
Graphics 2014

The Rasterization Pipeline
Projection, Visibility,

& Shading

Announcements

Practicals this week

Tuesday (today)

 Tue 9-11 (was held)

 Tue 13-15 canceled (programming contest)

Wednesday (tomorrow)

 Wed 15-17: additional practical slot

 We 17-19: additional practical slot

Thursday: no practicals

core topics

important

CORE

Addendum:

Matrix Algebra

Transposition

Matrix Transposition

 Swap rows and columns

 In other words: Flip around diagonal

 Formally:
⋱ ⋅ ⋰
⋅ ⋅ ⋅
⋅ ⋅
⋅ ⋅ ⋅
⋰ ⋅ ⋱

T

=
⋱ ⋅ ⋅ ⋅ ⋰
⋅ ⋅ ⋅ ⋅
⋰ ⋅ ⋅ ⋅ ⋱

T

=

𝑎𝑖,𝑗 𝑎𝑗,𝑖

Orthogonal Matrices

Othogonal Matrices

 (i.e., column vectors orthonormal)
𝐌𝑇 = 𝐌−1

 Proof: next three slides

Matrix Multiplication

General matrix products:

 𝐁 ⋅ 𝐀: possible if
#Row(𝐀) = #Columns(𝐁)

°

𝐀

𝐁

𝐀 =

𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

𝐁 =

𝑏1,1 ⋯ 𝑏1,𝑚
⋮ ⋮
𝑏𝑘,1 ⋯ 𝑏𝑘,𝑚

𝑘

𝑚 𝑛

𝑛

𝑚

𝑘

𝐑 =

𝑟1,1 ⋯ 𝑟1,𝑛
⋮ ⋮
𝑟𝑘,1 ⋯ 𝑟𝑘,𝑛

𝐑 = 𝐁 ⋅ 𝐀

𝑟𝑖,𝑗 = 𝑎𝑞,𝑗 ⋅ 𝑏𝑖,𝑞

𝑚

𝑞=1

Matrix Multiplication

Matrix Multiplication

𝐀 ⋅ 𝐁

=

− 𝐚1 −
 ⋮
− 𝐚𝑑 −

⋅

| |
𝐛1 ⋯ 𝐛𝑑
| |

=
⋱ ⋰
 𝐚𝑖 , 𝐛𝑗
⋰ ⋱

 Scalar products of rows and columns

Matrix Multiplication

Othogonal matrices:

𝐀T ⋅ 𝐀

=

− 𝐚1 −
 ⋮
− 𝐚𝑑 −

⋅
| |
𝐚1 ⋯ 𝐚𝑑
| |

=
⋱ ⋰
 𝐚𝑖 , 𝐚𝑗
⋰ ⋱

=
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

= 𝐈

𝐚1

𝐚2

Transposition Rules

Transposition

 Multiplication: 𝐀 ⋅ 𝐁 T = 𝐁T ⋅ 𝐀T

 Inversion: 𝐀 ⋅ 𝐁 −1 = 𝐁−1 ⋅ 𝐀−1

 Inverse-transp.: 𝐀T
−1
= 𝐀−1 T

 Othogonality: 𝐀T = 𝐀−1 ⇔ 𝐀 is orthogonal

core topics

important

CORE

Homogeneous Coordinates
(short version)

Problem

Translations are not linear

 𝐱 → 𝐌𝐱 cannot encode translations

 Proof: Origin cannot be moved:

𝐌 ⋅ 𝟎 =

𝑚11 𝑚12 𝑚13
𝑚21 𝑚22 𝑚23
𝑚31 𝑚32 𝑚33

0
0
0
=
0
0
0

Homogeneous Coordinates

Solution: Just add a constant one

 Increase dimension ℝ𝑑 → ℝ𝑑+1

 Last entry = 1 in vectors

 “Cheap Trick”, “Evil Hack”

𝐌′ ⋅ 𝐱 =

𝑚11 𝑚12 𝑚13 𝑡1
𝑚21 𝑚22 𝑚23 𝑡2
𝑚31 𝑚32 𝑚33 𝑡3
0 0 0 1

𝑥
𝑦
𝑧
1

 =

⋱ ⋰ |

𝐌 𝐭
⋰ ⋱ |
0 0 0 1

|
𝐱
|
1

=

|
𝐌𝐱 + 𝐭
|
1

Homogeneous Coordinates

General case

𝐌 ⋅ 𝐱 =

𝑚11 𝑚12 𝑚13 𝑚14
𝑚21 𝑚22 𝑚23 𝑚24
𝑚31 𝑚32 𝑚33 𝑚34
𝑚41 𝑚42 𝑚43 𝑚44

𝑥
𝑦
𝑧
1

=

𝑥′
𝑦′

𝑧′
𝑤′

 𝑤′ might be different from 1

 Convention: Divide by 𝑤-coord. before using

Result:

𝑥′/𝑤′

𝑦′/𝑤′

𝑧′/𝑤′
1

Homogeneous Coordinates

General case

𝐌 ⋅ 𝐱 =

𝑚11 𝑚12 𝑚13 𝑚14
𝑚21 𝑚22 𝑚23 𝑚24
𝑚31 𝑚32 𝑚33 𝑚34
𝑚41 𝑚42 𝑚43 𝑚44

𝑥1
𝑥2
𝑥3
1

=

𝑦1
𝑦2
𝑦3
𝑦4

≡

𝑦1/𝑦4
𝑦2/𝑦4
𝑦3/𝑦4
1

 Can express divisions by common denominator

𝑦4 = 𝑚41𝑥1 +𝑚42𝑥2 +𝑚43𝑥3 +𝑚44𝑥4

 Rules:

 Before using as 3D point, divide by last (4th) entry

 No normalization required during
subsequent transformations (matrix-mult.)

The Full Story?

Projective Geometry

 Not just an evil hack

 Deep & interesting theoretical background

 More on this later

For simplicity

 We’ll treat it as a computational trick for now

 Focus on the graphics application

 Remember for now:

 We can build “4D Translation matrices” for 3D+1 points

 We can “divide” by a common linear factor

Now for

3D Rendering

basic topics

study completely

BASIC

3D Rendering Overview

3D Computer Graphics

Three main aspects

 Modeling

 Describe 3D geometry mathematically

– From machine parts (e.g., CAD)

– To natural phenomena (e.g., fractals)

 Animation

 Set scenes into motion

– Simple: Camera fly-through

– Complex: Fluid simulation, human motion

 Rendering

 Convert geometry into images

 Our Focus right now

3D Rendering

Assumption

 3D Model is given

 Triangle mesh
(for simplicity)

How do we get it to the screen?

Agenda

Upcoming Topics

 Modeling: mesh representation

 Physics: Perspective projection

 Rendering: Two main rendering methods

 Rasterization

– Perspective projection

– Rasterization

– Visibility

– Shading

– Programmable shaders / GPUs

 Raytracing

Geometric Model

Perspective Visibility Local Illumination

Smooth Shading Simple Shadows Global Illumination

3D Rendering Steps

Perspective Visibility Local Illumination

Smooth Shading Simple Shadows Global Illumination

Geometric Model

3D Rendering Steps

basic topics

study completely

BASIC

Modeling

Mesh Representation

basic topics

study completely

BASIC

basic topics

study completely

BASIC

Modeling Shapes

Primitives

 Elementary geometric building blocks

 Easy to handle directly

Complex models

 Sets of primitives

 Approximate shapes
with primitives

Most-frequently-used

 Triangles!

yep,
triangles!

Simple Triangle List

Vertex list
Vector3D vertices[n];

(1) 𝐩1 = (𝑥1, 𝑦1, 𝑧1)

(2) 𝐩2 = (𝑥2, 𝑦2, 𝑧2)

(3) 𝐩3 = (𝑥3, 𝑦3, 𝑧3)

(4) 𝐩4 = (𝑥4, 𝑦4, 𝑧4)

⋮

(n) 𝐩n = (𝑥𝑛, 𝑦𝑛, 𝑧𝑛)

Triangle list
(int[3]) triangles[m];

(1) 𝐭1 = (𝑖1, 𝑗1, 𝑘1)

(2) 𝐭2 = (𝑖2, 𝑗2, 𝑘2)

(3) 𝐭3 = (𝑖3, 𝑗3, 𝑘3)

⋮

(m) 𝐭m = (𝑖𝑚, 𝑗𝑚, 𝑘𝑚)

Modeling a Triangle

Triangle

Triangles:
𝐱 𝜆, 𝜇 = 𝐩1 + 𝜆𝐭1 + 𝜇𝐭2

= 𝐩1 + 𝜆 𝐩2 − 𝐩1 + 𝜇 𝐩3 − 𝐩1

0 ≤ 𝜆 ≤ 1,
0 ≤ 𝜇 ≤ 1,
𝜇 + 𝜆 ≤ 1

Parametric
Plane Equation

(with constraints)

0

𝐩1

t1

t2

𝐩3

𝐩2

Attributes

How to define a triangle?

 We need three points in ℝ3

 But we can have more:

per-vertex normal

per-vertex color

texture per-vertex texture
coordinates

(etc...)

Complete Data Structures

Multiple Arrays: Vertices, Triangles

v1: (posx posy posz), attrib1, ..., attribn
 ...

vN: (posx posy posz), attrib1, ..., attribn

e1: (index1 index2), attrib1, ..., attribk
 ...

eK: (index1 index2), attrib1, ..., attribk

t1: (idx1 idx2 idx3), attrib1, ..., attribm
 ...

tM: (idx1 idx2 idx3), attrib1, ..., attribm

edges:
optional

, Edges

Visibility Local Illumination

Smooth Shading Simple Shadows Global Illumination

Geometric Model

3D Rendering Steps

Perspective

core topics

important

CORE

Physics

Ray Optics & Color

Ray Optics

Geometric ray model

 Light travels along rays

Ray Optics

Geometric ray model

 Rays have “intensity” and “color”

Ray Optics

Color spectrum

 Continuous spectrum

 Intensity for each wavelength

wavelength 𝜆

390nm 700nm

reddish bluish

gray with a
tint of green

Human Vision

Color spectrum

 Two types of receptive cells (color/low-light)

 Three types of color cells

reddish
bluish

greenish

wavelength 𝜆

390nm 700nm

low light
(monochrome)

(curves: schematic, not accurate)

RGB Model

Bitmap (Pixel Display)

 Screen: 𝑤 ⋅ ℎ discrete pixels

 Origin: usually upper left

 Varying color per pixel

RGB Model

 Every pixel can emit red, green, blue light

 Intensity range:

 Usually: bytes 0...255

 000 = dark

 255 = maximum brightness

𝑤

ℎ

x-coord.

y
-c

o
o

rd
.

0 w – 1

h – 1

Human Vision

Create color impressions

 Basis for three-dimensional color space

 Wide spacing, narrow bands: purer colors

 Otherwise: washed out colors

wavelength 𝜆

390nm 700nm

(curves: schematic, not accurate)

Response curves:
human eye (ideal) monitor:

emitted spectra

basic topics

study completely

BASIC

Physics

Perspective Projection

Pinhole Camera

Pinhole camera

 Create image by selecting rays of specific angles

 Low efficiency (small holes for sharp images)

Pinhole Camera

Pinhole camera

 Create image by selecting rays of specific angles

 Low efficiency (small holes for sharp images)

Pinhole Camera

Central Projection

Pinhole Camera

Central projection

𝑥′ = 𝑓
𝑥

𝑧

𝑦′ = 𝑓
𝑦

𝑧

𝑦′

𝑦

𝑓
𝑧

Proof:
Intercept theorem!

(Actual Camera)

Camera with Lens

 Higher efficiency (bundles many rays)

 Finite Depth of field

 We will consider pinhole cameras only.

Pinhole Camera

𝑦′

𝑦

𝑓
𝑧

Undetermined degree of freedom

 Focal length vs. image size

 Source of a lot of confusion!

𝑥′ = 𝑓
𝑥

𝑧

𝑦′ = 𝑓
𝑦

𝑧

Pinhole Camera

Parameters

 h - size of the screen (pixels, cm, ±1.0,...)

 f – focal length (classical photography)

 Meaningful parameter: – viewing angle

h
𝑓

𝛼

𝛼

Pinhole Camera

Relation:

tan
𝛼

2
=
ℎ

2𝑓

h
𝑓

𝛼

Pinhole Camera

Invariance

 Scaling h and f by a common factor: no change

h

𝑓′

𝛼

tan
𝛼

2
=
ℎ

2𝑓
=
ℎ′

2𝑓′
=
ℎ′′

2𝑓′′

ℎ′ ℎ′′

𝑓 𝑓′′

Pinhole Camera

Typical choices (vertical angles)

 “Normal” perspective: 𝛼 ≈ 30° (“50mm” lens: 27°)

 Tele photography: 𝛼 ≈ 5° − 20° (275–70mm)

 Wide angle lens: 𝛼 ≈ 45° − 90° (28–12mm)

h
𝑓

𝛼

General Camera

Our camera so far:

 Focus point: origin

 View direction: z-axis

 General position/orientation?

𝑦′

𝑦

𝑓
𝑧

𝑥′ = 𝑓
𝑥

𝑧

𝑦′ = 𝑓
𝑦

𝑧

Homogeneous Coordinates

Write in homogeneous coordinates

 Third row is arbitrary (for now), not used.

𝑥′ = 𝑓
𝑥

𝑧

 𝑦′ = 𝑓
𝑦

𝑧

 𝑧′ =
𝑧 − 1

𝑧

 𝑤′ = 𝑧

𝑥′
𝑦′

𝑧′
𝑤′

=

𝑓 0 0 0
0 𝑓 0 0
0 0 1 −1
0 0 1 0

𝑥
𝑦
𝑧
1

Projection Matrix P

View transform

Reminder:

h 𝛼

tan
𝛼

2
=
ℎ

2𝑓

ℎ′′

𝑓

To Screen Coordinates

Scale to unit screen coordinates

 We set 𝑓 to 1 in previous matrix

 Third row is arbitrary (for now),
not used.

1

tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0 1 0
0 0 0 1

+ 1

– 1

+ 1
– 1

0

+ 1 – 1

+ 1

– 1

0

normalized screen
coordinates

Aspect Ratio

Non-square screens?

 Screen: w× ℎ pixels

 Aspect ratio
𝑤

ℎ

 Different horizontal angle!

1
𝑤
ℎ
⋅ tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0 1 0
0 0 0 1

+ 1 – 1

+ 1

– 1

0

normalized screen
coordinates

non-square
screen

h – 1

w – 1

To Screen Coordinates

Scale to pixels

 Third row is
arbitrary (for now),
not used.

𝑤/2 0 0 𝑤/2
0 −ℎ/2 0 ℎ/2
0 0 1 0
0 0 0 1

x-coord.

y
-c

o
o

rd
.

0 w – 1

h – 1

0

+ 1

– 1

+ 1
– 1

0
+ 1 – 1

+ 1

– 1

0

0

h – 1

w – 1

To Screen Coordinates

Overall

 Multiple both

ℎ/2

tan
𝛼
2

0 0
𝑤/2

tan
𝛼
2

0 −
ℎ/2

tan
𝛼
2

0
ℎ/2

tan
𝛼
2

0 0 1 0
0 0 1 0

Additionally:
Also scale + shift such that

𝑧′ =
𝑧 − 1

𝑧

are in value [0..1] for inputs
𝑧 ∈ [𝑧𝑛𝑒𝑎𝑟 , 𝑧𝑓𝑎𝑟]

a b

𝑎 =
𝑧𝑓𝑎𝑟 + 𝑧𝑛𝑒𝑎𝑟

𝑧𝑛𝑒𝑎𝑟 − 𝑧𝑓𝑎𝑟

𝑏 =
2 ⋅ 𝑧𝑛𝑒𝑎𝑟 ⋅ 𝑧𝑓𝑎𝑟

𝑧𝑛𝑒𝑎𝑟 − 𝑧𝑓𝑎𝑟

Summary

Projection matrix

𝐏 =

𝑓 0 0 0
0 𝑓 0 0
0 0 1 −1
0 0 1 0

Projection & conversion to screen coords

𝐏𝑠 =

𝑤/2 0 0 𝑤/2

0 −ℎ/2 0 ℎ/2

0 0 1 0

0 0 0 1

 ̇

1
𝑤
ℎ
tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0 1 0

0 0 0 1

 ̇

1 0 0 0

0 1 0 0

0 0 1 −1

0 0 1 0

projection
matrix

normalized
 screen coord’s

scaling to pixels,
upper left origin

(𝑓 = 1)

Alternative (1)

Alternative formulation: Only two steps

𝐏𝑠 =

𝑤/2 0 0 𝑤/2

0 −ℎ/2 0 ℎ/2

0 0 1 0

0 0 0 1

 ̇

1
𝑤
ℎ
tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0 1 −1

0 0 1 0

 Different scale factors (not a focal length)

 Use two different scale factors 𝑓𝑥 =
1

𝑤

ℎ
tan
𝛼

2

, 𝑓𝑦 =
1

tan
𝛼

2

projection
matrix

normalized
 screen coord’s

scaling to pixels,
upper left origin &

Alternative (2)

Another Alternative Formulation

𝐏𝑠 =

ℎ/2 0 0 𝑤/2

0 −ℎ/2 0 ℎ/2

0 0 1 0

0 0 0 1

 ̇

1

tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0 1 −1

0 0 1 0

 Constant focal length 𝑓 =
1

tan
𝛼

2

 Intermediate result not normalized to −1,1 2

projection
matrix

vertically normalized
 screen coord’s

scaling to pixels,
upper left origin & +

𝑤

ℎ
 –

𝑤

ℎ

+ 1

– 1

0

Alternatives

All three derivations lead to the same result

 Intermediate results not used ⇒ all equivalent

 Product of the 2/3 matrices is the same

Intermediate results being used:

 Some graphics APIs (e.g., OpenGL) do use
normalized device coordinates as intermediate

 OpenGL – for pixels to appear on screen:

 𝑥′ ∈ [−1,1]
 𝑦′ ∈ [−1,1]
 𝑧′ ∈ [0,1)

 𝑤 ∈ 𝑧𝑛𝑒𝑎𝑟 , 𝑧𝑓𝑎𝑟

coupled, so this
is the same criterion

General Camera

general camera

𝐲
𝐱

𝐳

camera in origin, view in z-direction

object of interest

General Camera

general camera

𝐲
𝐱

𝐳

camera in origin, view in z-direction

object of interest

𝐯

𝐮
𝐰

𝐜

General Camera

general camera

𝐲
𝐱

𝐳

camera in origin,
view: z-direction

𝐯

𝐮
𝐰

𝐜

Camera coordinate system 𝐮, 𝐯,𝐰
Origin: 𝐜

Standard coordinates 𝐱, 𝐲, 𝐳 =
1
0
0
,
0
1
0
,
0
0
1

Derivation

𝐲
𝐱

𝐳

𝐲
𝐱

𝐳

𝐯

𝐮
𝐰

𝐜

Derivation

𝐲
𝐱

𝐳

𝐯′

𝐮′ 𝐰′

−𝐜

Same effect:
Transform the world with
inverse camera transform

| | |

𝐮′ 𝐯′ 𝐰′
| | |

=
| | |
𝐮 𝐯 𝐰
| | |

−1

Derivation

𝐲
𝐱

𝐳

𝐯′

𝐮′ 𝐰′

−𝐜

Transform:

𝐩 →
| | |
𝐮 𝐯 𝐰
| | |

−1

𝐩 − 𝐜

| | |

𝐮′ 𝐯′ 𝐰′
| | |

=
| | |
𝐮 𝐯 𝐰
| | |

−1

Derivation

𝐲
𝐱

𝐳

−𝐜

Transform:

𝐩 →
 − 𝐮 −
− 𝐯 −
− 𝐰 −

𝐩 − 𝐜

𝐮, 𝐯,𝐰 orthogonal!

𝐯′

𝐮′ 𝐰′ | | |
𝐮′ 𝐯′ 𝐰′
| | |

=
| | |
𝐮 𝐯 𝐰
| | |

−1

General Camera

general camera

𝐲
𝐱

𝐳

camera in origin,
view: z-direction

𝐮

𝐫
𝐯

𝐜

Camera coordinate system 𝐮, 𝐫, 𝐯
Origin: 𝐜

Standard coordinates 𝐱, 𝐲, 𝐳 =
1
0
0
,
0
1
0
,
0
0
1

Transform:

𝐩 →
 − 𝐮 −
− 𝐯 −
− 𝐰 −

(𝐩 − 𝐜)

General Camera

general camera

𝐲
𝐱

𝐳

𝐮

𝐫
𝐯

𝐜

Camera coordinate system 𝐮, 𝐫, 𝐯
Origin: 𝐜

Homogeneous:

𝐩 →

 − 𝐮 − |

− 𝐯 − −𝐜′

− 𝐰 − |
0 0 0 1

𝐩

𝐜′ =
 − 𝐮 −
− 𝐯 −
− 𝐰 −

𝐜

Summary

Projection (screen coord’s)

𝐏𝑠 =

ℎ/2 0 0 𝑤/2
0 −ℎ/2 0 ℎ/2
0 0 1 0
0 0 0 1

 ̇

1

tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0 1 0
0 0 0 1

 ̇

1 0 0 0
0 1 0 0
0 0 1 −1
0 0 1 0

Add View Matrix

𝐏𝑠 ⋅

 − 𝐮 − |

− 𝐯 − −𝐜′

− 𝐰 − |
0 0 0 1

Benefit:

Still only one overall
4×4 matrix

to multiply with!

(𝑓 = 1)

Local Illumination

Smooth Shading Simple Shadows Global Illumination

3D Rendering Steps

Visibility Perspective

Geometric Model

core topics

important

CORE

basic topics

study completely

BASIC

Visibility Algorithms

Two Rendering Pipelines

Rasterization

 Project all triangles to the screen

 Rasterize them (convert to pixels)

 Determine visibility

 Apply shading (compute color)

Raytracing

 Iterate over all pixels

 Determine visible triangle

 Compute shading, color pixel

Triangle / Polygon Rasterization

After Perspective
Projection

Observations

Straight lines
remain straight!

Triangles mapped
to triangles

Polygons
to polyogns

Rasterization

3D Scene

Projection Visibility Rasterization

Visiblity

• preprocessing

or

• during rasterization

Raytracing

3D Scene

Comparison

Rasterization

FOR (each triangle) {

 compute pixels covered
(“fragments”)

 FOR (all fragments) {

 fragment visible?

 IF (visible) {

 shade fragment

 write color

 }

 }

}

Raytracing

FOR (each pixel) {

 compute visible triangle

 IF (found) {

 shade fragment

 write color

 }

}

Rasterization

Focus for now:

 Rasterization (Raytracing covered later)

Two main algorithms

 Painter’s algorithm (old)

 Simple version

 Correct version

 z-Buffer algorithm

 Dominant real-time method today

core topics

important

CORE

Painter’s Algorithm

Painter’s Algorithm

Painters Algorithm

 Sort primitives back-to-front

 Draw with overwrite

Drawbacks

 Slowish

 𝒪(𝑛 ⋅ log 𝑛) for 𝑛 primitives

 “Millions per second”

 Wrong

 Not guaranteed to always work

Counter Example

Correct Algorithm

 Need to cut primitives

 Several strategies

 Notable: BSP Algorithm in Quake

 Old graphics textbooks list many variants

 No need for us to go deeper

basic topics

study completely

BASIC

z-Buffer Algorithm

z-Buffer Algorithm

Algorithm

 Store depth value
for each pixel

 Initialize to MAX_FLOAT

 Rasterize all primitives

 Compute fragment depth & color

 Do not overwrite if fragment is
farer away than the one stored
the one in the buffer

color depth

Discussion: z-Buffer

Advantages

 Extremely simple

 Versatile – only primitive rasterization required

 Very fast

 GeForce 2 Ultra: 2GPixel /sec
(release year: 2000)

 GeForce 700 GTX Titan: 35 GPixel / sec
(release year: 2013)

Discussion: z-Buffer

Disadvantages

 Extra memory required

 This was a serious in obstacle back then...

 Invented 39 years ago (1974; Catmull / Straßer)

 Only pixel resolution

 Need painter’s algorithm for certain
vector graphics computations

 No transparency

 This is a real problem for 3D games / interactive media

 Often fall-back to sorting

 Solution: A-Buffer, but no hardware support

Smooth Shading Simple Shadows Global Illumination

3D Rendering Steps

Visibility Perspective

Geometric Model

Local Illumination

core topics

important

CORE

Shading Models

mirror

diffuse surface

Reflectance Models

glossy surface

Interaction with Surfaces

Local Shading Model

 Single point light source

 Shading model / material model

 Input: light vector 𝐥 = 𝐩𝐨𝐬𝑙𝑖𝑔ℎ𝑡 − 𝐩𝐨𝐬𝑜𝑏𝑗𝑒𝑐𝑡

 Input: view vector 𝐯 = 𝐩𝐨𝐬𝑐𝑎𝑚𝑒𝑟𝑎 − 𝐩𝐨𝐬𝑜𝑏𝑗𝑒𝑐𝑡

 Input: surface normal 𝐧 (orthogonal to surface)

 Output: color (RGB)

Viewer

Light

object surface

𝐯 𝐥 𝐧

Formalization: BRDF

Interaction with Surfaces

General scenario

 Multiple light sources?

 Light is linear

 Multiple light sources: add up contributions

 Double light strength ⇒ double light output

Formalization: BRDF

Viewer

Light

object surface

𝐯 𝐥 𝐧

Remark

Simplify notation

 Define component-wise vector product

𝐱 ∘ 𝐲 =

𝑥1
𝑥2
𝑥3
∘

𝑦1
𝑦2
𝑦3
≔

𝑥1 ⋅ 𝑦1
𝑥2 ⋅ 𝑦2
𝑥3 ⋅ 𝑦3

 No fixed convention in literature

 The symbol “∘” only used in these lecture slides!

Remark

Lighting Calculations

 Need to perform calculations for 𝑟, 𝑔, 𝑏-channels

 Often:
𝑜𝑢𝑡𝑝𝑢𝑡𝑟 = 𝑙𝑖𝑔ℎ𝑡𝑟 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑟 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐯, 𝐥, 𝐧
𝑜𝑢𝑡𝑝𝑢𝑡𝑔 = 𝑙𝑖𝑔ℎ𝑡𝑔 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑔 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐯, 𝐥, 𝐧)

𝑜𝑢𝑡𝑝𝑢𝑡𝑏 = 𝑙𝑖𝑔ℎ𝑡𝑏 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑏 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐯, 𝐥, 𝐧)

 Shorter
 𝐨𝐮𝐭𝐩𝐮𝐭 =
𝐥𝐢𝐠𝐡𝐭_𝐬𝐭𝐫𝐞𝐧𝐠𝐭𝐡 ∘ 𝐦𝐚𝐭𝐞𝐫𝐢𝐚𝐥 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐯, 𝐥, 𝐧

Area Light Sources

Area Light Sources

 Integrate over area

 In practice often:

 Sample with many point-light sources

 Add-up contributions

𝐥

𝐯

𝐧

𝑛 light sources
1

𝑛
 intensity

Shading Effects

Shading effects

 Diffuse reflection

 “Ambient reflection”

 Perfect mirrors

 Glossy reflection

 Phong / Blinn-Phong

 (Cook Torrance)

 Transparency & refraction

Shading Effects

Shading effects

 Diffuse reflection

 “Ambient reflection”

 Perfect mirrors

 Glossy reflection

 Phong / Blinn-Phong

 (Cook Torrance)

 Transparency & refraction

Diffuse (“Lambertian”) Surfaces

Equation
𝑐 ~ cos 𝜃

 Less light received at flat angles

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃

𝜃
𝐧

𝜃

𝐧 𝐧
surface
normal

light color
surface color

𝑐 – intensity (scalar)

𝐜 – color (RGB, ℝ3)

𝐜𝑟 – surface color (RGB)

𝐜𝑙 – light color (RGB)

(set to zero if negative)

Diffuse (“Lambertian”) Surfaces

Equation
𝑐 ~ cos 𝜃

 Less light received at flat angles

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃 ⋅

𝜃
𝐧

𝜃

𝐧 𝐧
surface
normal

light color
surface color

𝑐 – intensity (scalar)

𝐜 – color (RGB, ℝ3)

𝐜𝑟 – surface color (RGB)

𝐜𝑙 – light color (RGB)

Attenuation:
1

𝑑𝑖𝑠𝑡2

(point lights)

1

𝑑𝑖𝑠𝑡2

1

𝑑𝑖𝑠𝑡2

Diffuse Reflection

Diffuse Reflection

 Very rough surface microstructure

 Incoming light is scattered in all directions
uniformly

 “Diffuse” surface (material)

 “Lambertian” surface (material)

Surface Normal?

What is a surface normal?

 Tangent space:

 Plane approximation
at a point 𝐱 ∈ 𝒮

 Normal vector:

 Perpendicular to that plane

 Oriented surfaces:

 Pointing outwards
(by convention)

 Orientation defined only for
closed solids

point 𝐱

surface
normal
𝐧 𝐱 ∈ ℝ3

tangent
space

𝒮

Triangles

Single Triangle

 Parametric equation

𝐩1 + 𝜆 𝐩2 − 𝐩1 + 𝜇 𝐩3 − 𝐩1 |𝜆, 𝜇 ∈ ℝ

 Tangent space: the plane itself

 Normal vector
𝐩2 − 𝐩1 × 𝐩3 − 𝐩1

 Orientation convention:
𝐩1, 𝐩2, 𝐩3 oriented counter-clockwise

 Length: Any positive multiple works (often 𝐧 = 1)

𝐩1

𝐩2

𝐩3

𝐧

Triangle Meshes

Smooth Triangle Meshes

 Store three different “vertex normals”

 E.g., from original surface (if known)

 Heuristic:
Average neighboring triangle normals

Lambertian Surfaces

Equation

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃
 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ 𝐧, 𝐥

𝜃
𝐧

𝜃

𝐧 𝐧
surface
normal

light direction
normal vector

𝐧
𝐥

(assuming: 𝐧 = 𝐥 = 1)

Lambertian Bunny

Face Normals Interpolated
Normals

Shading Effects

Shading effects

 Diffuse reflection

 “Ambient reflection”

 Perfect mirrors

 Glossy reflection

 Phong / Blinn-Phong

 (Cook Torrance)

 Transparency & refraction

“Ambient Reflection”

Problem

 Shadows are pure black

 Realistically, they should be gray

 Some light should bounce around...

 Solution: Add constant
𝐜 = 𝐜𝑎 ∘ 𝐜𝑎

 Not very realistic

 Need global light transport simulation
for realistic results

ambient light color
surface color

Ambient Bunny

Pure Lambertian Mixed with
Ambient Light

Shading Effects

Shading effects

 Diffuse reflection

 “Ambient reflection”

 Perfect mirrors

 Glossy reflection

 Phong / Blinn-Phong

 (Cook Torrance)

 Transparency & refraction

Perfect Reflection

Perfect Reflection

 Rays are perfectly
reflected on surface

 Reflection about
surface normal

 𝐫 = 2 𝐧, 𝐥 ⋅ 𝐧 − 𝐥 + 𝐥,
𝐧 = 1

 𝐥 arbitrary

𝐧

𝐥 𝐫

Silver Bunny

Perfect Reflection

 Difficult to compute

 Need to match camera
and light emitter

 More later:

 Recursive raytracing

 Right image:
Environment mapping

Reflective Bunny
(Interpolated Normals)

Shading Effects

Shading effects

 Diffuse reflection

 “Ambient reflection”

 Perfect mirrors

 Glossy reflection

 Phong / Blinn-Phong

 (Cook Torrance)

 Transparency & refraction

Glossy Reflection

Glossy Reflection

 Imperfect mirror

 Semi-rough surface

 Various models

Phong Illumination Model

Traditional Model: Phong Model

 Physically incorrect
(e.g.: energy conservation not guaranteed)

 But “looks ok”

 Always looks like plastic

 On the other hand, our world is full of plastic...

0

0,2

0,4

0,6

0,8

1

1,2

-90 -60 -30 0 30 60 90

p=1 p=2 p=5 p=10 p=50 p=100

How does it work?

Phong Model:

 “Specular” (glossy) part:

𝐜 = 𝐜𝑝 ∘ 𝐜𝑙 ⋅
𝐫

𝐫
,
𝐯

𝐯

𝑝

 Ambient part:
𝐜 = 𝐜𝑟 ∘ 𝐜𝑎

 Diffuse part:
𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ 𝐧, 𝐥

 Add all terms together

cos ∠𝐫,𝐯

𝐥

𝐯
𝐫

(high-) light
color

Phong Exponents

𝐧

Blinn-Phong

Blinn-Phong Model:

 “Specular” (glossy) part:

𝐜 = 𝐜𝑝 ∘ 𝐜𝑙 ⋅
𝐡

𝐡
,
𝐧

𝐧

𝑝

 Half-angle direction

𝐡 =
𝟏

𝟐

𝐥

𝐥
+
𝐯

𝐯

cos ∠𝐡,𝐧

𝐥

𝐯 𝐡
𝐧

 In the plane: ∠
𝐡

𝐡
,
𝐧

𝐧
=
1

2
∠
𝐫

𝐫
,
𝐯

𝐯

 Approximation in 3D

Phong+Diffuse+Ambient Bunny

Blinn-Phong Bunny Interpolated Normals

Phong+Diffuse+Ambient Bunny

Blinn-Phong Bunny Interpolated Normals

Cook-Torrance Model

Physically-Motivated Model

 D – Infinitesimal micro-facets

 Characterize by distribution

 Expected reflection (density)

 Gaussian, Beckmann,…

 Approximate occlusion term (G)

 F – Fresnel term

 Model: wave-optics

 Interaction of wave with surface under different angles

 Percentage reflection/refraction
𝐹 𝜃 = 𝑅0 + 1 − 𝑅0 1 − cos 𝜃

5

cos 𝜃 = 𝐡, 𝐯 𝑅0 ="ratio of refractive indices"

𝑐𝑠𝑝𝑒𝑐 =
𝐷 ⋅ 𝐺 ⋅ 𝐹

4 𝐯, 𝐧 𝐧, 𝐥

Artistic “Fresnel”
Reflection

unweighted reflection

Approx. Fresnel-Reflection

 𝐹 𝜃 ∼ 1 − cos 𝜃 𝑝

Exponent 4

Exponent 5

Better Models

Phong Bunny Cook-Torrance
Model

Shading Effects

Shading effects

 Diffuse reflection

 “Ambient reflection”

 Perfect mirrors

 Glossy reflection

 Phong / Blinn-Phong

 (Cook Torrance)

 Transparency & refraction

Transparency

Transparency

 “Alpha-blending”

 𝛼 = “opacity”

 Color + opacity: RGB𝛼

Blending

 Mix in 𝛼 of front color,
keep 1 − 𝛼 of back color

𝐜 = 𝛼 ⋅ 𝐜𝑓𝑟𝑜𝑛𝑡 + 1 − 𝛼 ⋅ 𝐜𝑏𝑎𝑐𝑘

 Not commutative! (order matters)

 unless monochrome

50% red,
50% green

0.0
1.0
0.0
0.5

1.0
0.0
0.0
0.5

back

front

Refraction: Snell’s Law

Refraction

 Materials of different
“index of refraction”

 Light rays change direction
at interfaces

Snell’s Law
sin 𝜃1
sin 𝜃2

=
𝑛2
𝑛1

 𝑛1, 𝑛2: indices of refraction

 vacuum: 1.0, air: 1.000293

 water: 1.33, glass: 1.45-1.6

𝐧

−𝐧

𝜃1

𝜃2

𝑛2
𝑛1

Refraction

Implementation

 Not a local shading model

 Global algorithms: mostly raytracing

 Various “fake” approximations for local shading

Refraction

Reflection

(raytraced)

Simple Shadows Global Illumination

3D Rendering Steps

Visibility Perspective

Geometric Model

Local Illumination

Smooth Shading

core topics

important

CORE

Shading Algorithms

Flat Shading

Flat Shading
constant color per triangle

Flat Shading

“Gouraud Shading” Algorithm
compute color at vertices, interpolate color for pixels

Flat Shading

“Phong Shading” Algorithm
interpolate normals for each pixel

Geometric Model

Perspective Visibility Local Illumination

Smooth Shading

3D Rendering Steps

Simple Shadows Global Illumination

Next: Advanced Rasterization

Geometric Model

Perspective Visibility Local Illumination

Smooth Shading

3D Rendering Steps

Simple Shadows Global Illumination

Global Illum: Keep this for later

