
Graphics 2014 

Linear Algebra II 
Linear Maps & Matrices 



core topics 

important 

CORE 

Linear Maps & Matrices 



Linear Combinations 

Linear Combinations as Mappings 

 Fix vectors 𝐱1, … , 𝐱𝑛 ∈ ℝ
𝑚. 

 Factors λ1, … , λ𝑛  → 𝐲 

x1 

Linear Combinations 

x2 

2x2 + x1 

𝐲 = λ𝑖𝐱𝑖

𝑛

𝑖=1

 

Algebra 



Linear Mappings 

Linear Map 

 Fix vectors 
𝐱1, … , 𝐱𝑛 ∈ ℝ

𝑚 

 Input coordinates 
λ1, … , λ𝑛 

 Output vector 
𝐲 ∈ ℝ𝑚 

 

 

Linear Combination 

λ1      ⋯     λ𝑛 

fixed: 
x1,… , xn 

𝐲 = λ𝑖𝐱𝑖

𝑛

𝑖=1

 

Map λ1, … , λ𝑛 → 𝐲 is called a linear map 

𝐲 



Linear Mappings 

Linear Map 

 Fix vectors 
𝐱1, … , 𝐱𝑛 ∈ ℝ

𝑚 

 Input coordinates 
λ1, … , λ𝑛 

 Output vector 
𝐲 ∈ ℝ𝑚 

 

 

Linear Combination 

λ1      ⋯     λ𝑛 

fixed: 
x1,… , xn 

𝐲 = λ𝑖𝐱𝑖

𝑛

𝑖=1

 

Map λ1, … , λ𝑛 → 𝐲 is called a linear map 

Input Vectors 

𝐲 



Linear Mappings 

Linear Combination 

𝛌 =
𝜆1
⋮
λ𝑛

 

fixed: 
x1, … , xn ∈ ℝ

𝑚 

𝐲 =

𝑦1
⋮
𝑦𝑚

 

𝜆1 
𝜆2 

y = 𝜆1x1 + 𝜆2x2 

How the machine works 



𝐲 = λ𝑖𝐱𝑖

𝑛

𝑖=1

 

  

 =
|  |
𝑥1 ⋯ 𝑥𝑛
|  |

⋅
𝜆1
⋮
λ𝑛

 

  

 =  λ𝑖

𝑥1,𝑖
⋮
𝑥𝑚,𝑖

𝑛

𝑖=1

 

  

 =

𝑥1,1 ⋯ 𝑥1,𝑛
⋮  ⋮
𝑥𝑚,1 ⋯ 𝑥𝑚,𝑛

⋅
𝜆1
⋮
λ𝑛

 

  

 

Matrix Representation 



Matrix Representation 

𝐲 = λ𝑖𝐱𝑖

𝑛

𝑖=1

 

  

 =
|  |
𝐱1 ⋯ 𝐱𝑛
|  |

⋅
𝜆1
⋮
λ𝑛

 

  

 =  λ𝑖

𝑥1,𝑖
⋮
𝑥𝑚,𝑖

𝑛

𝑖=1

 

  

 =

𝑥1,1 ⋯ 𝑥1,𝑛
⋮  ⋮
𝑥𝑚,1 ⋯ 𝑥𝑚,𝑛

⋅
𝜆1
⋮
λ𝑛

 

  

 

Short 
𝐲 = 𝐗 ⋅ 𝛌 

 

Matrix 

𝐗 =

𝑥1,1 ⋯ 𝑥1,𝑛
⋮  ⋮
𝑥𝑚,1 ⋯ 𝑥𝑚,𝑛

 

 

Vectors 

𝛌 =
𝜆1
⋮
λ𝑛

, 𝐲 =

𝑦1
⋮
𝑦𝑚

 

 

 



Convention 

Taken from Textbook [Shirley et al.] 

 Matrix elements 
𝑥𝑟𝑜𝑤,𝑐𝑜𝑙𝑢𝑚𝑛 

 Row first, then column 

 “y”-coordinate of the array first 
(unintuitive, but common convention) 

𝑥1,1 ⋯ 𝑥1,𝑛
⋮  ⋮
𝑥𝑚,1 ⋯ 𝑥𝑚,𝑛

 
𝑚 
𝑟𝑜𝑤𝑠 

𝑛 
𝑐𝑜𝑙𝑢𝑚𝑛𝑠 



Matrix Representation 

Matrix-vector product 
 

 

Construction 

 Maps from ℝ𝑛 → ℝ𝑚 

 𝛌 ∈ ℝ𝑛 

 𝐱𝑖 ∈ ℝ
𝑚    ⇒    𝐲 ∈ ℝ𝑚 

 Columns of 𝐗 = images of the basis vectors of ℝ𝑛 

𝐲 𝛌 =
|  |
𝐱1 ⋯ 𝐱𝑛
|  |

⋅
𝜆1
⋮
λ𝑛

 



Example 

Example: rotation matrix 

 

 

 









0

1










1

0

𝐌𝑟𝑜𝑡 =
cos 𝛼 − sin 𝛼

sin 𝛼 cos 𝛼
 cos 𝛼

sin 𝛼
 

 

−sin 𝛼
cos 𝛼

 

 



General Matrix Product (Notation) 

Algebraic rule: 

 Vector-matrix product: 

𝐌 ⋅ 𝐱 = 𝐲 = 

𝐲 𝐌 𝐱 



General Matrix Product (Notation) 

Algebraic rule: 

 Vector-matrix product: 

° 

𝐌 ⋅ 𝐱 = 𝐲 
° 

𝐲 𝐌 

𝐱 
× 
× 
× 
× 

∑ 

∑ 

× × × × 



General Matrix Product (Notation) 

Algebraic rule: 

 Vector-matrix product: 

° 

𝐌 ⋅ 𝐱 = 𝐲 

𝐲 𝐌 

𝐱 
× 
× 
× 
× 

∑ 

∑ 

× × × × 
° 
° 



General Matrix Product (Notation) 

Algebraic rule: 

 Vector-matrix product: 

° 

𝐌 ⋅ 𝐱 = 𝐲 

𝐲 𝐌 

𝐱 
× 
× 
× 
× 

∑ 

∑ 

× × × × 
° 
° 
° 



General Matrix Product (Notation) 

Algebraic rule: 

 Vector-matrix product: 

° 

𝐌 ⋅ 𝐱 = 𝐲 

𝐲 𝐌 

𝐱 
× 
× 
× 
× 

∑ 

× × × × 

∑ 

° 
° 
° 
° 



Matrix Representation 

Matrix-Vector Multiplication 
 

𝑥1,1 ⋯ 𝑥1,1
⋮  ⋮
𝑥𝑚,1 ⋯ 𝑥𝑚,𝑛

⋅
𝜆1
⋮
λ𝑛

≔ 𝜆𝑖

𝑥1,𝑖
⋮
𝑥𝑚,𝑖

𝑛

𝑖=1

 

  

 =

𝜆1 ⋅ 𝑥1,1 +⋯+ 𝜆𝑛 ⋅ 𝑥1,𝑛
⋮

𝜆1 ⋅ 𝑥𝑚,1 +⋯+ 𝜆𝑛 ⋅ 𝑥𝑚,𝑛

 

  

° 



basic topics 

study completely 

BASIC 

Standard Transformations 



Identity Transform 

Example: identity matrix 










0

1










1

0 𝐌𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = 𝐈 =
1 0
0 1

 










0

1










1

0

General case 

𝐈: ℝ𝑛 → ℝ𝑛, 𝐈 =

1 0 ⋯ 0
0 1 0
⋮ ⋱ ⋮
0 0 ⋯ 1

 



1
0

 

0
1

 

Scaling (Center = Origin) 

0
𝜆

 

𝜆
0

 

General case 

𝐒𝜆: ℝ
𝑛 → ℝ𝑛, 𝐒𝜆 =

𝜆 0 ⋯ 0
0 𝜆 0
⋮ ⋱ ⋮
0 0 ⋯ 𝜆

 



1
0

 

0
1

 

Non-Uniform Scaling 
0
𝜆1

 

𝜆2
0

 

General case 

𝐒𝛌: ℝ
𝑛 → ℝ𝑛, 𝐒𝛌 =

𝜆1 0 ⋯ 0

0 𝜆2 0

⋮ ⋱ ⋮
0 0 ⋯ 𝜆3

 



Rotation (2D) 










0

1










1

0

𝐌𝑟𝑜𝑡 =
cos 𝛼 − sin 𝛼

sin 𝛼 cos 𝛼
 

cos 𝛼
sin 𝛼

 

 

−sin 𝛼
cos 𝛼

 

 



Rotation (3D) 

𝐯 =
𝑥
𝑦
𝑧

 
𝐲 

𝐱 𝐨𝐫𝐢𝐠𝐢𝐧 

𝐳 

𝑉 = ℝ3 

𝐲 

𝐨𝐫𝐢𝐠𝐢𝐧 

𝐳 

𝐱 𝐨𝐫𝐢𝐠𝐢𝐧 

𝐳 

𝐱 

𝐲 

𝐨𝐫𝐢𝐠𝐢𝐧 

𝐳 

𝐱 

𝐲 



Rotation (3D) 

𝐲 

𝐨𝐫𝐢𝐠𝐢𝐧 

𝐳 

𝐱 𝐨𝐫𝐢𝐠𝐢𝐧 

𝐳 

𝐱 

𝐲 

𝐨𝐫𝐢𝐠𝐢𝐧 

𝐳 

𝐱 

𝐲 

𝐑𝑥 =
1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

 𝐑𝑧 =
cos 𝛼 − sin 𝛼 0
sin 𝛼 cos 𝛼 0
0 0 1

 

𝐑𝑦 =
cos 𝛼 0 − sin 𝛼
0 1 0
sin 𝛼 0 cos 𝛼

 



Reflection 

General case 

𝐒𝜆: ℝ
𝑛 → ℝ𝑛, 𝐒𝜆 =

1 0 ⋯ 0
0 −1 0
⋮ ⋱ ⋮
0 0 ⋯ 1

 

1
0

 

0
1

 

−1
0

 

0
1

 

𝐌𝑟𝑒𝑓𝑙 =
−1 0
0 1

 

Reflection 
Axis 



Shearing 

1
0

 

0
1

 

𝐌𝑠ℎ𝑒𝑎𝑟 =
1 𝜆
0 1

 

0.5
1

 



General Case 

You can combine all of these 

Example: General axis of rotation 

 First rotate rotation axis to x-axis 

 Rotate around x 

 Rotate back 

Question 

 How to combine multiple matrix multiplications? 



basic topics 

study completely 

BASIC 

Combining Transformations 

Matrix Products 



Matrix Multiplication 

Execute multiple linear maps,  
one after another 

 Written as product 

 𝐁 ⋅ 𝐀 ⋅ 𝐱: 

 Apply 𝐀 to 𝐱 first  

 Then 𝐁 

 𝐁 ⋅ 𝐀  is again a matrix 



How does it work? 

Consider 𝐁 ⋅ 𝐀 : 

 Rotate first (𝐀) 

 Then scale (𝐁) 










0

1










1

0

cos 𝛼
sin 𝛼

 

 

−sin 𝛼
cos 𝛼

 

 

1
0

 

0
1

 

0
2

 

2
0

 

𝐀 𝐁 



How does it work? 

How to compute 𝐁 ⋅ 𝐀 ? 

 Transform basis vectors 

 Transform again 

cos 𝛼
sin 𝛼

 

−sin 𝛼
cos𝛼

 

𝐀 𝐁 ⋅ 𝐀 

2cos𝛼
2sin 𝛼

 

 

−2sin 𝛼
2cos𝛼

 



Matrix product: 

𝐀 

Matrix Multiplication 

𝐁 

𝐚1 𝐚4 

column 4 

𝐚3 

column 3 

𝐚2 

column 2 
column 1 



𝐀 

Matrix Multiplication 

Matrix product: 

𝐁 
° 



Matrix Multiplication 

General matrix products: 

 𝐁 ⋅ 𝐀: possible if 
#Row(𝐀) = #Columns(𝐁) 

° 

𝐀 

𝐁 

𝐀 =

𝑎1,1 ⋯ 𝑎1,𝑛
⋮  ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

 

𝐁 =

𝑏1,1 ⋯ 𝑏1,𝑚
⋮  ⋮
𝑏𝑘,1 ⋯ 𝑏𝑘,𝑚

 

𝑘 

𝑚 𝑛 

𝑛 

𝑚 

𝑘 

𝐑 =

𝑟1,1 ⋯ 𝑟1,𝑛
⋮  ⋮
𝑟𝑘,1 ⋯ 𝑟𝑘,𝑛

 

𝐑 = 𝐁 ⋅ 𝐀 

𝑟𝑖,𝑗 =  𝑎𝑞,𝑗 ⋅ 𝑏𝑖,𝑞

𝑚

𝑞=1

 



Rules for Matrix Multiplication 

Matrix-Multiplication 

 Associative 
𝐀 ⋅ 𝐁 ⋅ 𝐂 = 𝐀 ⋅ 𝐁 ⋅ 𝐂  

 Includes vector-multiplication 
 

𝐀 ⋅ 𝐁 ⋅ 𝐯 = 𝐀 ⋅ 𝐁 ⋅ 𝐯  

 In general, not commutative:  

It might be that 𝐀 ⋅ 𝐁 ≠ 𝐁 ⋅ 𝐀 

 Linear 
𝐀 ⋅ 𝐯 + 𝐰 = 𝐀 ⋅ 𝐯 + 𝐀 ⋅ 𝐰 
𝐀 ⋅ 𝜆 ⋅ 𝐯 = 𝜆 ⋅ 𝐀 ⋅ 𝐯  

(Remark: linearity is used to define linear maps axiomatically) 

 
𝜆 ∈ ℝ 

𝐀,𝐁, 𝐂 - matrices 
𝐯,𝐰 - vectors 

Settings 



core topics 

important 

CORE 

Reversing Transformations 

Matrix Inversion 



Inverse Matrix 

Can we find the inverse matrix? 

 “Undo effect” 

 Formally 
𝐌−1 ⋅ 𝐌 = 𝐈 



Inverse Matrix 

Examples 

 Rotation matrix 

𝐌𝑟𝑜𝑡 =
cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼

 

 Inverse? 

cos 𝛼
sin 𝛼

 

−sin 𝛼
cos𝛼

 

𝐌𝑟𝑜𝑡 

cos(−𝛼)
sin(−𝛼)

 

𝐌𝑟𝑜𝑡
−1  

𝛼 
−𝛼 

𝐌𝑟𝑜𝑡
−1 =

cos(−𝛼) − sin(−𝛼)
sin(−𝛼) cos(−𝛼)

 

−sin(−𝛼)
cos(−𝛼)

 



Inverse Matrix 

Examples 

 Null matrix 

𝟎 =
0 0
0 0

 

 Inverse? 

0
0

 0
0

 

𝟎 



Inverse Matrix 

Examples 

 Projection matrix (remove x-component) 

𝐌𝑝𝑟𝑗 =
0 0
0 1

 

 Inverse? 

0
0

 

0
1

 

𝐌𝑝𝑟𝑗 



Inverse Matrix 

Examples 

 Projection matrix (remove x-component) 

𝐌𝑓𝑎𝑛𝑐𝑦 =
2 1
4 2

 

 Inverse? 

2
4

 
1
2

 

𝐌𝑓𝑎𝑛𝑐𝑦 



Invertible Matrices 

Invertible matrices 

 Are always square (#rows = #columns) 

 In addition 

 Columns are linearly independent 

Equivalent characterizations:  

 Square and rows are linearly independent 

 Columns form basis of vector space 

 Rows form basis of vector space 



Invertible Matrices 

Rank 

 Number of linearly independent columns 

 Dimension of span{𝐜𝐨𝐥𝐮𝐦𝐧_𝐯𝐞𝐜𝐭𝐨𝐫𝐬} 

Theorem 

 Rank = number of linearly independent rows 

Full rank 

 rank(𝐌)  =  dim (𝑉) 

 Then: 𝐌 is invertible 



Linear Systems of Equations 

First consider simpler case 

 Say, we know that 
𝐌 ⋅ 𝐱 = 𝐲 

 Square matrix 𝐌 ∈ ℝ𝑑×𝑑 

 Vectors 𝐱, 𝐲 ∈ ℝ𝑑×𝑑 

Knowns & Unknowns 

 We are given 𝐌,  𝐲 

 We should compute 𝐱 

 Linear system of equations 

 



Linear Systems of Equations 

Linear System of Equations 
𝐌 ⋅ 𝐱 = 𝐲 
⇔ 

𝑚1,1 ⋯ 𝑚1,𝑑
⋮  ⋮
𝑚𝑑,1 ⋯ 𝑚𝑑,𝑑

⋅

𝑥1
⋮
𝑥𝑑
=

𝑦1
⋮
𝑦𝑑

 

⇔ 
𝑚1,1𝑥1 +⋯+𝑚1,𝑑 𝑥𝑑 = 𝑦1
𝑚2,1𝑥1 +⋯+𝑚2,𝑑 𝑥𝑑 = 𝑦2

⋮
𝑚𝑑,1𝑥1 +⋯+𝑚𝑑,𝑑 𝑥𝑑 = 𝑦𝑑

 
and 

and 



Gaussian Elimination 

Linear System 

∧ 𝑚1,1𝑥1 +⋯+𝑚1,𝑑 𝑥𝑑 = 𝑦1
∧ 𝑚2,1𝑥1 +⋯+𝑚2,𝑑 𝑥𝑑 = 𝑦2

⋮
∧ 𝑚𝑑,1𝑥1 +⋯+𝑚𝑑,𝑑 𝑥𝑑 = 𝑦𝑑

 

Row Operations 

 Swap rows 𝑟𝑖,  𝑟𝑗 

 Scale row 𝑟𝑖 by factor 𝜆 ≠ 0 

 Add multiple of row 𝑟𝑖 to row 𝑟𝑗, 𝑖 ≠ 𝑗 
(i.e.,  𝑟𝑖 += 𝜆𝑟𝑗) 



Convert to Upper Triangle Matrix 

= 

𝐲 𝐌 𝐱 

= 
0 

0 

0 

= 
0 

0 

0 

0 

0 

= 
0 

0 

0 

0 

0 0 

(use row-operations) 



Convert to Diagonal Matrix 

= 

𝐲 𝐌 𝐱 

= 
0 

0 

0 

= 
0 

0 

0 

0 

0 

= 
0 

0 

0 

0 

0 0 

0 

0 

0 

= 
0 

0 

0 

0 

0 0 

0 

0 0 

0 

0 

0 

= 
0 

0 

0 

0 

0 0 

0 

0 0 1 

1 

1 

1 

𝑦1
′/m1,1
′  

𝑦2
′/m2,2
′  

𝑦3
′/m3,3
′  

𝑦4
′/m4,4
′  

𝑥1 

𝑥2 

𝑥3 

𝑥4 

(use row-operations) 

𝑚1,1
′  

𝑚2,2
′  

𝑚3,3
′  

𝑚4,4
′  

𝑦1
′  

𝑦2
′  

𝑦3
′  

𝑦4
′  

𝑥1 

𝑥2 

𝑥3 

𝑥4 



Gauss-Algorithm 

Gauss-Algorithm 

 Substract rows to cancel front-coefficient 

 Create upper triangle matrix first 

 Then create diagonal matrix 

 If current row starts with 0 

 Swap with another row 

 If all rows start with 0: matrix not invertible 

 Diagonal form: Solution can be read-off 

 Data structure 

 Modify matrix M, “right-hand-side” y. 

 x remains unknown (no change) 



Matrix Inverse 

Solve for 

𝐌 ⋅ 𝐱1 =

1
0
⋮
0

, 𝐌 ⋅ 𝐱2 =

0
1
⋮
0

, … , 𝐌 ⋅ 𝐱𝑑 =

0
0
⋮
1

 

 

 The resulting 𝐱1, 𝐱2, … , 𝐱𝑑 are the columns of 𝐌−1: 

 

𝐌−1 =
| |
𝐱1 ⋯ 𝐱𝑑
| |

 



Matrix Inverse 

Algorithm 

 Simultaneous Gaussian elimination 

 Start as follows: 

 

 

 

 

 Handle all right-hand sides simultaneously 

 After Gauss-algorithm, the right-hand matrix 
is the inverse 

 

= 0 

0 

0 

0 

0 

0 

0 

0 0 

0 

0 0 1 

1 

1 

1 

𝐌 𝐱 𝐈 



Alternative: Kramer’s Rule 

Small Matrices 

 Direct formula based on determinants 

 “Kramer’s rule” 

 (more later) 

 Naive implementation has run-time 𝒪(𝑑!) 

– Gauss: 𝒪(𝑑3) 

 Not advised for 𝑑 > 3 



basic topics 

study completely 

BASIC 

More Vector Operations: 

Scalar Products 



Additional Vector Operations 

Length of Vectors 

𝐯2 = 𝟒. 𝟐cm 

“length” or “norm” 
‖𝐯‖ yields real number ≥ 0 

𝐯1 = 𝟐. 𝟑cm 

𝐯1 

𝐯2 



Additional Vector Operations 

Angle between Vectors 

𝛼 = ∠ 𝐯1, 𝐯2 = 𝟑𝟑° 

angle ∠ 𝐯1, 𝐯2  
 yields real number  
0,… , 2𝜋 = [0,… , 360°) 

𝐯1 

𝐯2 

𝛼 



Additional Vector Operations 

Angle between Vectors 

right angles 

𝐯1 
𝐯2 

90° 



Additional Vector Operations 

Projection 

Projection: determine  

length of 𝐯 along direction of 𝐰 

𝐯 

𝐰 90° 

𝐯 prj on 𝐰 



Additional Vector Operations 

Scalar Product*) 

𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰) 

*) also known as inner product 
or dot-product  

also: 𝐯,𝐰  

90° 

𝐯 

𝐰 



Signature 

out 

operator ∗ 

Scalar Product  
(dot product, inner-product) 

in 

42.0 

in 



Additional Vector Operations 

Scalar Product*) 

90° 

𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰) 

*) also known as inner product 
or dot-product  

also: 𝐯,𝐰  

𝐯 

𝐰 



Additional Vector Operations 

Scalar Product*) 

90° 

𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰) 
 

Comprises: length, projection, angles 

*) also known as inner product 
or dot-product  

𝐯 

𝐰 



Additional Vector Operations 

𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰) 
 

Comprises: length, projection, angles 

Length:  𝐯 = 𝐯 ⋅ 𝐯 
 

Angle:  ∠  𝐯,𝐰 = arccos 𝐯 ⋅ 𝐰  
 

Projection:  „𝐯 prj on 𝐰” =
𝐯⋅𝐰

𝐰
  

 



basic topics 

study completely 

BASIC 

Algebraic Representation 
(Implementation) 



Scalar Product 

Scalar Product*) 

𝐯 

𝐰 90° 

𝐯 ⋅ 𝐰 =
𝑣1
𝑣2
⋅
𝑤1
𝑤2
≔ 𝑣1 ⋅ 𝑤1 + 𝑣2 ⋅ 𝑤2 

Theorem: 
𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰) 



Scalar Product 

Scalar product 

𝐯 ⋅ 𝐰 =
𝑣1
𝑣2
⋅
𝑤1
𝑤2

 

𝐯 𝐯 =
3
2

 

𝐰 =
1
2

 

𝐰 



Scalar Product 

2D Scalar product 

𝐯 ⋅ 𝐰 =
𝑣1
𝑣2
⋅
𝑤1
𝑤2
≔ 𝑣1 ⋅ 𝑤1 + 𝑣2 ⋅ 𝑤2 

d-dim scalar product 

𝐯 ⋅ 𝐰 =
𝑣1
⋮
𝑣𝑑
⋅
𝑤1
⋮
𝑤𝑑
≔ 𝑣1 ⋅ 𝑤1 +⋯+ 𝑣𝑑 ⋅ 𝑤𝑑 

 



Algebraic Properties 

Properties 

 Symmetry (commutativity) 

𝐮, 𝐯 = 𝐯, 𝐮  

 Bilinearity 

𝜆𝐯,𝐰 = 𝜆 𝐯,𝐰 = 𝐯, 𝜆𝐰  

𝐮 + 𝐯,𝐰 = 𝐮,𝐰 + 𝐯,𝐰  

(symmetry: same for second argument) 

 Positive definite 

𝐮, 𝐮 ≥ 0,    𝐮, 𝐮 = 𝟎 ⇒ 𝐮 = 𝟎  

These three: axiomatic definition 

 
𝜆 ∈ ℝ 

𝐮, 𝐯,𝐰 ∈ ℝ𝑑 

Settings 



Attention! 

Do not mix 

 Scalar-vector product 

 Inner (scalar) product 

In general 

𝐱, 𝐲 ⋅ 𝐳 ≠ 𝐱 ⋅ 𝐲, 𝐳  

Beware of notation: 
𝐱 ⋅ 𝐲 ⋅ 𝐳 ≠ 𝐱 ⋅ 𝐲 ⋅ 𝐳  

(no violation of associativity: different operations; details later) 



core topics 

important 

CORE 

Applications of the 
Scalar Product 



Applications 

Obvious applications 

 Measuring length 

 Measuring angles 

 Projections 

More complex applications 

 Creating orthogonal (90°) pairs of vectors 

 Creating orthogonal bases 



Projection 

Scalar Product*) 

90° 

𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰) 

𝐯 

𝐰 



Projection 

Scalar Product*) 

90° 

𝐯 

𝐰 𝐰n 

𝐰n =
𝐰

𝐰
=
𝐰

𝐰,𝐰
 

projection 

prj.-vector 

Projection: 𝐯 ⋅
𝐰

𝐰⋅𝐰
 Prj.-Vector: 𝐯, 𝐰

𝐰,𝐰
⋅
𝐰

𝐰,𝐰
 

 

= 𝐯,𝐰  ⋅
𝐰

𝐰,𝐰
 



Orthogonalization 

Scalar Product*) 

90° 

𝐯 

𝐰 

𝐰n =
𝐰

𝐰
=
𝐰

𝐰,𝐰
 

projection 

prj.-vector 

Orthogonalize 𝐯 wrt. 𝐰:  

𝐯′ = 𝐯 − 𝐯,𝐰 ⋅
𝐰

𝐰,𝐰
 

𝐯′ 



Orthogonalization 

Scalar Product*) 

90° 

𝐯 

𝐰 

𝐯′ 

Orthogonalize 𝐯 wrt. 𝐰:  

𝐯′ = 𝐯 − 𝐯,𝐰 ⋅
𝐰

𝐰,𝐰
 



Gram-Schmidt Orthogonalization 

Orthogonal basis 

 All vectors in 90° angle to each other 

𝐛𝑖 , 𝐛𝑗 = 0 for 𝑖 ≠ 𝑗 

Create orthogonal bases 

 Start with arbitrary one 

 Orthogonalize 𝐛2 by 𝐛1 

 Orthogonalize 𝐛3 by 𝐛1, then by 𝐛2 

 Orthogonalize 𝐛4 by 𝐛1, then by 𝐛2, then by 𝐛3 

 ... 



Orthonormal Basis 

Orthonormal bases 

 Orthogonal and all vectors have unit length 

Computation 

 Orthogonalize first 

 Then scale each vector 𝐛𝑖 by 1/ 𝐛𝑖 . 



Matrices 

Orthogonal Matrices 

 A matrix with orthonormal columns  
is called orthogonal matrix 

 Yes, this terminology is not quite logical... 

Orthogonal Matrices are always 

 Rotation matrices 

 Or reflection matrices 

 Or products of the two 



core topics 

important 

CORE 

Further Operations 



Cross Product 

Cross-Product: Exists Only For 3D Vectors! 

 𝐱, 𝐲 ∈ ℝ3 

 𝐱 × 𝐲 =

𝑥1
𝑥2
𝑥3
×

𝑦1
𝑦2
𝑦3
≔

𝑥2𝑦3 − 𝑥3𝑦2
𝑥3𝑦1 − 𝑥1𝑦3
𝑥1𝑦2 − 𝑥2𝑦1

 

Geometrically: Theorem 

 𝐱 × 𝐲 orthogonal to 𝐱, 𝐲 

 Right-handed system 𝐱, 𝐲, 𝐱 × 𝐲  

 𝐱 × 𝐲 = 𝐱 ⋅ 𝐲 ⋅ sin∠ 𝐱, 𝐲  

y 

x 

x  y 

‖x  y‖ 



Cross-Product Properties 

Bilinearity 

 Distributive: 𝐮 × 𝐯 +𝐰 = 𝐮 × 𝐯 + 𝐮 ×𝐰 

 Scalar-Mult.: 𝜆𝐮 × 𝐯 = 𝐮 × 𝜆𝐯 = 𝜆 𝐮 × 𝐯  

But beware of 

 Anti-Commutative: 𝐮 × 𝐯 = −𝐯 × 𝐮 

 Not associative;   
we can have  𝐮 × 𝐯 × 𝐰 ≠ 𝐮 × 𝐯 × 𝐰  

 

 



Determinants 

Determinants 

 Square matrix M 

 det(M) = |M| = volume of parallelepiped  
                            of column vectors 

v2 

v1 

det 𝐌  

𝐌 =
| | |
𝐯1 𝐯2 𝐯3
| | |

 

v3 



Determinants 

Sign: 

 Positive for right handed coordinates 

 Negative for left-handed coordinates 

v2 

v1 

det 𝐌 > 0 

𝐌 =
| | |
𝐯1 𝐯2 𝐯3
| | |

 

v3 

v1 

v2 

det 𝐌′ < 0 

𝐌′ =
| | |
𝐯2 𝐯1 𝐯3
| | |

 

v3 negative 
determinant 
→ map 
    contains 
    reflection 



Properties 

A few properties: 

 det(A) det(B) = det(A⋅B) 

 det(𝜆A) = 𝜆d det(A)  (d  d matrix A) 

 det(A-1) = det(A)-1 

 det(AT) = det(A) 

 det 𝐀 ≠ 0 ⇔ 𝐀 invertible  

 Efficient computation using Gaussian elimination 

sign flips! 
→ reflections 
cancel each 
other (parity) 



Computing Determinants 

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

= +𝑎
𝑒 𝑓
ℎ 𝑖

− 𝑏
𝑑 𝑓
𝑔 𝑖

+ 𝑐
𝑑 𝑒
𝑔 ℎ

 

Recursive Formula 

 Sum over first row 

 Multiply element there 
with subdeterminant 

 Subdeterminant : 
Leave out row and column 
of selected element 

 Recursion ends with |a|= a 

 Alternate signs +/−/+/−/… 

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

 
𝑑 𝑓
𝑔 𝑖

 

subdeterminants 

+𝑎 −𝑏 +𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

 

signs 

Beware of 𝒪 𝑑𝑖𝑚!  

complexity 

+ − + 

|a|= a 



Computing Determinants 

Result in 3D Case 

det
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

= 𝑎𝑒𝑖 + 𝑏𝑓𝑔 + 𝑐𝑑ℎ − 𝑐𝑒𝑔 − 𝑏𝑑𝑖 − 𝑎𝑓ℎ 



Solving Linear Systems 

Consider 
𝐀 ⋅ 𝐱 = 𝐛 

 Invertible matrix 𝐀 ∈ ℝ𝑑×𝑑 

 Known vector 𝐛 ∈ ℝ𝑑 

 Unknown vector 𝐱 ∈ ℝ𝑑 

Solution with Determinants (Cramar’s rule): 
 

𝑥𝑖 =
det 𝐀𝑖
det 𝐀

                                                    

 

 

𝐀𝑖 =

| | |
𝐯1 ⋯𝐛⋯ 𝐯3
| | |

 

column 𝑖 



advanced topics 

main ideas 

ADV 

Addendum 

Matrix Algebra 



Matrix Algebra 

Define three operations 

 Matrix addition 
𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋱ ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

+

𝑏1,1 ⋯ 𝑏1,𝑛
⋮ ⋱ ⋮
𝑏𝑚,1 ⋯ 𝑏𝑚,𝑛

=

𝑎1,1 + 𝑏1,1 ⋯ 𝑎1,𝑛 + 𝑏1,𝑛
⋮ ⋱ ⋮

𝑎𝑚,1 + 𝑏𝑚,1 ⋯ 𝑎𝑚,𝑛 + 𝑏𝑚,𝑛

 

 Scalar matrix multiplication 

𝜆 ⋅

𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋱ ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

=

𝜆 ⋅ 𝑎1,1 ⋯ 𝜆 ⋅ 𝑎1,𝑛
⋮ ⋱ ⋮

𝜆 ⋅ 𝑎𝑚,1 ⋯ 𝜆 ⋅ 𝑎𝑚,𝑛

 

 Matrix-matrix multiplication 

𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋱ ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

⋅

𝑏1,1 ⋯ 𝑏1,𝑚
⋮ ⋱ ⋮
𝑏𝑘,1 ⋯ 𝑏𝑘,𝑚

=

⋱ ⋰

 𝑎𝑞,𝑗 ⋅ 𝑏𝑖,𝑞

𝑘

𝑞=1

⋰ ⋱

 



Transposition 

Matrix Transposition 

 Swap rows and columns 

 Formally: 
⋱ ⋅ ⋰
⋅ ⋅ ⋅
⋅      ⋅
⋅ ⋅ ⋅
⋰ ⋅ ⋱

T

=
⋱ ⋅ ⋅ ⋅ ⋰
⋅ ⋅     ⋅ ⋅
⋰ ⋅ ⋅ ⋅ ⋱

 

    
                           

 

T 

= 

𝑎𝑖,𝑗 𝑎𝑗,𝑖 



Vectors 

Vectors  

 Column matrices 

 Matrix-Vector product consistent 

Co-Vectors 

 “projectors”, “dual vectors”, 
“linear forms”, “row vectors” 

 Vectors to be projected on 

Transposition 

 Convert vectors into projectors and vice versa 

𝐱 ∈ ℝ𝑑 

𝐲T ∈ ℝ𝑑 



Vectors 

Inner product (as a generalized “projection”) 

 Matrix-product 𝐜𝐨𝐥𝐮𝐦𝐧 ⋅ 𝐫𝐨𝐰 

„𝐱 ⋅ 𝐲“ = 𝐱, 𝐲 = 𝐱T ⋅ 𝐲 

 People use all three notations 

 Meaning of “ ⋅ ” clear from context 

𝐱T ⋅ 𝐲 → ℝ 



Matrix-Vector Products 

Two Interpretations 

 Linear combination of column vectors 

 Projection on row (co-)vectors 

° 

𝐌 ⋅ 𝐱 = 𝐲 

𝐲 𝐌 

𝐱 
⋅ + ⋅ + ⋅ + ⋅ 

° 
° 
° 
° 

⋅ 
⋅ 
⋅ 
⋅ 

⋅ 

= 



Matrix Algebra 

We can add and scalar multiply 

 Matrices and vectors (special case) 

We can matrix-multiply 

 Matrices with other matrices  
(execute one-after-another) 

 Vectors in certain cases (next) 

We can “divide” by some (not all) matrices 

 Determine inverse matrix 

 Full-rank, square matrices only 



Algebraic Rules: Addition 

Addition: like real numbers 
 (“commutative group”) 

 Prerequisites:  

 Number of rows match 

 Number of columns match 

 Associative: 𝐀 + 𝐁 + 𝐂 = 𝐀 + 𝐁 + 𝐂  

 Commutative: 𝐀 + 𝐁 = 𝐁 + 𝐀 

 Subtraction: 𝐀 + −𝐀 = 𝟎 

 Neutral Op.: 𝐀 + 𝟎 = 𝐀 

 
𝐀,𝐁, 𝐂 ∈ ℝ𝑛×𝑚 
(matrices, same size) 

Settings 



Algebraic Rules: Scalar Multiplication 

Scalar Multiplication: Vector space 

 Prerequisites:  

 Always possible 

 Repeated Scaling: 𝜆 𝜇𝐀 = 𝜆𝜇 𝐀  

 Neutral Operation: 1 ⋅ 𝐀 = 𝐀 

 Distributivity 1: 𝜆(𝐀 + 𝐁) = 𝜆𝐀 + 𝜆𝐁 

 Distributivity 2: 𝜆 + 𝜇 𝐀 = 𝜆𝐀 + 𝜇𝐀 

So far: 

 Matrices form vector space 

 Just different notation, same semantics! 

 
𝜆 ∈ ℝ 

𝐀,𝐁 ∈ ℝ𝑛×𝑚 
(same size) 

Settings 



Algebraic Rules: Multiplication 

Multiplication: Non-Commutative Ring / Group 

 Prerequisites:  

 Number of columns right 
= number of rows left 

 Associative: 𝐀 ⋅ 𝐁 ⋅ 𝐂 = 𝐀 ⋅ 𝐁 ⋅ 𝐂  

 Not commutative:  often 𝐀 ⋅ 𝐁 ≠ 𝐁 ⋅ 𝐀  

 Neutral Op.: 𝐀 ⋅ 𝐈 = 𝐀 

 Inverse: 𝐀 ⋅ 𝐀−1 = 𝐈 

 Additional prerequisite: 

– Matrix must be square! 

– Matrix must have full rank 

Set of invertible 
matrices: 

𝐺𝐿 𝑑 ⊂ ℝ𝑑×𝑑 

“general linear group” 



Algebraic Rules: Multiplication 

Multiplication: Non-Commutative Ring / Group 

 Prerequisites:  

 Number of columns right 
= number of rows left 

 Associative: 𝐀 ⋅ 𝐁 ⋅ 𝐂 = 𝐀 ⋅ 𝐁 ⋅ 𝐂  

 Not commutative:  often 𝐀 ⋅ 𝐁 ≠ 𝐁 ⋅ 𝐀  

 Neutral Op.: 𝐀 ⋅ 𝐈 = 𝐀 

 Inverse: 𝐀 ⋅ 𝐀−1 = 𝐈 

 Additional prerequisite: 

– Matrix must be square! 

– Matrix must have full rank 

Set of invertible 
matrices: 

𝐺𝐿 𝑑 ⊂ ℝ𝑑×𝑑 

“general linear group” 

 
𝐀 ∈ ℝ𝑛×𝑚 
𝐁 ∈ ℝ𝑚×𝑘 
𝐂 ∈ ℝ𝑘×𝑙 

Settings 



Transposition Rules 

Transposition 

 Addition: 𝐀 + 𝐁 T = 𝐀T + 𝐁T = 𝐁T + 𝐀T 

 Scalar-mult.: 𝜆𝐀 T = 𝜆𝐀T 

 Multiplication: 𝐀 ⋅ 𝐁 T = 𝐁T ⋅ 𝐀T 

 Self-inverse: 𝐀T
T
= 𝐀 

 (Inversion:) 𝐀 ⋅ 𝐁 −1 = 𝐁−1 ⋅ 𝐀−1 

 Inverse-transp.: 𝐀T
−1
= 𝐀−1 T 

 Othogonality: 𝐀T = 𝐀−1 ⇔ 𝐀 is orthogonal  

 



Matrix Multiplication 

Matrix Multiplication 

𝐀 ⋅ 𝐁 
  

=

− 𝐚1 −
 ⋮  
− 𝐚𝑑 −

⋅

|  |
𝐛1 ⋯ 𝐛𝑑
|  |

 

  

=
⋱  ⋰
 𝐚𝑖 , 𝐛𝑗  
⋰  ⋱

 

  

 Scalar products of rows and columns 



Orthogonal Matrices 

Othogonal Matrices 

 (i.e., column vectors orthonormal) 
𝐌𝑇 = 𝐌−1 

 Proof: previous slide. 



Scalar Product 

Matrix Algebra: 

 Scalar product is a special case 
 

𝐱, 𝐲 = 𝐱T ⋅ 𝐲 

 Caution when mixing with scalar-vector product! 
𝐱, 𝐲 ⋅ 𝐳 ≠ 𝐱 ⋅ 𝐲, 𝐳  

𝐱T ⋅ 𝐲 ⋅ 𝐳 ≠ 𝐱 ⋅ 𝐲T ⋅ 𝐳  

 

 

⋅ ⋅ ≠ 

Scalar multiplication 
not a matrix-product! 



Scalar Product 

NOT OK 

 

 ⋅ ⋅ 

OK 

 

 



Scalar Product 

What does work:  

 Associativity with outer product 

𝐱 ⋅ 𝐲, 𝐳 = 𝐱 ⋅ 𝐲T ⋅ 𝐳  

 = 𝐱 ⋅ 𝐲T ⋅ 𝐳 

⋅ ⋅ = 



advanced topics 

main ideas 

ADV 

Addendum 

Axiomatic Mathematics 

(This is not a core topic of the course; 
material is provided just for your information.) 



“Class Diagram” 
for Real Numbers 

field 

binary operation 

magma 

semi-group 

monoid 

group 

Abelian group 

operator + 

operator • 

ordered field 

Real Numbers 



Real Numbers 

field 

binary operation 

binary operation: 
template <set T, operator ○> 
T operator”○”(T, T) throws DoesNotCompute 

magma 

closed binary operation: 
T operator”○”(T, T) no-exceptions 

semi-group 

associativity: 
(A ○ B) ○ C = A ○ (B ○ C) 

monoid 

identity element “id”: 
id ○ A = A ○ id = A 

group 

inverse “T-1”: 
A ○ A-1 = A-1 ○ A = id 

abelian group 

commutativity: 
A ○ B = B ○ A 

operator + 

operator • 
set with two operations 
template<set F> 

F operator+(F, F) 

F operator*(F, F) 

ordered field 

full order: 
template<set F> 

bool operator<(F, F) 

Real Numbers 

completeness: 
“all Cauchy series converge” 



advanced topics 

main ideas 
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Structure: Vector Space 



Vector Spaces 

Vector space: 

 Set of vectors V 

 Based on field F (we use only F = ℝ) 

 Two operations: 

 Adding vectors u = v + w (u, v, w  V) 

 Scaling vectors w = v (u  V,   F) 



Vector Spaces 

Vector space axioms: 

 Vector addition – Abelian group: 

 ∀𝐮, 𝐯,𝐰 ∈ V:          𝐮 + 𝐯 + 𝐰 = 𝐮 + 𝐯 +𝐰  

 ∀𝐮, 𝐯 ∈ V:                  𝐮 + 𝐯 = 𝐯 + 𝐮 

 ∃𝟎 ∈ V: ∀𝐯 ∈ V:       𝐯 + 𝟎 = 𝐯 

 ∀𝐯 ∈ V: ∃"−v" ∈ V:  v  +(−v) = 𝟎 

 Compatibility with scalar multiplication: 

 ∀𝐯 ∈ V, 𝜆, 𝜇 ∈ 𝐹:     𝜆 𝜇𝐮 = 𝜆𝜇 𝐮  

 ∀𝐯 ∈ V:                      1 ⋅ 𝐯 = 𝐯 

 ∀𝐯,𝐰 ∈ V, 𝜆 ∈ 𝐹:    𝜆(𝐯 + 𝐰) = 𝜆𝐯 + 𝜆𝐰 

 ∀𝐯 ∈ V, 𝜆, 𝜇 ∈ 𝐹:     𝜆 + 𝜇 𝐯 = 𝜆𝐯 + 𝜇v 

 

Settings 

𝑉: vector space 
𝐹: field (e.g., ℝ) 



Properties 

Some differences to our definition 

 Abstract vector spaces can have infinite dimension 

 For example: The set of all functions  
𝑓:ℝ → ℝ 

   forms an ∞-dimensional vector space 

 But they always have a basis  
→ coordinate representation 

 We can use other fields than ℝ, such as ℂ or finite 
fields such as (ℤ mod 𝑝, 𝑝 prime) 

 We can recognize them before we have a 
coordinate representation 



Theorem 

Theorem (“Basis-Isomorphism”) 

 Any finite-dimensional vector space can be 
represented by columns of numbers 

 Use the 𝑑 coordinates of the 𝑑 basis vectors (dim= 𝑑) 

Our definition makes sense 

 Special case 
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Structure: Scalar Product 



Scalar Product 

Aximatic Definition: Scalar Product 

 Function 

 two vector arguments (input) 

 one scalar output 

 𝑏: 𝑉 × 𝑉 → 𝐹 

– think 𝑏 == “𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ∘” 

 𝑉 is a vector space, F is a field (such as ℝ) 

 
𝑉: vector space 
𝐹: field (e.g., ℝ) 

Settings 



Axiomatic Definition: Scalar Product 

Properties 

 Symmetry 

𝑏 𝐮, 𝐯 = 𝑏 𝐯, 𝐮  

 Bilinearity 

𝑏 𝐮 + 𝜆𝐯,𝐰 = 𝑏 𝐮,𝐰 + 𝑏 𝜆𝐯,𝐰  

    (linearity in second argument follows from symmetry) 

 Positive definite 

𝑏 𝐮, 𝐮 ≥ 0,    𝑏 𝐮, 𝐮 = 𝟎 ⇒ 𝒖 = 𝟎  

Symmetric, positive-definite, bilinear function 

 
𝜆 ∈ 𝐹 
𝐮, 𝐯,𝐰 ∈ 𝑉 

Settings 



General Scalar Product 

Theorem 

 In a finite-dimensional vector space, any scalar 
product has the following form: 

𝑏 𝐱, 𝐲 = 𝐌𝐱 ⋅ 𝐌𝐲 = 𝐱T 𝐌T𝐌 𝐲 

 “ ⋅ ” is the standard scalar product as we defined it 

 M is a square matrix with linearly-independent columns 

– I.e., M transforms to a different coordinate frame 

Our definition still makes sense… 

 Special case: undistorted coordinates 

 General scalar products can take non-standard 
coordinate frames into account 
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Definition of Linear Maps 

Axioms 

 Linear Map: A function 
𝐀: 𝑉1 → V2 

   maps from one vector space (𝑉1) to another (𝑉2) 

 Linearity requires 
𝐀 𝐯 +𝐰 = 𝐀 ⋅ 𝐯 + 𝐀 ⋅ 𝐰 
𝐀 ⋅ 𝜆 ⋅ 𝐯 = 𝜆 ⋅ 𝐀 ⋅ 𝐯  

Theorem 

 Linear maps in finite-dimensional vector spaces 
can always be represented by matrices 

 Our definition makes sense: special case 

 
𝐀 – linear map 
𝐯 ∈ 𝑉1 - vector 

Settings 


