
Graphics 2014

Linear Algebra II
Linear Maps & Matrices

core topics

important

CORE

Linear Maps & Matrices

Linear Combinations

Linear Combinations as Mappings

 Fix vectors 𝐱1, … , 𝐱𝑛 ∈ ℝ
𝑚.

 Factors λ1, … , λ𝑛 → 𝐲

x1

Linear Combinations

x2

2x2 + x1

𝐲 = λ𝑖𝐱𝑖

𝑛

𝑖=1

Algebra

Linear Mappings

Linear Map

 Fix vectors
𝐱1, … , 𝐱𝑛 ∈ ℝ

𝑚

 Input coordinates
λ1, … , λ𝑛

 Output vector
𝐲 ∈ ℝ𝑚

Linear Combination

λ1 ⋯ λ𝑛

fixed:
x1,… , xn

𝐲 = λ𝑖𝐱𝑖

𝑛

𝑖=1

Map λ1, … , λ𝑛 → 𝐲 is called a linear map

𝐲

Linear Mappings

Linear Map

 Fix vectors
𝐱1, … , 𝐱𝑛 ∈ ℝ

𝑚

 Input coordinates
λ1, … , λ𝑛

 Output vector
𝐲 ∈ ℝ𝑚

Linear Combination

λ1 ⋯ λ𝑛

fixed:
x1,… , xn

𝐲 = λ𝑖𝐱𝑖

𝑛

𝑖=1

Map λ1, … , λ𝑛 → 𝐲 is called a linear map

Input Vectors

𝐲

Linear Mappings

Linear Combination

𝛌 =
𝜆1
⋮
λ𝑛

fixed:
x1, … , xn ∈ ℝ

𝑚

𝐲 =

𝑦1
⋮
𝑦𝑚

𝜆1
𝜆2

y = 𝜆1x1 + 𝜆2x2

How the machine works

𝐲 = λ𝑖𝐱𝑖

𝑛

𝑖=1

 =
| |
𝑥1 ⋯ 𝑥𝑛
| |

⋅
𝜆1
⋮
λ𝑛

 = λ𝑖

𝑥1,𝑖
⋮
𝑥𝑚,𝑖

𝑛

𝑖=1

 =

𝑥1,1 ⋯ 𝑥1,𝑛
⋮ ⋮
𝑥𝑚,1 ⋯ 𝑥𝑚,𝑛

⋅
𝜆1
⋮
λ𝑛

Matrix Representation

Matrix Representation

𝐲 = λ𝑖𝐱𝑖

𝑛

𝑖=1

 =
| |
𝐱1 ⋯ 𝐱𝑛
| |

⋅
𝜆1
⋮
λ𝑛

 = λ𝑖

𝑥1,𝑖
⋮
𝑥𝑚,𝑖

𝑛

𝑖=1

 =

𝑥1,1 ⋯ 𝑥1,𝑛
⋮ ⋮
𝑥𝑚,1 ⋯ 𝑥𝑚,𝑛

⋅
𝜆1
⋮
λ𝑛

Short
𝐲 = 𝐗 ⋅ 𝛌

Matrix

𝐗 =

𝑥1,1 ⋯ 𝑥1,𝑛
⋮ ⋮
𝑥𝑚,1 ⋯ 𝑥𝑚,𝑛

Vectors

𝛌 =
𝜆1
⋮
λ𝑛

, 𝐲 =

𝑦1
⋮
𝑦𝑚

Convention

Taken from Textbook [Shirley et al.]

 Matrix elements
𝑥𝑟𝑜𝑤,𝑐𝑜𝑙𝑢𝑚𝑛

 Row first, then column

 “y”-coordinate of the array first
(unintuitive, but common convention)

𝑥1,1 ⋯ 𝑥1,𝑛
⋮ ⋮
𝑥𝑚,1 ⋯ 𝑥𝑚,𝑛

𝑚
𝑟𝑜𝑤𝑠

𝑛
𝑐𝑜𝑙𝑢𝑚𝑛𝑠

Matrix Representation

Matrix-vector product

Construction

 Maps from ℝ𝑛 → ℝ𝑚

 𝛌 ∈ ℝ𝑛

 𝐱𝑖 ∈ ℝ
𝑚 ⇒ 𝐲 ∈ ℝ𝑚

 Columns of 𝐗 = images of the basis vectors of ℝ𝑛

𝐲 𝛌 =
| |
𝐱1 ⋯ 𝐱𝑛
| |

⋅
𝜆1
⋮
λ𝑛

Example

Example: rotation matrix










0

1










1

0

𝐌𝑟𝑜𝑡 =
cos 𝛼 − sin 𝛼

sin 𝛼 cos 𝛼
 cos 𝛼

sin 𝛼

−sin 𝛼
cos 𝛼

General Matrix Product (Notation)

Algebraic rule:

 Vector-matrix product:

𝐌 ⋅ 𝐱 = 𝐲 =

𝐲 𝐌 𝐱

General Matrix Product (Notation)

Algebraic rule:

 Vector-matrix product:

°

𝐌 ⋅ 𝐱 = 𝐲
°

𝐲 𝐌

𝐱
×
×
×
×

∑

∑

× × × ×

General Matrix Product (Notation)

Algebraic rule:

 Vector-matrix product:

°

𝐌 ⋅ 𝐱 = 𝐲

𝐲 𝐌

𝐱
×
×
×
×

∑

∑

× × × ×
°
°

General Matrix Product (Notation)

Algebraic rule:

 Vector-matrix product:

°

𝐌 ⋅ 𝐱 = 𝐲

𝐲 𝐌

𝐱
×
×
×
×

∑

∑

× × × ×
°
°
°

General Matrix Product (Notation)

Algebraic rule:

 Vector-matrix product:

°

𝐌 ⋅ 𝐱 = 𝐲

𝐲 𝐌

𝐱
×
×
×
×

∑

× × × ×

∑

°
°
°
°

Matrix Representation

Matrix-Vector Multiplication

𝑥1,1 ⋯ 𝑥1,1
⋮ ⋮
𝑥𝑚,1 ⋯ 𝑥𝑚,𝑛

⋅
𝜆1
⋮
λ𝑛

≔ 𝜆𝑖

𝑥1,𝑖
⋮
𝑥𝑚,𝑖

𝑛

𝑖=1

 =

𝜆1 ⋅ 𝑥1,1 +⋯+ 𝜆𝑛 ⋅ 𝑥1,𝑛
⋮

𝜆1 ⋅ 𝑥𝑚,1 +⋯+ 𝜆𝑛 ⋅ 𝑥𝑚,𝑛

°

basic topics

study completely

BASIC

Standard Transformations

Identity Transform

Example: identity matrix










0

1










1

0 𝐌𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = 𝐈 =
1 0
0 1










0

1










1

0

General case

𝐈: ℝ𝑛 → ℝ𝑛, 𝐈 =

1 0 ⋯ 0
0 1 0
⋮ ⋱ ⋮
0 0 ⋯ 1

1
0

0
1

Scaling (Center = Origin)

0
𝜆

𝜆
0

General case

𝐒𝜆: ℝ
𝑛 → ℝ𝑛, 𝐒𝜆 =

𝜆 0 ⋯ 0
0 𝜆 0
⋮ ⋱ ⋮
0 0 ⋯ 𝜆

1
0

0
1

Non-Uniform Scaling
0
𝜆1

𝜆2
0

General case

𝐒𝛌: ℝ
𝑛 → ℝ𝑛, 𝐒𝛌 =

𝜆1 0 ⋯ 0

0 𝜆2 0

⋮ ⋱ ⋮
0 0 ⋯ 𝜆3

Rotation (2D)










0

1










1

0

𝐌𝑟𝑜𝑡 =
cos 𝛼 − sin 𝛼

sin 𝛼 cos 𝛼

cos 𝛼
sin 𝛼

−sin 𝛼
cos 𝛼

Rotation (3D)

𝐯 =
𝑥
𝑦
𝑧

𝐲

𝐱 𝐨𝐫𝐢𝐠𝐢𝐧

𝐳

𝑉 = ℝ3

𝐲

𝐨𝐫𝐢𝐠𝐢𝐧

𝐳

𝐱 𝐨𝐫𝐢𝐠𝐢𝐧

𝐳

𝐱

𝐲

𝐨𝐫𝐢𝐠𝐢𝐧

𝐳

𝐱

𝐲

Rotation (3D)

𝐲

𝐨𝐫𝐢𝐠𝐢𝐧

𝐳

𝐱 𝐨𝐫𝐢𝐠𝐢𝐧

𝐳

𝐱

𝐲

𝐨𝐫𝐢𝐠𝐢𝐧

𝐳

𝐱

𝐲

𝐑𝑥 =
1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

 𝐑𝑧 =
cos 𝛼 − sin 𝛼 0
sin 𝛼 cos 𝛼 0
0 0 1

𝐑𝑦 =
cos 𝛼 0 − sin 𝛼
0 1 0
sin 𝛼 0 cos 𝛼

Reflection

General case

𝐒𝜆: ℝ
𝑛 → ℝ𝑛, 𝐒𝜆 =

1 0 ⋯ 0
0 −1 0
⋮ ⋱ ⋮
0 0 ⋯ 1

1
0

0
1

−1
0

0
1

𝐌𝑟𝑒𝑓𝑙 =
−1 0
0 1

Reflection
Axis

Shearing

1
0

0
1

𝐌𝑠ℎ𝑒𝑎𝑟 =
1 𝜆
0 1

0.5
1

General Case

You can combine all of these

Example: General axis of rotation

 First rotate rotation axis to x-axis

 Rotate around x

 Rotate back

Question

 How to combine multiple matrix multiplications?

basic topics

study completely

BASIC

Combining Transformations

Matrix Products

Matrix Multiplication

Execute multiple linear maps,
one after another

 Written as product

 𝐁 ⋅ 𝐀 ⋅ 𝐱:

 Apply 𝐀 to 𝐱 first

 Then 𝐁

 𝐁 ⋅ 𝐀 is again a matrix

How does it work?

Consider 𝐁 ⋅ 𝐀 :

 Rotate first (𝐀)

 Then scale (𝐁)










0

1










1

0

cos 𝛼
sin 𝛼

−sin 𝛼
cos 𝛼

1
0

0
1

0
2

2
0

𝐀 𝐁

How does it work?

How to compute 𝐁 ⋅ 𝐀 ?

 Transform basis vectors

 Transform again

cos 𝛼
sin 𝛼

−sin 𝛼
cos𝛼

𝐀 𝐁 ⋅ 𝐀

2cos𝛼
2sin 𝛼

−2sin 𝛼
2cos𝛼

Matrix product:

𝐀

Matrix Multiplication

𝐁

𝐚1 𝐚4

column 4

𝐚3

column 3

𝐚2

column 2
column 1

𝐀

Matrix Multiplication

Matrix product:

𝐁
°

Matrix Multiplication

General matrix products:

 𝐁 ⋅ 𝐀: possible if
#Row(𝐀) = #Columns(𝐁)

°

𝐀

𝐁

𝐀 =

𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

𝐁 =

𝑏1,1 ⋯ 𝑏1,𝑚
⋮ ⋮
𝑏𝑘,1 ⋯ 𝑏𝑘,𝑚

𝑘

𝑚 𝑛

𝑛

𝑚

𝑘

𝐑 =

𝑟1,1 ⋯ 𝑟1,𝑛
⋮ ⋮
𝑟𝑘,1 ⋯ 𝑟𝑘,𝑛

𝐑 = 𝐁 ⋅ 𝐀

𝑟𝑖,𝑗 = 𝑎𝑞,𝑗 ⋅ 𝑏𝑖,𝑞

𝑚

𝑞=1

Rules for Matrix Multiplication

Matrix-Multiplication

 Associative
𝐀 ⋅ 𝐁 ⋅ 𝐂 = 𝐀 ⋅ 𝐁 ⋅ 𝐂

 Includes vector-multiplication

𝐀 ⋅ 𝐁 ⋅ 𝐯 = 𝐀 ⋅ 𝐁 ⋅ 𝐯

 In general, not commutative:

It might be that 𝐀 ⋅ 𝐁 ≠ 𝐁 ⋅ 𝐀

 Linear
𝐀 ⋅ 𝐯 + 𝐰 = 𝐀 ⋅ 𝐯 + 𝐀 ⋅ 𝐰
𝐀 ⋅ 𝜆 ⋅ 𝐯 = 𝜆 ⋅ 𝐀 ⋅ 𝐯

(Remark: linearity is used to define linear maps axiomatically)

𝜆 ∈ ℝ

𝐀,𝐁, 𝐂 - matrices
𝐯,𝐰 - vectors

Settings

core topics

important

CORE

Reversing Transformations

Matrix Inversion

Inverse Matrix

Can we find the inverse matrix?

 “Undo effect”

 Formally
𝐌−1 ⋅ 𝐌 = 𝐈

Inverse Matrix

Examples

 Rotation matrix

𝐌𝑟𝑜𝑡 =
cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼

 Inverse?

cos 𝛼
sin 𝛼

−sin 𝛼
cos𝛼

𝐌𝑟𝑜𝑡

cos(−𝛼)
sin(−𝛼)

𝐌𝑟𝑜𝑡
−1

𝛼
−𝛼

𝐌𝑟𝑜𝑡
−1 =

cos(−𝛼) − sin(−𝛼)
sin(−𝛼) cos(−𝛼)

−sin(−𝛼)
cos(−𝛼)

Inverse Matrix

Examples

 Null matrix

𝟎 =
0 0
0 0

 Inverse?

0
0

 0
0

𝟎

Inverse Matrix

Examples

 Projection matrix (remove x-component)

𝐌𝑝𝑟𝑗 =
0 0
0 1

 Inverse?

0
0

0
1

𝐌𝑝𝑟𝑗

Inverse Matrix

Examples

 Projection matrix (remove x-component)

𝐌𝑓𝑎𝑛𝑐𝑦 =
2 1
4 2

 Inverse?

2
4

1
2

𝐌𝑓𝑎𝑛𝑐𝑦

Invertible Matrices

Invertible matrices

 Are always square (#rows = #columns)

 In addition

 Columns are linearly independent

Equivalent characterizations:

 Square and rows are linearly independent

 Columns form basis of vector space

 Rows form basis of vector space

Invertible Matrices

Rank

 Number of linearly independent columns

 Dimension of span{𝐜𝐨𝐥𝐮𝐦𝐧_𝐯𝐞𝐜𝐭𝐨𝐫𝐬}

Theorem

 Rank = number of linearly independent rows

Full rank

 rank(𝐌) = dim (𝑉)

 Then: 𝐌 is invertible

Linear Systems of Equations

First consider simpler case

 Say, we know that
𝐌 ⋅ 𝐱 = 𝐲

 Square matrix 𝐌 ∈ ℝ𝑑×𝑑

 Vectors 𝐱, 𝐲 ∈ ℝ𝑑×𝑑

Knowns & Unknowns

 We are given 𝐌, 𝐲

 We should compute 𝐱

 Linear system of equations

Linear Systems of Equations

Linear System of Equations
𝐌 ⋅ 𝐱 = 𝐲
⇔

𝑚1,1 ⋯ 𝑚1,𝑑
⋮ ⋮
𝑚𝑑,1 ⋯ 𝑚𝑑,𝑑

⋅

𝑥1
⋮
𝑥𝑑
=

𝑦1
⋮
𝑦𝑑

⇔
𝑚1,1𝑥1 +⋯+𝑚1,𝑑 𝑥𝑑 = 𝑦1
𝑚2,1𝑥1 +⋯+𝑚2,𝑑 𝑥𝑑 = 𝑦2

⋮
𝑚𝑑,1𝑥1 +⋯+𝑚𝑑,𝑑 𝑥𝑑 = 𝑦𝑑

and

and

Gaussian Elimination

Linear System

∧ 𝑚1,1𝑥1 +⋯+𝑚1,𝑑 𝑥𝑑 = 𝑦1
∧ 𝑚2,1𝑥1 +⋯+𝑚2,𝑑 𝑥𝑑 = 𝑦2

⋮
∧ 𝑚𝑑,1𝑥1 +⋯+𝑚𝑑,𝑑 𝑥𝑑 = 𝑦𝑑

Row Operations

 Swap rows 𝑟𝑖, 𝑟𝑗

 Scale row 𝑟𝑖 by factor 𝜆 ≠ 0

 Add multiple of row 𝑟𝑖 to row 𝑟𝑗, 𝑖 ≠ 𝑗
(i.e., 𝑟𝑖 += 𝜆𝑟𝑗)

Convert to Upper Triangle Matrix

=

𝐲 𝐌 𝐱

=
0

0

0

=
0

0

0

0

0

=
0

0

0

0

0 0

(use row-operations)

Convert to Diagonal Matrix

=

𝐲 𝐌 𝐱

=
0

0

0

=
0

0

0

0

0

=
0

0

0

0

0 0

0

0

0

=
0

0

0

0

0 0

0

0 0

0

0

0

=
0

0

0

0

0 0

0

0 0 1

1

1

1

𝑦1
′/m1,1
′

𝑦2
′/m2,2
′

𝑦3
′/m3,3
′

𝑦4
′/m4,4
′

𝑥1

𝑥2

𝑥3

𝑥4

(use row-operations)

𝑚1,1
′

𝑚2,2
′

𝑚3,3
′

𝑚4,4
′

𝑦1
′

𝑦2
′

𝑦3
′

𝑦4
′

𝑥1

𝑥2

𝑥3

𝑥4

Gauss-Algorithm

Gauss-Algorithm

 Substract rows to cancel front-coefficient

 Create upper triangle matrix first

 Then create diagonal matrix

 If current row starts with 0

 Swap with another row

 If all rows start with 0: matrix not invertible

 Diagonal form: Solution can be read-off

 Data structure

 Modify matrix M, “right-hand-side” y.

 x remains unknown (no change)

Matrix Inverse

Solve for

𝐌 ⋅ 𝐱1 =

1
0
⋮
0

, 𝐌 ⋅ 𝐱2 =

0
1
⋮
0

, … , 𝐌 ⋅ 𝐱𝑑 =

0
0
⋮
1

 The resulting 𝐱1, 𝐱2, … , 𝐱𝑑 are the columns of 𝐌−1:

𝐌−1 =
| |
𝐱1 ⋯ 𝐱𝑑
| |

Matrix Inverse

Algorithm

 Simultaneous Gaussian elimination

 Start as follows:

 Handle all right-hand sides simultaneously

 After Gauss-algorithm, the right-hand matrix
is the inverse

= 0

0

0

0

0

0

0

0 0

0

0 0 1

1

1

1

𝐌 𝐱 𝐈

Alternative: Kramer’s Rule

Small Matrices

 Direct formula based on determinants

 “Kramer’s rule”

 (more later)

 Naive implementation has run-time 𝒪(𝑑!)

– Gauss: 𝒪(𝑑3)

 Not advised for 𝑑 > 3

basic topics

study completely

BASIC

More Vector Operations:

Scalar Products

Additional Vector Operations

Length of Vectors

𝐯2 = 𝟒. 𝟐cm

“length” or “norm”
‖𝐯‖ yields real number ≥ 0

𝐯1 = 𝟐. 𝟑cm

𝐯1

𝐯2

Additional Vector Operations

Angle between Vectors

𝛼 = ∠ 𝐯1, 𝐯2 = 𝟑𝟑°

angle ∠ 𝐯1, 𝐯2
 yields real number
0,… , 2𝜋 = [0,… , 360°)

𝐯1

𝐯2

𝛼

Additional Vector Operations

Angle between Vectors

right angles

𝐯1
𝐯2

90°

Additional Vector Operations

Projection

Projection: determine

length of 𝐯 along direction of 𝐰

𝐯

𝐰 90°

𝐯 prj on 𝐰

Additional Vector Operations

Scalar Product*)

𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰)

*) also known as inner product
or dot-product

also: 𝐯,𝐰

90°

𝐯

𝐰

Signature

out

operator ∗

Scalar Product
(dot product, inner-product)

in

42.0

in

Additional Vector Operations

Scalar Product*)

90°

𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰)

*) also known as inner product
or dot-product

also: 𝐯,𝐰

𝐯

𝐰

Additional Vector Operations

Scalar Product*)

90°

𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰)

Comprises: length, projection, angles

*) also known as inner product
or dot-product

𝐯

𝐰

Additional Vector Operations

𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰)

Comprises: length, projection, angles

Length: 𝐯 = 𝐯 ⋅ 𝐯

Angle: ∠ 𝐯,𝐰 = arccos 𝐯 ⋅ 𝐰

Projection: „𝐯 prj on 𝐰” =
𝐯⋅𝐰

𝐰

basic topics

study completely

BASIC

Algebraic Representation
(Implementation)

Scalar Product

Scalar Product*)

𝐯

𝐰 90°

𝐯 ⋅ 𝐰 =
𝑣1
𝑣2
⋅
𝑤1
𝑤2
≔ 𝑣1 ⋅ 𝑤1 + 𝑣2 ⋅ 𝑤2

Theorem:
𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰)

Scalar Product

Scalar product

𝐯 ⋅ 𝐰 =
𝑣1
𝑣2
⋅
𝑤1
𝑤2

𝐯 𝐯 =
3
2

𝐰 =
1
2

𝐰

Scalar Product

2D Scalar product

𝐯 ⋅ 𝐰 =
𝑣1
𝑣2
⋅
𝑤1
𝑤2
≔ 𝑣1 ⋅ 𝑤1 + 𝑣2 ⋅ 𝑤2

d-dim scalar product

𝐯 ⋅ 𝐰 =
𝑣1
⋮
𝑣𝑑
⋅
𝑤1
⋮
𝑤𝑑
≔ 𝑣1 ⋅ 𝑤1 +⋯+ 𝑣𝑑 ⋅ 𝑤𝑑

Algebraic Properties

Properties

 Symmetry (commutativity)

𝐮, 𝐯 = 𝐯, 𝐮

 Bilinearity

𝜆𝐯,𝐰 = 𝜆 𝐯,𝐰 = 𝐯, 𝜆𝐰

𝐮 + 𝐯,𝐰 = 𝐮,𝐰 + 𝐯,𝐰

(symmetry: same for second argument)

 Positive definite

𝐮, 𝐮 ≥ 0, 𝐮, 𝐮 = 𝟎 ⇒ 𝐮 = 𝟎

These three: axiomatic definition

𝜆 ∈ ℝ

𝐮, 𝐯,𝐰 ∈ ℝ𝑑

Settings

Attention!

Do not mix

 Scalar-vector product

 Inner (scalar) product

In general

𝐱, 𝐲 ⋅ 𝐳 ≠ 𝐱 ⋅ 𝐲, 𝐳

Beware of notation:
𝐱 ⋅ 𝐲 ⋅ 𝐳 ≠ 𝐱 ⋅ 𝐲 ⋅ 𝐳

(no violation of associativity: different operations; details later)

core topics

important

CORE

Applications of the
Scalar Product

Applications

Obvious applications

 Measuring length

 Measuring angles

 Projections

More complex applications

 Creating orthogonal (90°) pairs of vectors

 Creating orthogonal bases

Projection

Scalar Product*)

90°

𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰)

𝐯

𝐰

Projection

Scalar Product*)

90°

𝐯

𝐰 𝐰n

𝐰n =
𝐰

𝐰
=
𝐰

𝐰,𝐰

projection

prj.-vector

Projection: 𝐯 ⋅
𝐰

𝐰⋅𝐰
 Prj.-Vector: 𝐯, 𝐰

𝐰,𝐰
⋅
𝐰

𝐰,𝐰

= 𝐯,𝐰 ⋅
𝐰

𝐰,𝐰

Orthogonalization

Scalar Product*)

90°

𝐯

𝐰

𝐰n =
𝐰

𝐰
=
𝐰

𝐰,𝐰

projection

prj.-vector

Orthogonalize 𝐯 wrt. 𝐰:

𝐯′ = 𝐯 − 𝐯,𝐰 ⋅
𝐰

𝐰,𝐰

𝐯′

Orthogonalization

Scalar Product*)

90°

𝐯

𝐰

𝐯′

Orthogonalize 𝐯 wrt. 𝐰:

𝐯′ = 𝐯 − 𝐯,𝐰 ⋅
𝐰

𝐰,𝐰

Gram-Schmidt Orthogonalization

Orthogonal basis

 All vectors in 90° angle to each other

𝐛𝑖 , 𝐛𝑗 = 0 for 𝑖 ≠ 𝑗

Create orthogonal bases

 Start with arbitrary one

 Orthogonalize 𝐛2 by 𝐛1

 Orthogonalize 𝐛3 by 𝐛1, then by 𝐛2

 Orthogonalize 𝐛4 by 𝐛1, then by 𝐛2, then by 𝐛3

 ...

Orthonormal Basis

Orthonormal bases

 Orthogonal and all vectors have unit length

Computation

 Orthogonalize first

 Then scale each vector 𝐛𝑖 by 1/ 𝐛𝑖 .

Matrices

Orthogonal Matrices

 A matrix with orthonormal columns
is called orthogonal matrix

 Yes, this terminology is not quite logical...

Orthogonal Matrices are always

 Rotation matrices

 Or reflection matrices

 Or products of the two

core topics

important

CORE

Further Operations

Cross Product

Cross-Product: Exists Only For 3D Vectors!

 𝐱, 𝐲 ∈ ℝ3

 𝐱 × 𝐲 =

𝑥1
𝑥2
𝑥3
×

𝑦1
𝑦2
𝑦3
≔

𝑥2𝑦3 − 𝑥3𝑦2
𝑥3𝑦1 − 𝑥1𝑦3
𝑥1𝑦2 − 𝑥2𝑦1

Geometrically: Theorem

 𝐱 × 𝐲 orthogonal to 𝐱, 𝐲

 Right-handed system 𝐱, 𝐲, 𝐱 × 𝐲

 𝐱 × 𝐲 = 𝐱 ⋅ 𝐲 ⋅ sin∠ 𝐱, 𝐲

y

x

x  y

‖x  y‖

Cross-Product Properties

Bilinearity

 Distributive: 𝐮 × 𝐯 +𝐰 = 𝐮 × 𝐯 + 𝐮 ×𝐰

 Scalar-Mult.: 𝜆𝐮 × 𝐯 = 𝐮 × 𝜆𝐯 = 𝜆 𝐮 × 𝐯

But beware of

 Anti-Commutative: 𝐮 × 𝐯 = −𝐯 × 𝐮

 Not associative;
we can have 𝐮 × 𝐯 × 𝐰 ≠ 𝐮 × 𝐯 × 𝐰

Determinants

Determinants

 Square matrix M

 det(M) = |M| = volume of parallelepiped
 of column vectors

v2

v1

det 𝐌

𝐌 =
| | |
𝐯1 𝐯2 𝐯3
| | |

v3

Determinants

Sign:

 Positive for right handed coordinates

 Negative for left-handed coordinates

v2

v1

det 𝐌 > 0

𝐌 =
| | |
𝐯1 𝐯2 𝐯3
| | |

v3

v1

v2

det 𝐌′ < 0

𝐌′ =
| | |
𝐯2 𝐯1 𝐯3
| | |

v3 negative
determinant
→ map
 contains
 reflection

Properties

A few properties:

 det(A) det(B) = det(A⋅B)

 det(𝜆A) = 𝜆d det(A) (d  d matrix A)

 det(A-1) = det(A)-1

 det(AT) = det(A)

 det 𝐀 ≠ 0 ⇔ 𝐀 invertible

 Efficient computation using Gaussian elimination

sign flips!
→ reflections
cancel each
other (parity)

Computing Determinants

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

= +𝑎
𝑒 𝑓
ℎ 𝑖

− 𝑏
𝑑 𝑓
𝑔 𝑖

+ 𝑐
𝑑 𝑒
𝑔 ℎ

Recursive Formula

 Sum over first row

 Multiply element there
with subdeterminant

 Subdeterminant :
Leave out row and column
of selected element

 Recursion ends with |a|= a

 Alternate signs +/−/+/−/…

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑑 𝑓
𝑔 𝑖

subdeterminants

+𝑎 −𝑏 +𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

signs

Beware of 𝒪 𝑑𝑖𝑚!

complexity

+ − +

|a|= a

Computing Determinants

Result in 3D Case

det
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

= 𝑎𝑒𝑖 + 𝑏𝑓𝑔 + 𝑐𝑑ℎ − 𝑐𝑒𝑔 − 𝑏𝑑𝑖 − 𝑎𝑓ℎ

Solving Linear Systems

Consider
𝐀 ⋅ 𝐱 = 𝐛

 Invertible matrix 𝐀 ∈ ℝ𝑑×𝑑

 Known vector 𝐛 ∈ ℝ𝑑

 Unknown vector 𝐱 ∈ ℝ𝑑

Solution with Determinants (Cramar’s rule):

𝑥𝑖 =
det 𝐀𝑖
det 𝐀

𝐀𝑖 =

| | |
𝐯1 ⋯𝐛⋯ 𝐯3
| | |

column 𝑖

advanced topics

main ideas

ADV

Addendum

Matrix Algebra

Matrix Algebra

Define three operations

 Matrix addition
𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋱ ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

+

𝑏1,1 ⋯ 𝑏1,𝑛
⋮ ⋱ ⋮
𝑏𝑚,1 ⋯ 𝑏𝑚,𝑛

=

𝑎1,1 + 𝑏1,1 ⋯ 𝑎1,𝑛 + 𝑏1,𝑛
⋮ ⋱ ⋮

𝑎𝑚,1 + 𝑏𝑚,1 ⋯ 𝑎𝑚,𝑛 + 𝑏𝑚,𝑛

 Scalar matrix multiplication

𝜆 ⋅

𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋱ ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

=

𝜆 ⋅ 𝑎1,1 ⋯ 𝜆 ⋅ 𝑎1,𝑛
⋮ ⋱ ⋮

𝜆 ⋅ 𝑎𝑚,1 ⋯ 𝜆 ⋅ 𝑎𝑚,𝑛

 Matrix-matrix multiplication

𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋱ ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

⋅

𝑏1,1 ⋯ 𝑏1,𝑚
⋮ ⋱ ⋮
𝑏𝑘,1 ⋯ 𝑏𝑘,𝑚

=

⋱ ⋰

 𝑎𝑞,𝑗 ⋅ 𝑏𝑖,𝑞

𝑘

𝑞=1

⋰ ⋱

Transposition

Matrix Transposition

 Swap rows and columns

 Formally:
⋱ ⋅ ⋰
⋅ ⋅ ⋅
⋅ ⋅
⋅ ⋅ ⋅
⋰ ⋅ ⋱

T

=
⋱ ⋅ ⋅ ⋅ ⋰
⋅ ⋅ ⋅ ⋅
⋰ ⋅ ⋅ ⋅ ⋱

T

=

𝑎𝑖,𝑗 𝑎𝑗,𝑖

Vectors

Vectors

 Column matrices

 Matrix-Vector product consistent

Co-Vectors

 “projectors”, “dual vectors”,
“linear forms”, “row vectors”

 Vectors to be projected on

Transposition

 Convert vectors into projectors and vice versa

𝐱 ∈ ℝ𝑑

𝐲T ∈ ℝ𝑑

Vectors

Inner product (as a generalized “projection”)

 Matrix-product 𝐜𝐨𝐥𝐮𝐦𝐧 ⋅ 𝐫𝐨𝐰

„𝐱 ⋅ 𝐲“ = 𝐱, 𝐲 = 𝐱T ⋅ 𝐲

 People use all three notations

 Meaning of “ ⋅ ” clear from context

𝐱T ⋅ 𝐲 → ℝ

Matrix-Vector Products

Two Interpretations

 Linear combination of column vectors

 Projection on row (co-)vectors

°

𝐌 ⋅ 𝐱 = 𝐲

𝐲 𝐌

𝐱
⋅ + ⋅ + ⋅ + ⋅

°
°
°
°

⋅
⋅
⋅
⋅

⋅

=

Matrix Algebra

We can add and scalar multiply

 Matrices and vectors (special case)

We can matrix-multiply

 Matrices with other matrices
(execute one-after-another)

 Vectors in certain cases (next)

We can “divide” by some (not all) matrices

 Determine inverse matrix

 Full-rank, square matrices only

Algebraic Rules: Addition

Addition: like real numbers
 (“commutative group”)

 Prerequisites:

 Number of rows match

 Number of columns match

 Associative: 𝐀 + 𝐁 + 𝐂 = 𝐀 + 𝐁 + 𝐂

 Commutative: 𝐀 + 𝐁 = 𝐁 + 𝐀

 Subtraction: 𝐀 + −𝐀 = 𝟎

 Neutral Op.: 𝐀 + 𝟎 = 𝐀

𝐀,𝐁, 𝐂 ∈ ℝ𝑛×𝑚
(matrices, same size)

Settings

Algebraic Rules: Scalar Multiplication

Scalar Multiplication: Vector space

 Prerequisites:

 Always possible

 Repeated Scaling: 𝜆 𝜇𝐀 = 𝜆𝜇 𝐀

 Neutral Operation: 1 ⋅ 𝐀 = 𝐀

 Distributivity 1: 𝜆(𝐀 + 𝐁) = 𝜆𝐀 + 𝜆𝐁

 Distributivity 2: 𝜆 + 𝜇 𝐀 = 𝜆𝐀 + 𝜇𝐀

So far:

 Matrices form vector space

 Just different notation, same semantics!

𝜆 ∈ ℝ

𝐀,𝐁 ∈ ℝ𝑛×𝑚
(same size)

Settings

Algebraic Rules: Multiplication

Multiplication: Non-Commutative Ring / Group

 Prerequisites:

 Number of columns right
= number of rows left

 Associative: 𝐀 ⋅ 𝐁 ⋅ 𝐂 = 𝐀 ⋅ 𝐁 ⋅ 𝐂

 Not commutative: often 𝐀 ⋅ 𝐁 ≠ 𝐁 ⋅ 𝐀

 Neutral Op.: 𝐀 ⋅ 𝐈 = 𝐀

 Inverse: 𝐀 ⋅ 𝐀−1 = 𝐈

 Additional prerequisite:

– Matrix must be square!

– Matrix must have full rank

Set of invertible
matrices:

𝐺𝐿 𝑑 ⊂ ℝ𝑑×𝑑

“general linear group”

Algebraic Rules: Multiplication

Multiplication: Non-Commutative Ring / Group

 Prerequisites:

 Number of columns right
= number of rows left

 Associative: 𝐀 ⋅ 𝐁 ⋅ 𝐂 = 𝐀 ⋅ 𝐁 ⋅ 𝐂

 Not commutative: often 𝐀 ⋅ 𝐁 ≠ 𝐁 ⋅ 𝐀

 Neutral Op.: 𝐀 ⋅ 𝐈 = 𝐀

 Inverse: 𝐀 ⋅ 𝐀−1 = 𝐈

 Additional prerequisite:

– Matrix must be square!

– Matrix must have full rank

Set of invertible
matrices:

𝐺𝐿 𝑑 ⊂ ℝ𝑑×𝑑

“general linear group”

𝐀 ∈ ℝ𝑛×𝑚
𝐁 ∈ ℝ𝑚×𝑘
𝐂 ∈ ℝ𝑘×𝑙

Settings

Transposition Rules

Transposition

 Addition: 𝐀 + 𝐁 T = 𝐀T + 𝐁T = 𝐁T + 𝐀T

 Scalar-mult.: 𝜆𝐀 T = 𝜆𝐀T

 Multiplication: 𝐀 ⋅ 𝐁 T = 𝐁T ⋅ 𝐀T

 Self-inverse: 𝐀T
T
= 𝐀

 (Inversion:) 𝐀 ⋅ 𝐁 −1 = 𝐁−1 ⋅ 𝐀−1

 Inverse-transp.: 𝐀T
−1
= 𝐀−1 T

 Othogonality: 𝐀T = 𝐀−1 ⇔ 𝐀 is orthogonal

Matrix Multiplication

Matrix Multiplication

𝐀 ⋅ 𝐁

=

− 𝐚1 −
 ⋮
− 𝐚𝑑 −

⋅

| |
𝐛1 ⋯ 𝐛𝑑
| |

=
⋱ ⋰
 𝐚𝑖 , 𝐛𝑗
⋰ ⋱

 Scalar products of rows and columns

Orthogonal Matrices

Othogonal Matrices

 (i.e., column vectors orthonormal)
𝐌𝑇 = 𝐌−1

 Proof: previous slide.

Scalar Product

Matrix Algebra:

 Scalar product is a special case

𝐱, 𝐲 = 𝐱T ⋅ 𝐲

 Caution when mixing with scalar-vector product!
𝐱, 𝐲 ⋅ 𝐳 ≠ 𝐱 ⋅ 𝐲, 𝐳

𝐱T ⋅ 𝐲 ⋅ 𝐳 ≠ 𝐱 ⋅ 𝐲T ⋅ 𝐳

⋅ ⋅ ≠

Scalar multiplication
not a matrix-product!

Scalar Product

NOT OK

 ⋅ ⋅

OK

Scalar Product

What does work:

 Associativity with outer product

𝐱 ⋅ 𝐲, 𝐳 = 𝐱 ⋅ 𝐲T ⋅ 𝐳

 = 𝐱 ⋅ 𝐲T ⋅ 𝐳

⋅ ⋅ =

advanced topics

main ideas

ADV

Addendum

Axiomatic Mathematics

(This is not a core topic of the course;
material is provided just for your information.)

“Class Diagram”
for Real Numbers

field

binary operation

magma

semi-group

monoid

group

Abelian group

operator +

operator •

ordered field

Real Numbers

Real Numbers

field

binary operation

binary operation:
template <set T, operator ○>
T operator”○”(T, T) throws DoesNotCompute

magma

closed binary operation:
T operator”○”(T, T) no-exceptions

semi-group

associativity:
(A ○ B) ○ C = A ○ (B ○ C)

monoid

identity element “id”:
id ○ A = A ○ id = A

group

inverse “T-1”:
A ○ A-1 = A-1 ○ A = id

abelian group

commutativity:
A ○ B = B ○ A

operator +

operator •
set with two operations
template<set F>

F operator+(F, F)

F operator*(F, F)

ordered field

full order:
template<set F>

bool operator<(F, F)

Real Numbers

completeness:
“all Cauchy series converge”

advanced topics

main ideas

ADV

Structure: Vector Space

Vector Spaces

Vector space:

 Set of vectors V

 Based on field F (we use only F = ℝ)

 Two operations:

 Adding vectors u = v + w (u, v, w  V)

 Scaling vectors w = v (u  V,   F)

Vector Spaces

Vector space axioms:

 Vector addition – Abelian group:

 ∀𝐮, 𝐯,𝐰 ∈ V: 𝐮 + 𝐯 + 𝐰 = 𝐮 + 𝐯 +𝐰

 ∀𝐮, 𝐯 ∈ V: 𝐮 + 𝐯 = 𝐯 + 𝐮

 ∃𝟎 ∈ V: ∀𝐯 ∈ V: 𝐯 + 𝟎 = 𝐯

 ∀𝐯 ∈ V: ∃"−v" ∈ V: v +(−v) = 𝟎

 Compatibility with scalar multiplication:

 ∀𝐯 ∈ V, 𝜆, 𝜇 ∈ 𝐹: 𝜆 𝜇𝐮 = 𝜆𝜇 𝐮

 ∀𝐯 ∈ V: 1 ⋅ 𝐯 = 𝐯

 ∀𝐯,𝐰 ∈ V, 𝜆 ∈ 𝐹: 𝜆(𝐯 + 𝐰) = 𝜆𝐯 + 𝜆𝐰

 ∀𝐯 ∈ V, 𝜆, 𝜇 ∈ 𝐹: 𝜆 + 𝜇 𝐯 = 𝜆𝐯 + 𝜇v

Settings

𝑉: vector space
𝐹: field (e.g., ℝ)

Properties

Some differences to our definition

 Abstract vector spaces can have infinite dimension

 For example: The set of all functions
𝑓:ℝ → ℝ

 forms an ∞-dimensional vector space

 But they always have a basis
→ coordinate representation

 We can use other fields than ℝ, such as ℂ or finite
fields such as (ℤ mod 𝑝, 𝑝 prime)

 We can recognize them before we have a
coordinate representation

Theorem

Theorem (“Basis-Isomorphism”)

 Any finite-dimensional vector space can be
represented by columns of numbers

 Use the 𝑑 coordinates of the 𝑑 basis vectors (dim= 𝑑)

Our definition makes sense

 Special case

advanced topics

main ideas

ADV

Structure: Scalar Product

Scalar Product

Aximatic Definition: Scalar Product

 Function

 two vector arguments (input)

 one scalar output

 𝑏: 𝑉 × 𝑉 → 𝐹

– think 𝑏 == “𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ∘”

 𝑉 is a vector space, F is a field (such as ℝ)

𝑉: vector space
𝐹: field (e.g., ℝ)

Settings

Axiomatic Definition: Scalar Product

Properties

 Symmetry

𝑏 𝐮, 𝐯 = 𝑏 𝐯, 𝐮

 Bilinearity

𝑏 𝐮 + 𝜆𝐯,𝐰 = 𝑏 𝐮,𝐰 + 𝑏 𝜆𝐯,𝐰

 (linearity in second argument follows from symmetry)

 Positive definite

𝑏 𝐮, 𝐮 ≥ 0, 𝑏 𝐮, 𝐮 = 𝟎 ⇒ 𝒖 = 𝟎

Symmetric, positive-definite, bilinear function

𝜆 ∈ 𝐹
𝐮, 𝐯,𝐰 ∈ 𝑉

Settings

General Scalar Product

Theorem

 In a finite-dimensional vector space, any scalar
product has the following form:

𝑏 𝐱, 𝐲 = 𝐌𝐱 ⋅ 𝐌𝐲 = 𝐱T 𝐌T𝐌 𝐲

 “ ⋅ ” is the standard scalar product as we defined it

 M is a square matrix with linearly-independent columns

– I.e., M transforms to a different coordinate frame

Our definition still makes sense…

 Special case: undistorted coordinates

 General scalar products can take non-standard
coordinate frames into account

advanced topics

main ideas

ADV

Structure: Linear Map

Definition of Linear Maps

Axioms

 Linear Map: A function
𝐀: 𝑉1 → V2

 maps from one vector space (𝑉1) to another (𝑉2)

 Linearity requires
𝐀 𝐯 +𝐰 = 𝐀 ⋅ 𝐯 + 𝐀 ⋅ 𝐰
𝐀 ⋅ 𝜆 ⋅ 𝐯 = 𝜆 ⋅ 𝐀 ⋅ 𝐯

Theorem

 Linear maps in finite-dimensional vector spaces
can always be represented by matrices

 Our definition makes sense: special case

𝐀 – linear map
𝐯 ∈ 𝑉1 - vector

Settings

