matrices:
Matrix must be square! GL(d) c R4xd
Matrix must have full rank ] “general linear group”




Algebraic Rules:

Multiplication: Non-Commutative Rij| >N
.. A € R™M
= Prerequisites: B e RIMxk
Number of columns right C e RkX
= number of rows left
= Associative: (A-B)-C=A-(B:-0)
= Not commutative: oftenA-B#B-A
= Neutral Op.: A-I1=A
" Inverse: A-(A™") =1 setofinvertible
Additional prerequisite: matrices:
Matrix must be square! i GL(d) c R4xd
Matrix must have full rank “general linear group”



Transposition Rules

Transposition
= Addition:

= Scalar-mult.:

= Multiplication:
= Self-inverse:

= (Inversion:)

= Inverse-transp.:

= Othogonality:

(A+B) =AT + BT =BT + AT
(1A)" = AT

(A-B)f =B"- A"

(AT) = A
(A-B)"1=B"1.A"1

(AT =@

[AT = A~1] © [Ais orthogonal]



Matrix Multiplication

Matrix Multiplication
A-B

~(, eon )

= Scalar products of rows and columns



Orthogonal Matrices

Othogonal Matrices

= (i.e., column vectors orthonormal)
MT =M1

= Proof: previous slide.



Scalar Product

Matrix Algebra:
= Scalar product is a special case

(x,y)=x"-y
= Caution when mixing with scalar-vector product!
(X,V) -z +x-(y,27)
T, : (vT .
(X Y) TZ = X (Y Z) Scalar multiplication
not a matrix-product!




Scalar Product

NOT OK OK




Scalar Product

What does work:

= Associativity with outer product
x-(y,z)=x-(y" - z)
=(x-yT) -z




Addendum
Axiomatic Mathematics

(This is not a core topic of the course;
material is provided just for your information.)




——

binary operation ] operator +

@ g field

[ magma ]
operator ¢ 4}

| semigroup | [ ordered field

d ) 4

Real Numbers

N

3
DIE D>

 S—

[ group

=N

[ Abelian group ]

"Class Diagram”
for Real Numbers



|_binary operaton Real Numbers

template <set T, operator o>
(T operator”o” (T, T) throws DoesNotCompute

) A
magma ]
( closed binary operation:
LT operator”o” (T, T) no-exceptions
- : operator + ~ -
semi-group ] O ,
s . field
associativity: ] N
(A oB)y oC=Ao0 (BoC) o VN
N = operator (set with two operations
r - template<set F>
monoid ] F operator+ (F, F)
[ identity element “id": L EROEERRer iy )
id oA =20 id=a ) ZAN
r 4> ordered field ]
group ] ( full order:

( |nverse “T-1": template<set >
kA oAl =21l o0 A= id \bool operator< (F, F)

abelian group ] ; Real Numbers ]
[ commutativity:

>
completeness:
“all Cauchy series converge”

S

\A O B=BOoOA

\,




Structure: Vector Space
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Vector Spaces

Vector space:
= Set of vectors V
= Based on field " (we use only I = R)

= Two operations:
Adding vectorsu=v+w (u,v,w e V)
Scaling vectorsw=2Av (ue V,A € F)



Vector Spaces

Settings
Vector space axioms: V:vector space
= Vector addition - -field (e.g., 1)
Yu,v,w € V: (u+v)+w=u+WV+w)
Yu,v eV: u+v=v+u

30eV:vveV: v+0=v
VvveV:3"—v"'eV:v +(—v) =0

: with scalar multiplication:
vveV,ALu€eF: A(pu) = Au(u)
Vv e V: V=V

VvvewweV,AeF: A(v+w)=Av+iw
vweV,L,u€eF: (U4+)v=Av+ v



Properties

Some differences to our definition

= Abstract vector spaces can have infinite dimension

For example: The set of all functions
[fR->R
forms an co-dimensional vector space
But they always have a basis
— coordinate representation
= We can use other fields than &, such as C or finite
fields such as ( , D prime)

= We can recognize them before we have a
coordinate representation



Theorem

Theorem (“Basis-Isomorphism”)

= Any finite-dimensional vector space can be
represented by columns of numbers

Use the d coordinates of the d basis vectors (dim= d)

Our definition makes sense
= Special case



Structure: Scalar Product

ADY,
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Scalar Product

Aximatic Definition: Scalar Product

= Function Settings
two vector arguments (input) V: vector space
one scalar output . field (e.g., R)
b:V XV —

think b == "operator o"
V is a vector space, F is a field (such as R)



Axiomatic Definition:

Properties >ettings
€
" Symmetry uv,wev

b(u,v) = b(v,u)

= Bilinearity
b(u+ lv,w) = b(u,w) + b(lv,w)
(linearity in second argument follows from symmetry)

= Positive definite
b(u,u) = 0, [b(u,u) = 0] = [u = 0]

Symmetric, positive-definite, bilinear function



General Scalar Product

Theorem

= |n a finite-dimensional vector space, any scalar
product has the following form:
b(x,v) = (Mx) - (My) = xT(MTM)
Is the standard scalar product as we defined it
M is a square matrix with linearly-independent columns
l.e., M transforms to a different coordinate frame

11 114
L]

Our definition still makes sense...
= Special case: undistorted coordinates

= General scalar products can take non-standard
coordinate frames into account



Structure: Linear Map

ADY,

advanced topics
main ideas




Definition of Linear Maps

Axioms Settings
A - linear map

= Linear Map: A function v EV, - vector

A: Vl — VZ
maps from one vector space (V;) to another (1)

= Linearity requires
Av+w)=A-v+A-w

Theorem

= Linear maps in finite-dimensional vector spaces
can always be represented by matrices

= Our definition makes sense: special case



