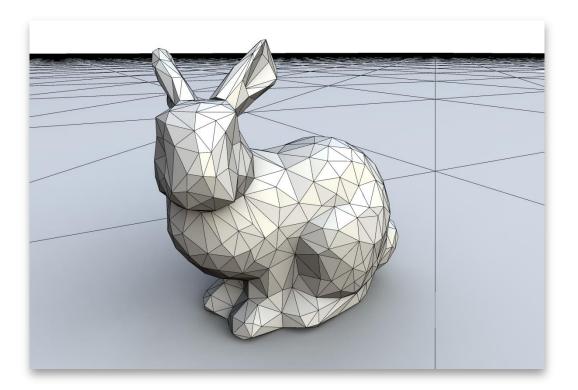
Graphics 2014



The Rasterization Pipeline

Projection, Visibility, & Shading

Universiteit Utrecht

[Faculty of Science] Information and Computing Sciences

Announcements

Practicals this week

Tuesday (today)

- Tue 9-11 (was held)
- Tue 13-15 canceled (programming contest)

Wednesday (tomorrow)

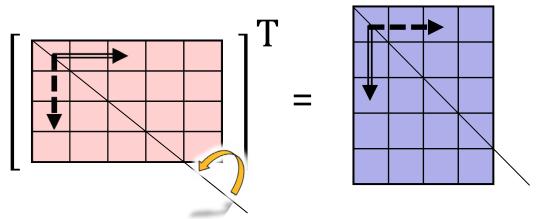
- Wed 15-17: additional practical slot
- We 17-19: additional practical slot

Thursday: no practicals

Addendum: Matrix Algebra



Transposition



Matrix Transposition

- Swap rows and columns
 - In other words: Flip around diagonal
- Formally:

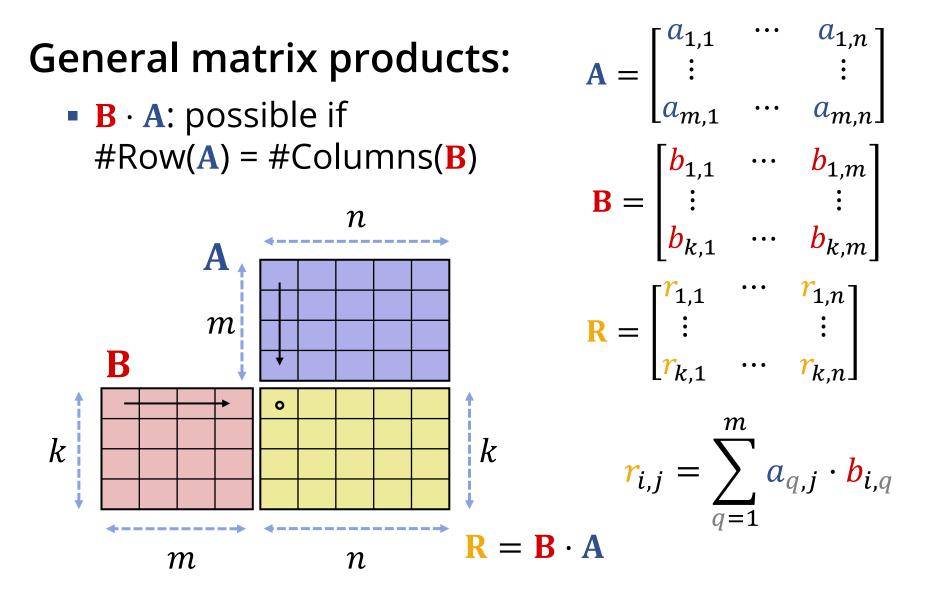
$$\begin{bmatrix} \ddots & \ddots & \ddots \\ \cdot & \cdot & \cdot \\ \cdot & a_{i,j} & \cdot \\ \cdot & \cdot & \cdot \\ \vdots & \cdot & \ddots \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \ddots & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & a_{j,i} & \cdot & \cdot \\ \vdots & \cdot & \cdot & \cdot & \ddots \end{bmatrix}$$

Orthogonal Matrices

Othogonal Matrices

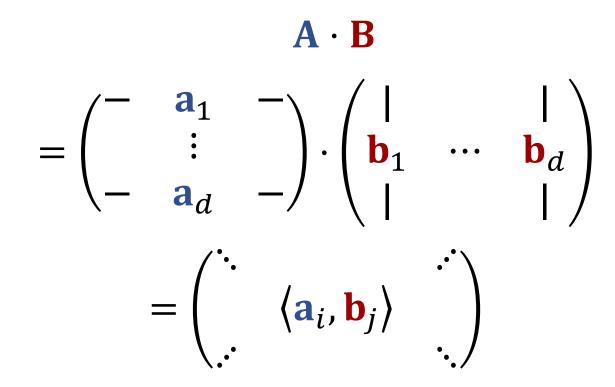
- (i.e., column vectors ortho*normal*) $\mathbf{M}^{T} = \mathbf{M}^{-1}$
- Proof: next three slides

Matrix Multiplication



Matrix Multiplication

Matrix Multiplication



Scalar products of rows and columns

Matrix Multiplication

Othogonal matrices: $\mathbf{A}^{\mathrm{T}} \cdot \mathbf{A}$ $= \begin{pmatrix} - & \mathbf{a}_1 & - \\ & \vdots & \\ - & \mathbf{a}_d & - \end{pmatrix} \cdot \begin{pmatrix} | & & | \\ \mathbf{a}_1 & \cdots & \mathbf{a}_d \\ | & & | \end{pmatrix}$ \mathbf{a}_2 $= \begin{pmatrix} \ddots & & \ddots \\ & \langle \mathbf{a}_i, \mathbf{a}_j \rangle & \vdots \\ & \ddots & \vdots \\ & & \ddots & \vdots \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \cdots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ & & & 1 \end{pmatrix} = \mathbf{I}$

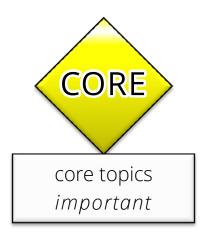
Transposition Rules

Transposition

- Multiplication:
- Inversion:
- Inverse-transp.:
- Othogonality:

- $(\mathbf{A} \cdot \mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} \cdot \mathbf{A}^{\mathrm{T}}$
- $(\mathbf{A} \cdot \mathbf{B})^{-1} = \mathbf{B}^{-1} \cdot \mathbf{A}^{-1}$
- $\left(\mathbf{A}^{\mathrm{T}}\right)^{-1} = \left(\mathbf{A}^{-1}\right)^{\mathrm{T}}$
- $[\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{-1}] \Leftrightarrow [\mathbf{A} \text{ is orthogonal}]$

Homogeneous Coordinates (short version)



Problem

Translations are not linear

- $\mathbf{x} \rightarrow \mathbf{M}\mathbf{x}$ cannot encode translations
- Proof: Origin cannot be moved:

$$\mathbf{M} \cdot \mathbf{0} = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Homogeneous Coordinates

Solution: Just add a constant one

- Increase dimension $\mathbb{R}^d \to \mathbb{R}^{d+1}$
- Last entry = 1 in vectors

"Cheap Trick", "Evil Hack"

$$\mathbf{M}' \cdot \mathbf{x} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & t_1 \\ m_{21} & m_{22} & m_{23} & t_2 \\ m_{31} & m_{32} & m_{33} & t_3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} \ddots & \ddots & | \\ \mathbf{M} & \mathbf{t} \\ \vdots & \ddots & | \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} | \\ \mathbf{x} \\ | \\ 1 \end{pmatrix} = \begin{pmatrix} | \\ \mathbf{Mx + t} \\ | \\ 1 \end{pmatrix}$$

Homogeneous Coordinates

General case

$$\mathbf{M} \cdot \mathbf{x} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ z' \\ W' \end{pmatrix}$$

- w' might be different from 1
- Convention: Divide by w-coord. before using

Result:
$$\begin{pmatrix} x'/w' \\ y'/w' \\ z'/w' \\ 1 \end{pmatrix}$$

Homogeneous Coordinates

General case

$$\mathbf{M} \cdot \mathbf{x} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} \equiv \begin{pmatrix} y_1 / y_4 \\ y_2 / y_4 \\ y_3 / y_4 \\ 1 \end{pmatrix}$$

Can express divisions by common denominator

 $y_4 = m_{41}x_1 + m_{42}x_2 + m_{43}x_3 + m_{44}x_4$

Rules:

- Before using as 3D point, divide by last (4th) entry
- No normalization required during subsequent transformations (matrix-mult.)

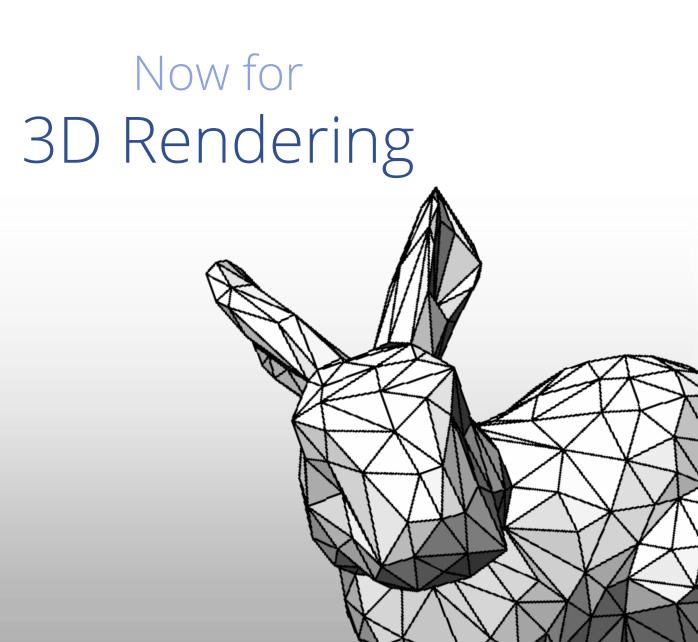
The Full Story?

Projective Geometry

- Not just an evil hack
- Deep & interesting theoretical background
- More on this later

For simplicity

- We'll treat it as a computational trick for now
 - Focus on the graphics application
- Remember for now:
 - We can build "4D Translation matrices" for 3D+1 points
 - We can "divide" by a common linear factor



3D Rendering Overview

3D Computer Graphics

INFODDM

Driedimensionaal modelleren

INFOMCANIM

Computer Animation

INFOMGP Game Physics

Our Main Topic

(continued: INFMAGR,

Advanced Graphics)

Three main aspects

- Modeling
 - Describe 3D geometry mathematically
 - From machine parts (e.g., CAD)
 - To natural phenomena (e.g., fractals)
- Animation
 - Set scenes into motion
 - Simple: Camera fly-through
 - Complex: Fluid simulation, human motion

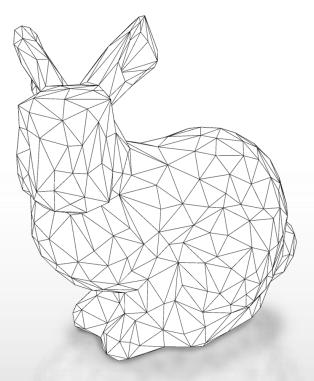
Rendering

- Convert geometry into images
- Our Focus right now

3D Rendering

Assumption

- 3D Model is given
- Triangle mesh (for simplicity)

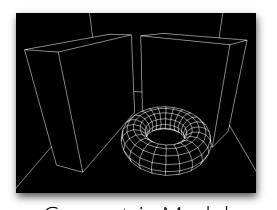


How do we get it to the screen?

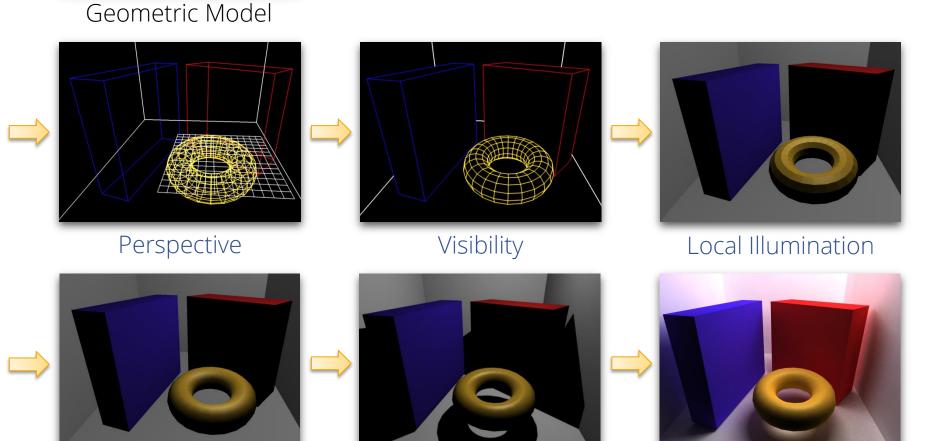
Agenda

Upcoming Topics

- Modeling: mesh representation
- Physics: Perspective projection
- Rendering: Two main rendering methods
 - Rasterization
 - Perspective projection
 - Rasterization
 - Visibility
 - Shading
 - Programmable shaders / GPUs
 - Raytracing



3D Rendering Steps

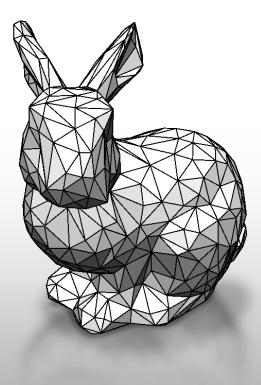


Smooth Shading

Simple Shadows

Global Illumination

Modeling Mesh Representation



Modeling Shapes

Primitives

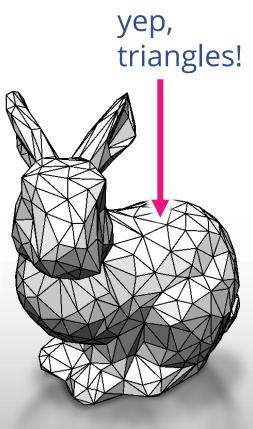
- Elementary geometric building blocks
- Easy to handle directly

Complex models

- Sets of primitives
- Approximate shapes with primitives

Most-frequently-used

Triangles!



Simple Triangle List

Vertex list

Vector3D vertices[n];

(1)
$$\mathbf{p}_1 = (x_1, y_1, z_1)$$

(2) $\mathbf{p}_2 = (x_2, y_2, z_2)$

(3)
$$\mathbf{p}_3 = (x_3, y_3, z_3)$$

(4) $\mathbf{p}_4 = (x_4, y_4, z_4)$

(n)
$$\mathbf{p}_n = (x_n, y_n, z_n)$$

Triangle list (int[3]) triangles[m];

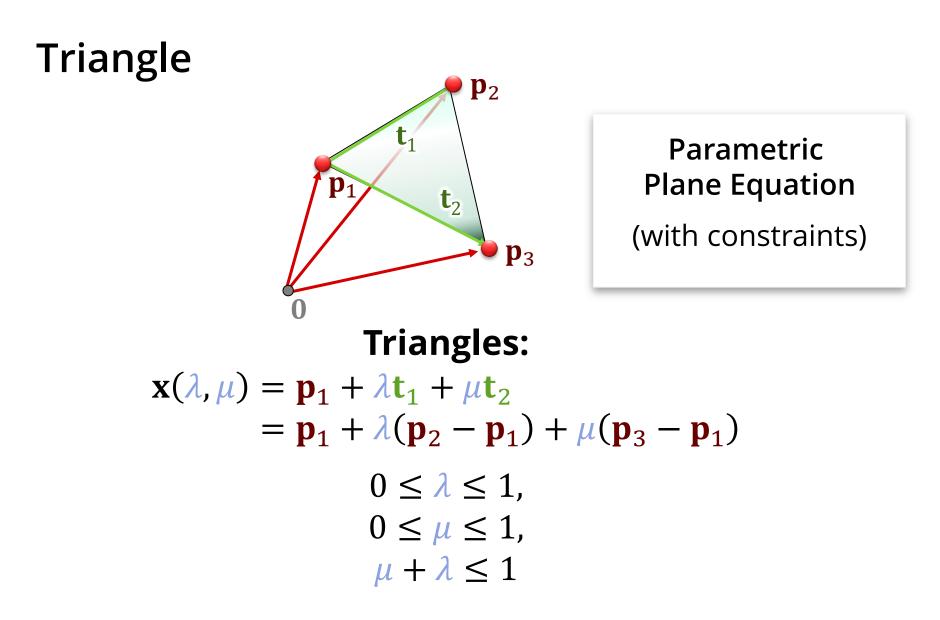
1)
$$\mathbf{t}_1 = (i_1, j_1, k_1)$$

2)
$$\mathbf{t}_2 = (i_2, j_2, k_2)$$

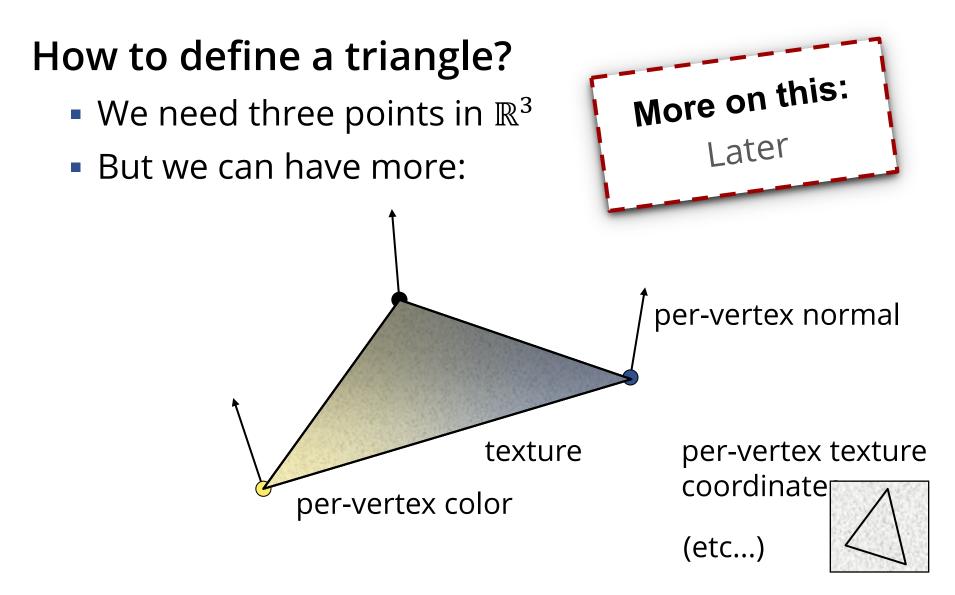
(3)
$$\mathbf{t}_3 = (i_3, j_3, k_3)$$

(m) $\mathbf{t}_{\mathrm{m}} = (i_m, j_{r_{\mathrm{m}}}, k_m)$

Modeling a Triangle



Attributes



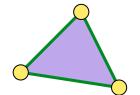
Complete Data Structures

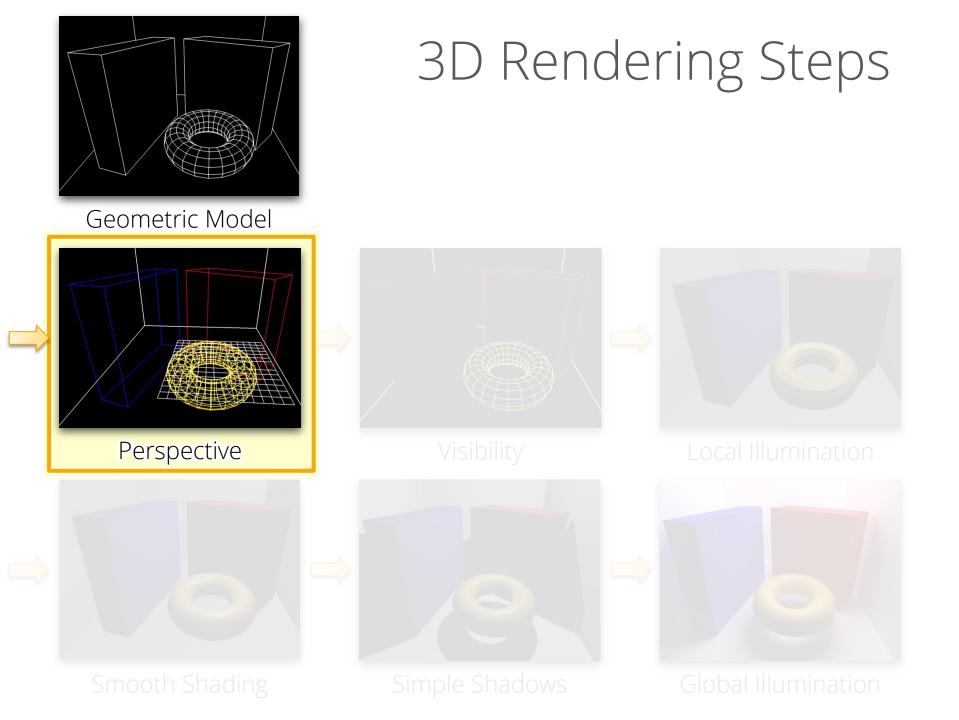
Multiple Arrays: Vertices, Triangles, Edges

v₁: (posx posy posz), attrib₁, ..., attrib_n v_N: (posx posy posz), attrib₁, ..., attrib_n

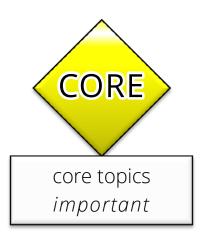
e₁: (index₁ index₂), attrib₁, ..., attrib_k e_K : (index₁ index₂), attrib₁, ..., attrib_k

t₁: (idx₁ idx₂ idx₃), attrib₁, ..., attrib_m t_M: (idx₁ idx₂ idx₃), attrib₁, ..., attrib_m edges: optional

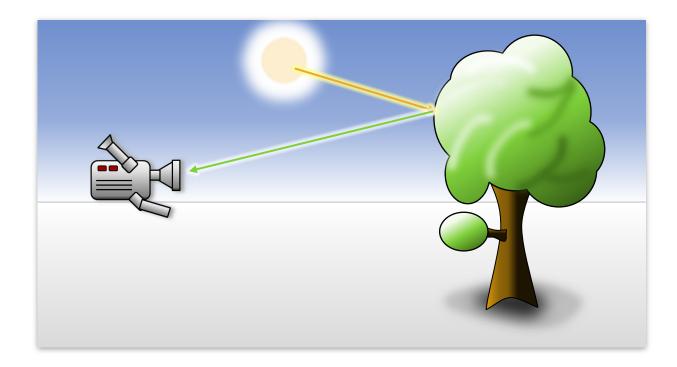




Physics Ray Optics & Color



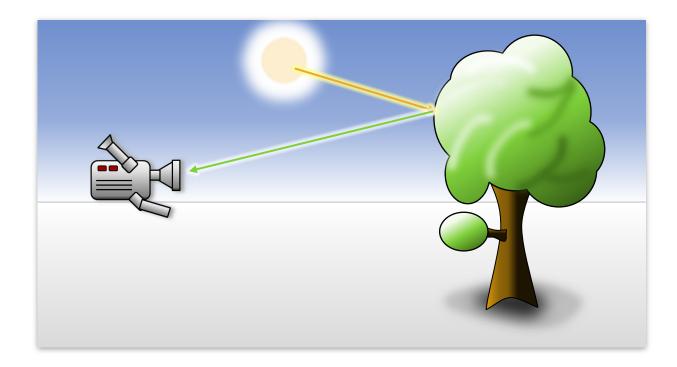
Ray Optics



Geometric ray model

Light travels along rays

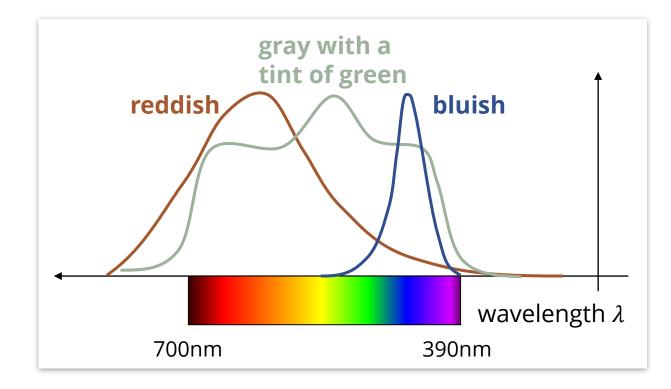
Ray Optics



Geometric ray model

Rays have "intensity" and "color"

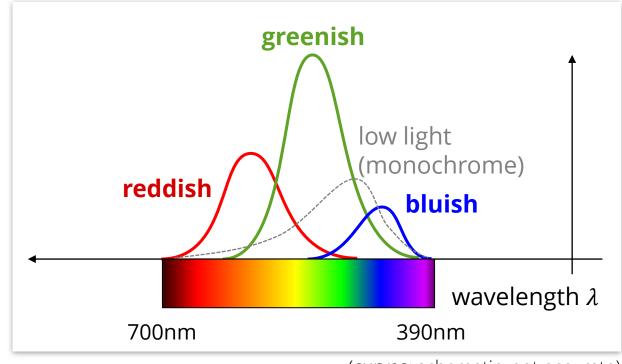
Ray Optics



Color spectrum

- Continuous spectrum
- Intensity for each wavelength

Human Vision



(curves: schematic, not accurate)

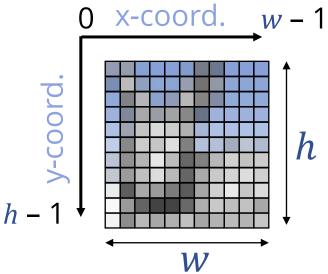
Color spectrum

- Two types of receptive cells (color/low-light)
- Three types of color cells

RGB Model

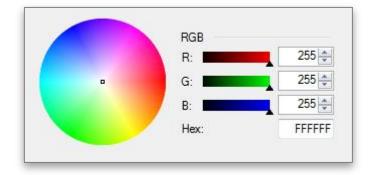
Bitmap (Pixel Display)

- Screen: $w \cdot h$ discrete pixels
 - Origin: usually upper left
- Varying color per pixel

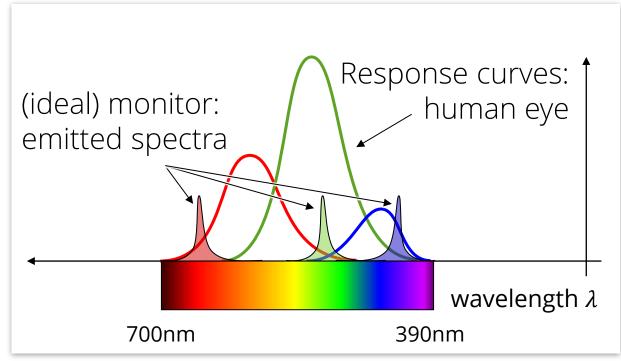


RGB Model

- Every pixel can emit red, green, blue light
- Intensity range:
 - Usually: bytes 0...255
 - 0 = dark
 - 255 = maximum brightness



Human Vision

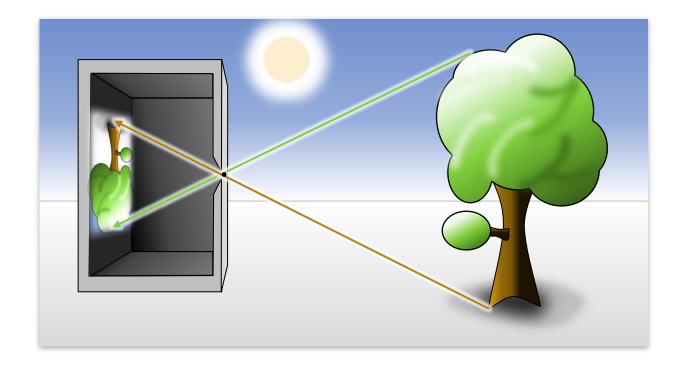


(curves: schematic, not accurate)

Create color impressions

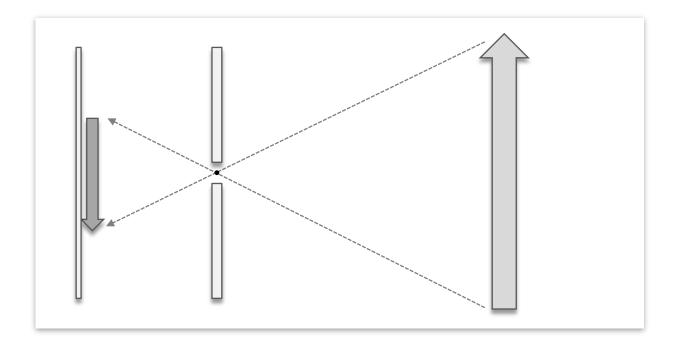
- Basis for three-dimensional color space
- Wide spacing, narrow bands: purer colors
 - Otherwise: washed out colors

Physics Perspective Projection



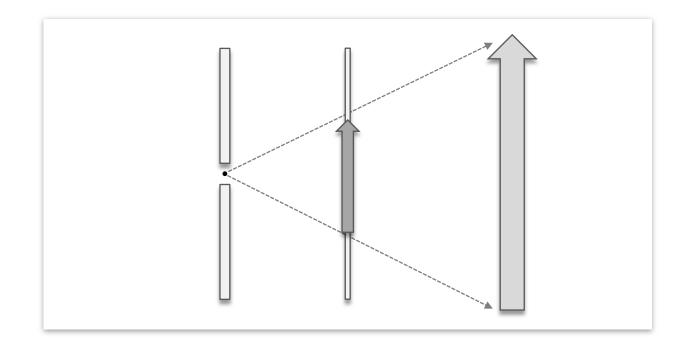
Pinhole camera

- Create image by selecting rays of specific angles
- Low efficiency (small holes for sharp images)

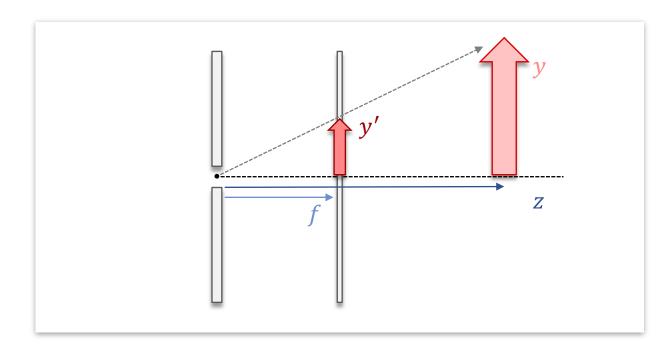


Pinhole camera

- Create image by selecting rays of specific angles
- Low efficiency (small holes for sharp images)

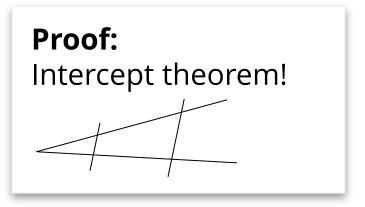


Central Projection

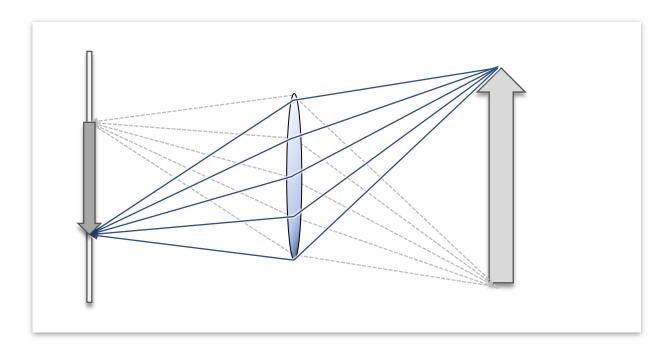


Central projection

$$x' = f \frac{x}{z}$$
$$y' = f \frac{y}{z}$$

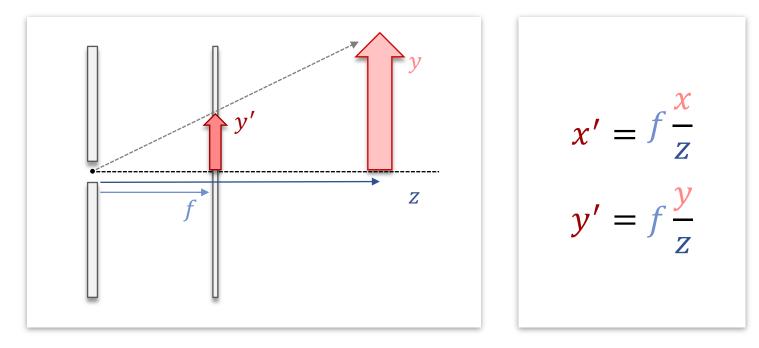


(Actual Camera)



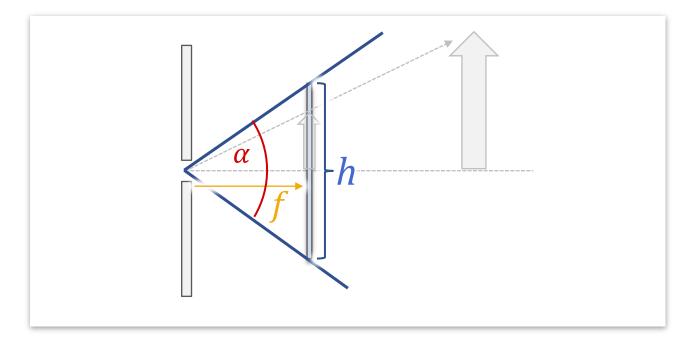
Camera with Lens

- Higher efficiency (bundles many rays)
- Finite Depth of field
- We will consider pinhole cameras only.



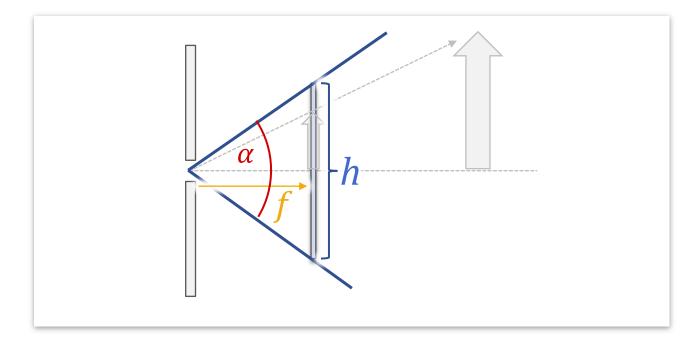
Undetermined degree of freedom

- Focal length vs. image size
- Source of a lot of confusion!



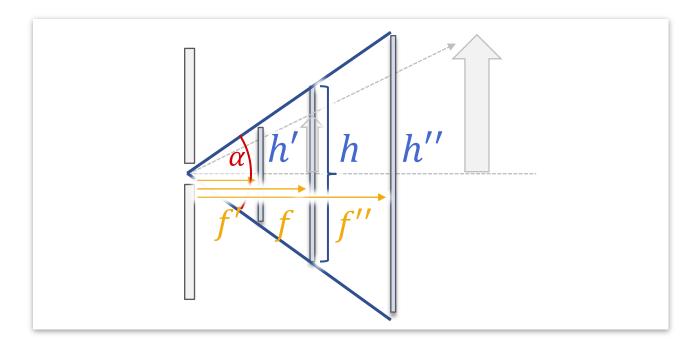
Parameters

- *h* size of the screen (pixels, cm, ± 1.0 ,...)
- *f* focal length (classical photography)
- Meaningful parameter: α viewing angle



Relation:

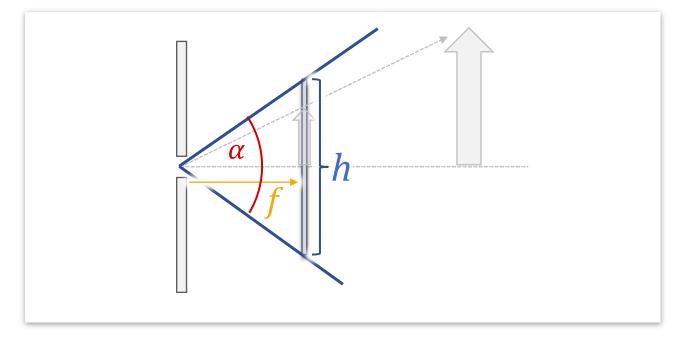
 $\tan\frac{\alpha}{2} = \frac{h}{2f}$



Invariance

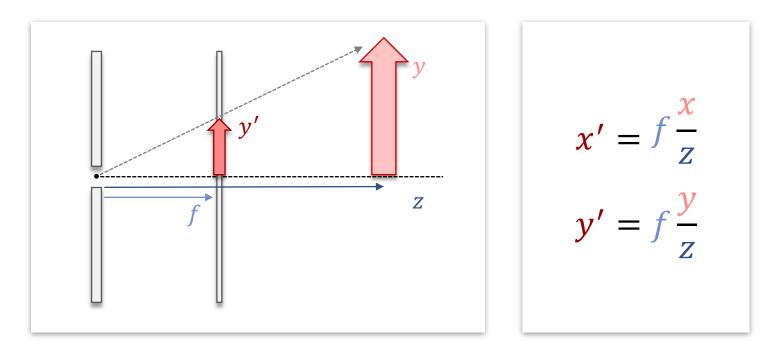
$$\tan \frac{\alpha}{2} = \frac{h}{2f} = \frac{h'}{2f'} = \frac{h''}{2f''}$$

Scaling *h* and *f* by a common factor: *no change*



Typical choices (vertical angles)

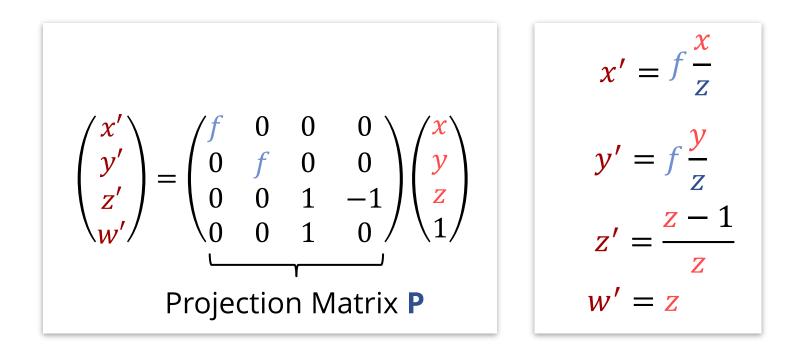
- "Normal" perspective: $\alpha \approx 30^{\circ}$ ("50mm" lens: 27°)
- Tele photography: $\alpha \approx 5^{\circ} 20^{\circ}$ (275–70mm)
- Wide angle lens: $\alpha \approx 45^{\circ} 90^{\circ}$ (28–12mm)



Our camera so far:

- Focus point: origin
- View direction: z-axis
- General position/orientation?

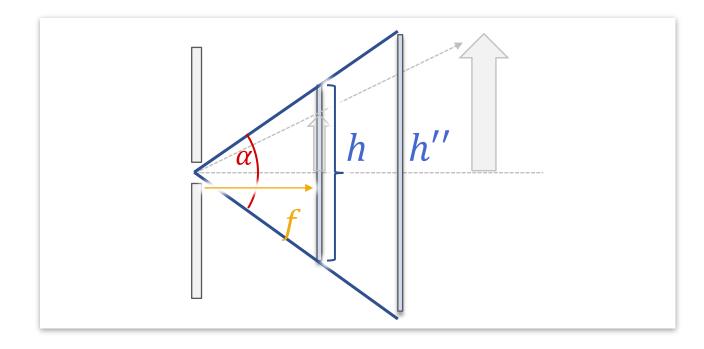
Homogeneous Coordinates



Write in homogeneous coordinates

Third row is arbitrary (for now), not used.

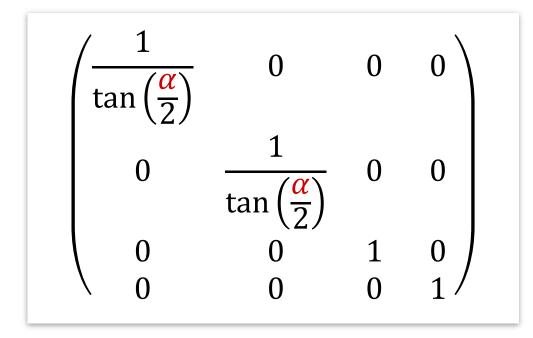
View transform

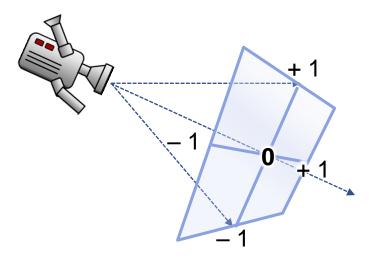


Reminder:

 $\tan\frac{\alpha}{2} = \frac{h}{2f}$

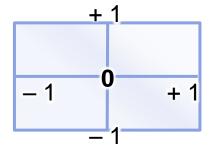
To Screen Coordinates





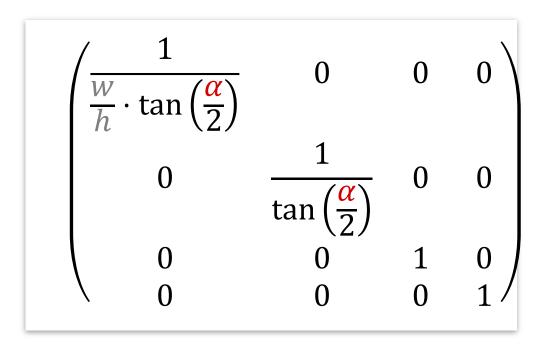
Scale to unit screen coordinates

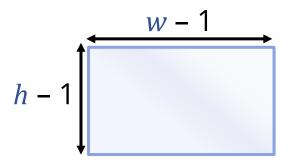
- We set f to 1 in previous matrix
- Third row is arbitrary (for now), not used.



normalized screen coordinates

Aspect Ratio

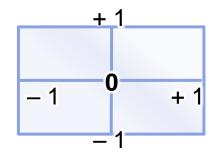




non-square screen

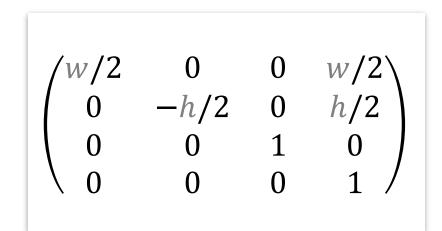
Non-square screens?

- Screen: w × h pixels
- Aspect ratio $\frac{w}{h}$
- Different horizontal angle!



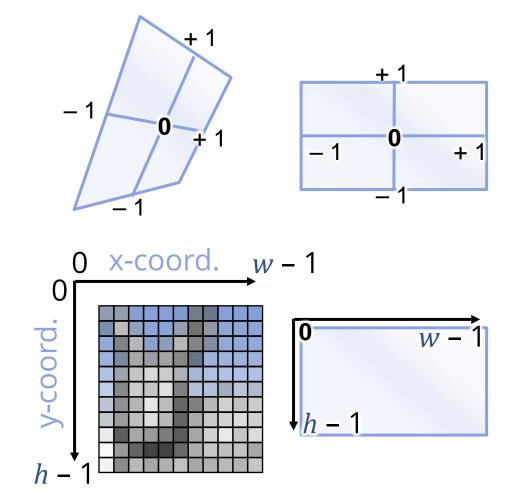
normalized screen coordinates

To Screen Coordinates

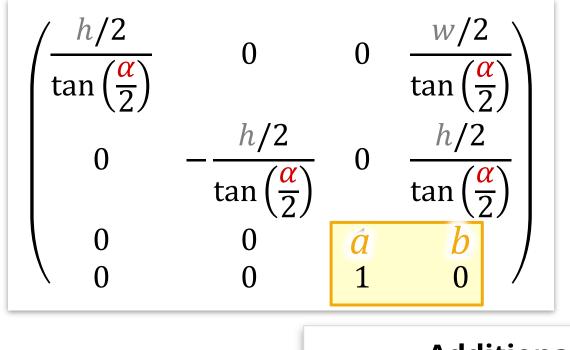


Scale to pixels

 Third row is arbitrary (for now), not used.



To Screen Coordinates



Overall

Multiple both

$$a = \frac{z_{far} + z_{near}}{z_{near} - z_{far}}$$
$$b = \frac{2 \cdot z_{near} \cdot z_{far}}{z_{near} - z_{far}}$$

Additionally: Also scale + shift such that $z' = \frac{z-1}{z}$ are in value [0..1] for inputs $z \in [z_{near}, z_{far}]$

Summary

Projection matrix

$$\mathbf{P} = \begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Projection & conversion to screen coords

$$\mathbf{P}_{s} = \begin{pmatrix} w/2 & 0 & 0 & w/2 \\ 0 & -h/2 & 0 & h/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{w} \tan\left(\frac{\alpha}{2}\right) & 0 & 0 & 0 \\ 0 & \frac{1}{\tan\left(\frac{\alpha}{2}\right)} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

scaling to pixels, upper left origin screen coord's projection matrix

Alternative (1)

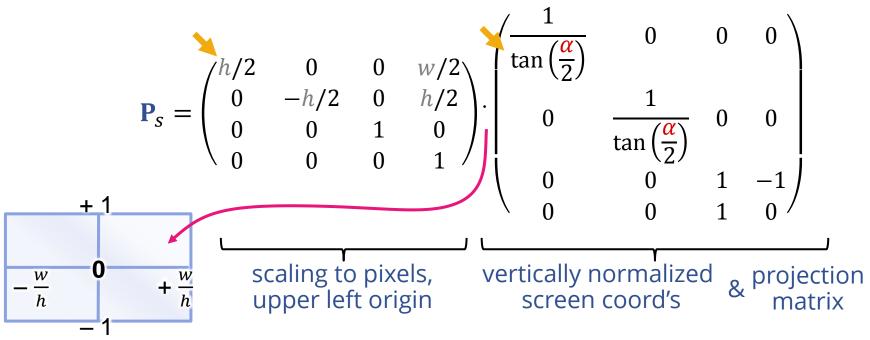
Alternative formulation: Only two steps

$$\mathbf{P}_{s} = \begin{pmatrix} w/2 & 0 & 0 & w/2 \\ 0 & -h/2 & 0 & h/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{w} \tan\left(\frac{\alpha}{2}\right) & 0 & 0 & 0 \\ 0 & \frac{1}{\tan\left(\frac{\alpha}{2}\right)} & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
scaling to pixels, upper left origin
normalized screen coord's projection matrix

- Different scale factors (not a focal length)
- Use two different scale factors $f_x = \frac{1}{\frac{w}{h} \tan(\frac{\alpha}{2})}, f_y = \frac{1}{\tan(\frac{\alpha}{2})}$

Alternative (2)

Another Alternative Formulation



- Constant focal length $f = \frac{1}{\tan(\frac{\alpha}{2})}$
- Intermediate result not normalized to [-1,1]²

Alternatives

All three derivations lead to the *same result*

- Intermediate results not used \Rightarrow all equivalent
- Product of the 2/3 matrices is the same

Intermediate results being used:

- Some graphics APIs (e.g., OpenGL) do use normalized device coordinates as *intermediate*
 - OpenGL for pixels to appear on screen:

$$x' \in [-1,1]$$

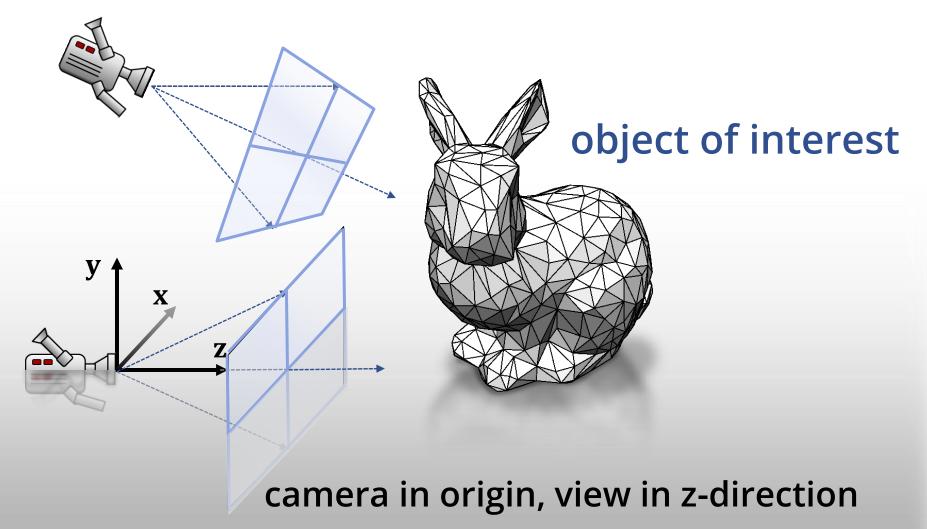
$$y' \in [-1,1]$$

$$z' \in [0,1)$$

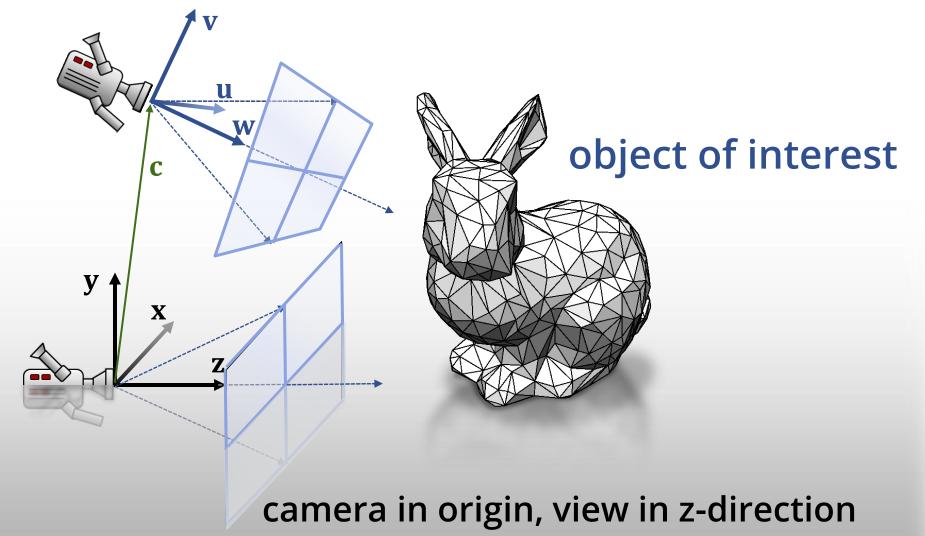
$$w \in [z_{near}, z_{far})$$

coupled, so this
is the same criterion

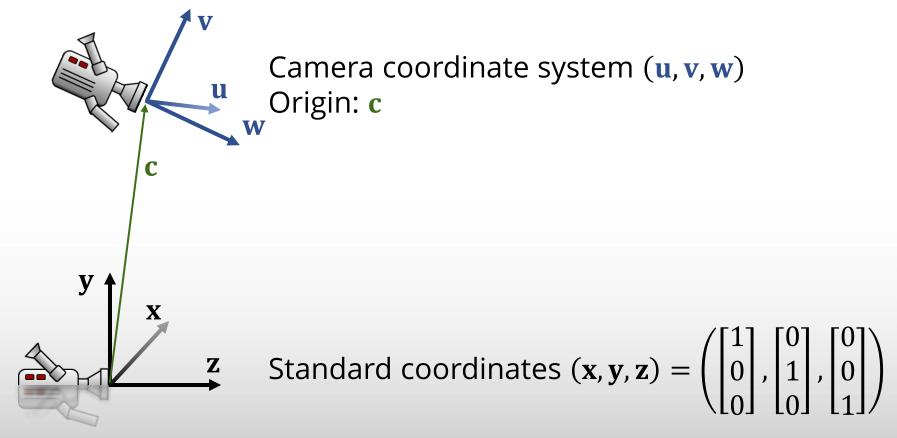
general camera



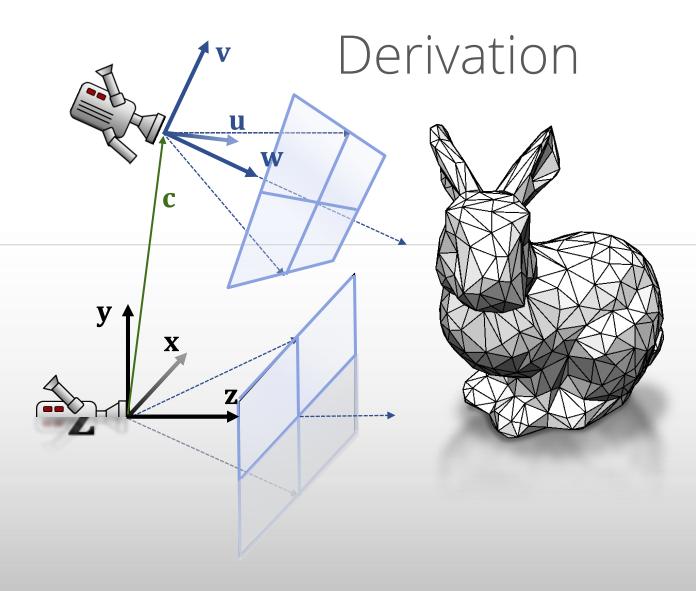
general camera



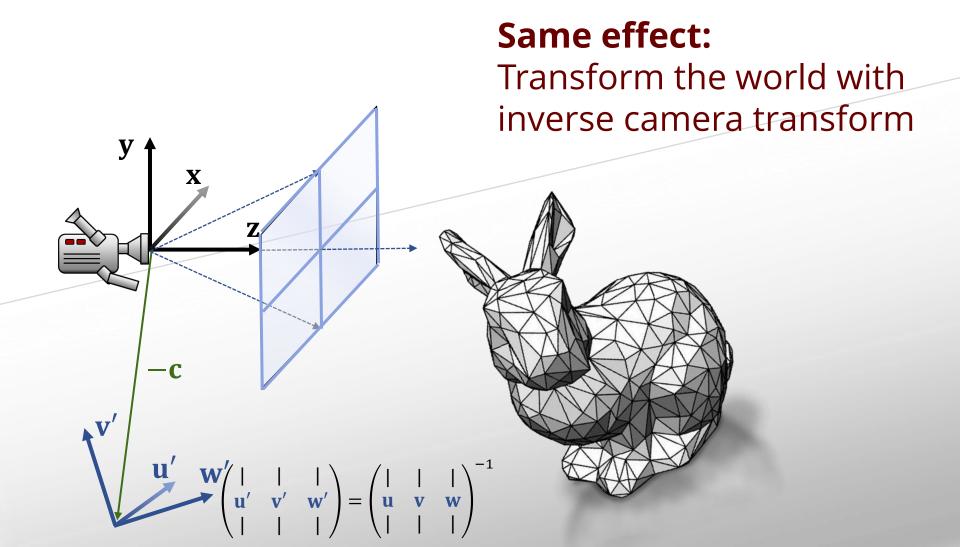
general camera



camera in origin, view: z-direction

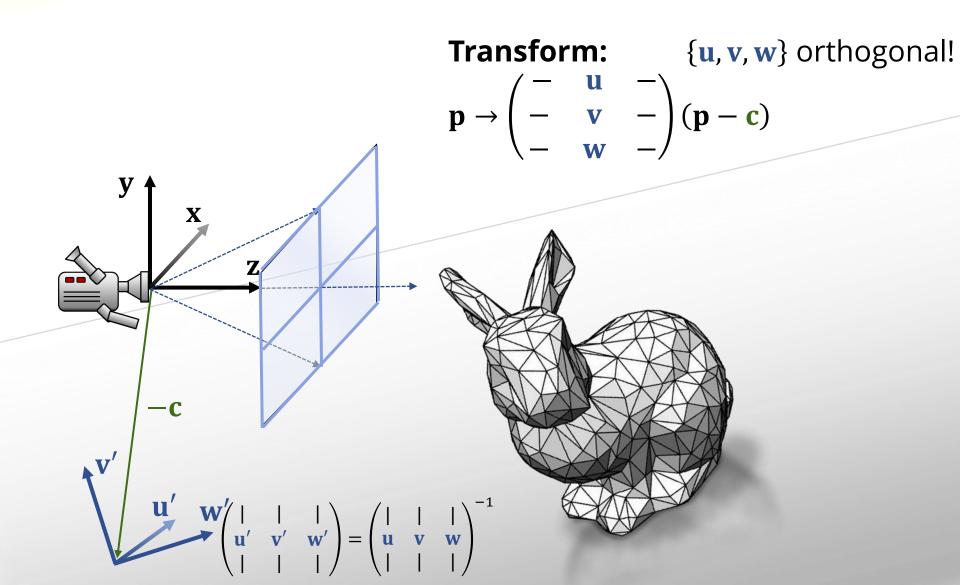


Derivation

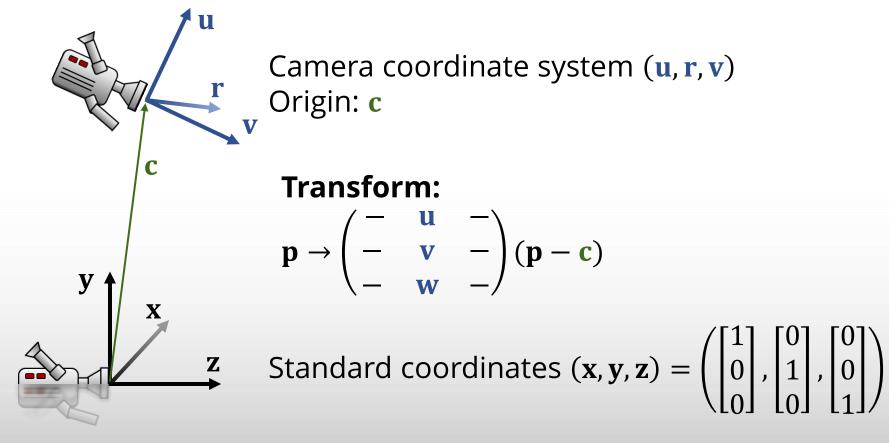


Derivation **Transform:** $\mathbf{p} \rightarrow \begin{pmatrix} | & | & | \\ \mathbf{u} & \mathbf{v} & \mathbf{w} \\ | & | & | \end{pmatrix}^{-1} (\mathbf{p} - \mathbf{c})$ X Ζ -C V u' $\mathbf{W} \begin{pmatrix} | & | & | \\ \mathbf{u}' & \mathbf{v}' & \mathbf{w}' \\ | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | \\ \mathbf{u} & \mathbf{v} & \mathbf{w} \\ | & | & | \end{pmatrix}^{-1}$

Derivation

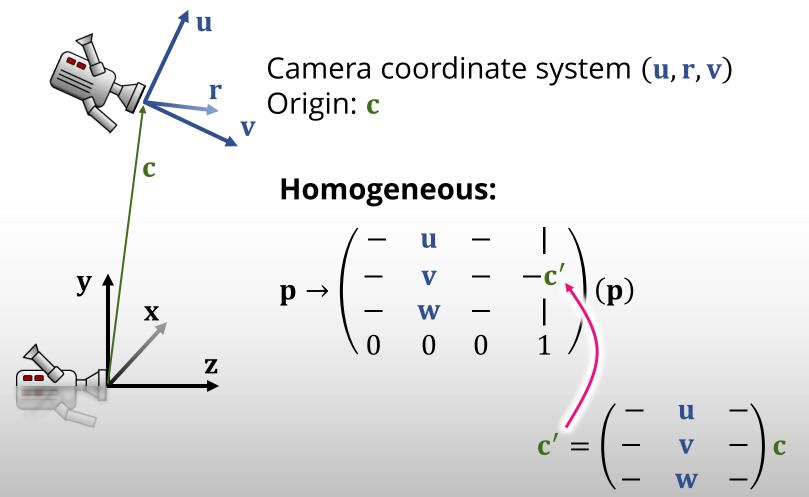


general camera



camera in origin, view: z-direction

general camera



Summary

Projection (screen coord's)

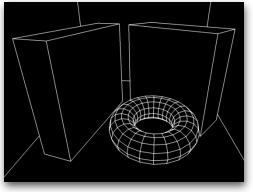
$$\mathbf{P}_{s} = \begin{pmatrix} h/2 & 0 & 0 & w/2 \\ 0 & -h/2 & 0 & h/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\tan\left(\frac{\alpha}{2}\right)} & 0 & 0 & 0 \\ 0 & \frac{1}{\tan\left(\frac{\alpha}{2}\right)} & 0 & 0 \\ 0 & \frac{1}{\tan\left(\frac{\alpha}{2}\right)} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Add View Matrix

Benefit:

Still only one overall 4×4 matrix to multiply with!

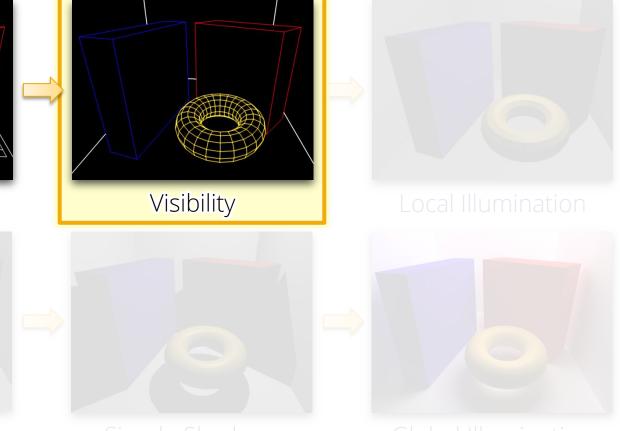
$$\mathbf{P}_{s} \cdot \left(\begin{matrix} - & \mathbf{u} & - & | \\ - & \mathbf{v} & - & -\mathbf{c'} \\ - & \mathbf{w} & - & | \\ 0 & 0 & 0 & 1 \end{matrix} \right)$$



Geometric Model

Perspective

3D Rendering Steps

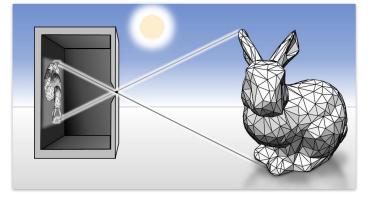


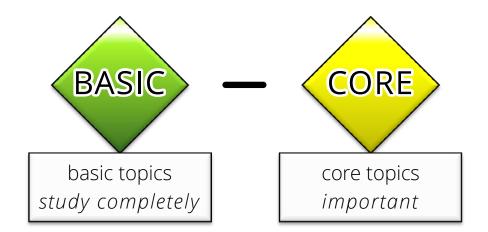
Simple Shadows

Global Illumination

Smooth Shading

Visibility Algorithms





Two Rendering Pipelines

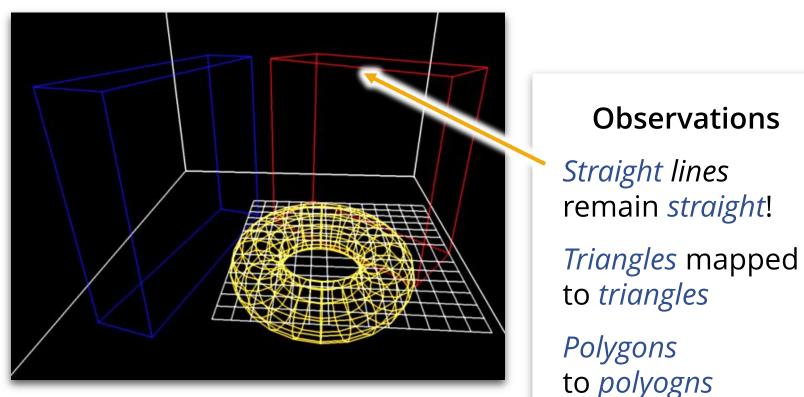
Rasterization

- Project all triangles to the screen
- Rasterize them (convert to pixels)
- Determine visibility
- Apply shading (compute color)

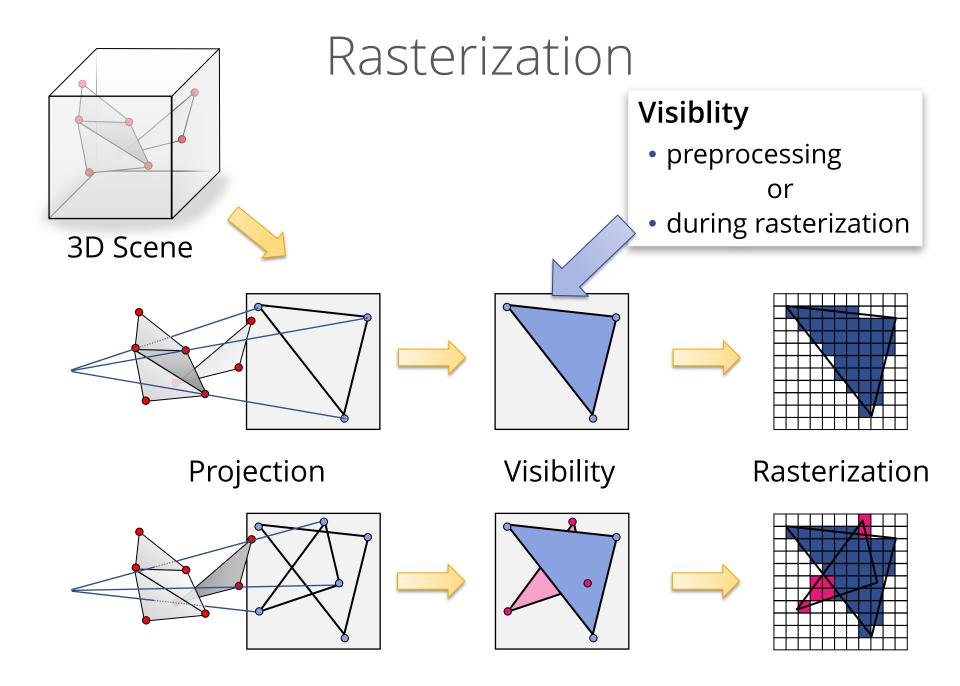
Raytracing

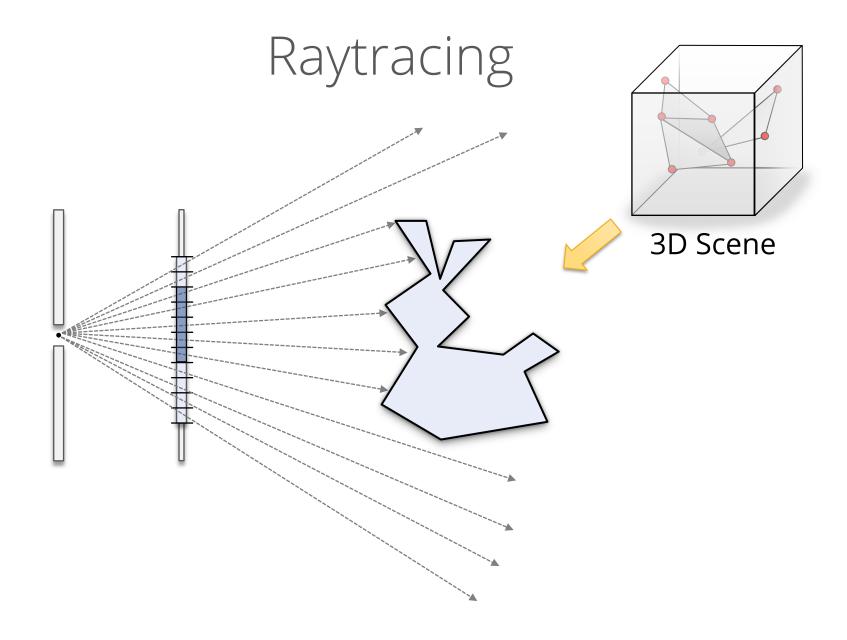
- Iterate over all pixels
- Determine visible triangle
- Compute shading, color pixel

Triangle / Polygon Rasterization



After Perspective Projection





Comparison

}

Rasterization

FOR (each triangle) {
 compute pixels covered
 ("fragments")
 FOR (all fragments) {
 fragment visible?
 IF (visible) {
 shade fragment
 write color

}

Raytracing

FOR (each pixel) {
 compute visible triangle
 IF (found) {
 shade fragment
 write color
 }

Rasterization

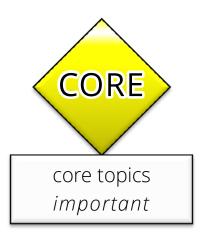
Focus for now:

Rasterization (Raytracing covered later)

Two main algorithms

- Painter's algorithm (old)
 - Simple version
 - Correct version
- z-Buffer algorithm
 - Dominant real-time method today

Painter's Algorithm



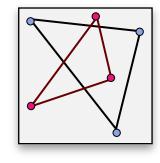
Painter's Algorithm

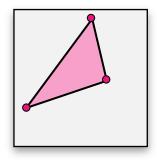
Painters Algorithm

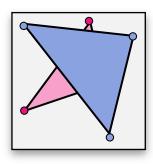
- Sort primitives back-to-front
- Draw with overwrite

Drawbacks

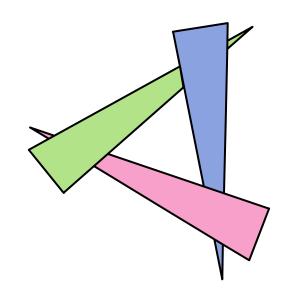
- Slowish
 - $\mathcal{O}(n \cdot \log n)$ for *n* primitives
 - "Millions per second"
- Wrong
 - Not guaranteed to always work

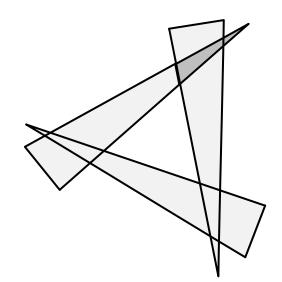






Counter Example





Correct Algorithm

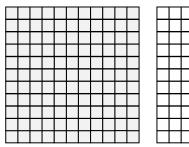
- Need to cut primitives
- Several strategies
 - Notable: BSP Algorithm in Quake
 - Old graphics textbooks list many variants
 - No need for us to go deeper

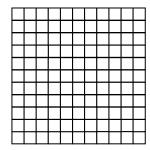
z-Buffer Algorithm

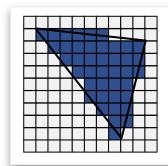
z-Buffer Algorithm

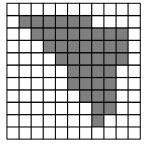
Algorithm

- Store depth value for each pixel
- Initialize to MAX_FLOAT
- Rasterize all primitives
 - Compute fragment depth & color
 - Do not overwrite if fragment is farer away than the one stored the one in the buffer

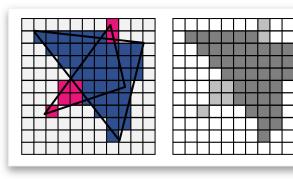








depth



Discussion: z-Buffer

Advantages

- Extremely simple
- Versatile only primitive rasterization required
- Very fast
 - GeForce 2 Ultra: 2GPixel /sec (release year: 2000)
 - GeForce 700 GTX Titan: 35 GPixel / sec (release year: 2013)

Discussion: z-Buffer

Disadvantages

Extra memory required

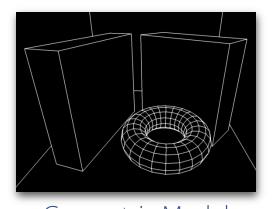
- This was a serious in obstacle back then...
- Invented 39 years ago (1974; Catmull / Straßer)

Only pixel resolution

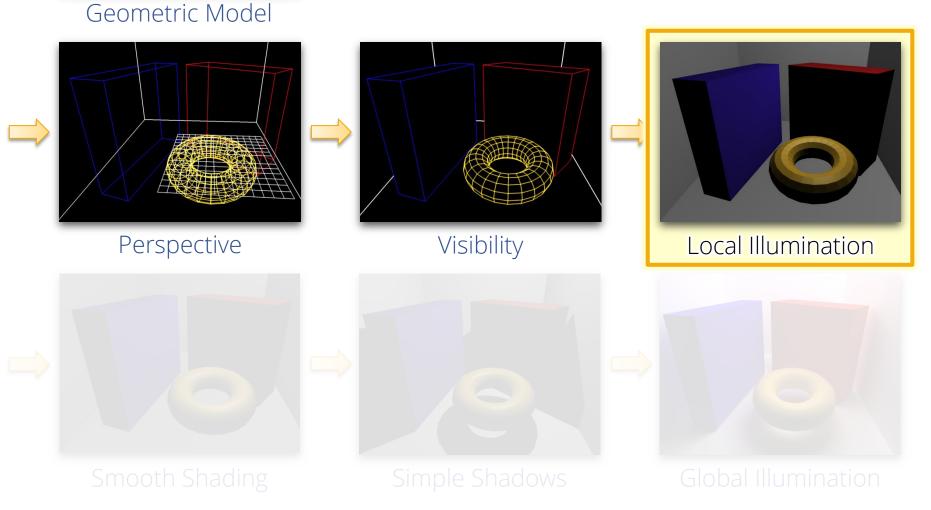
Need painter's algorithm for certain vector graphics computations

No transparency

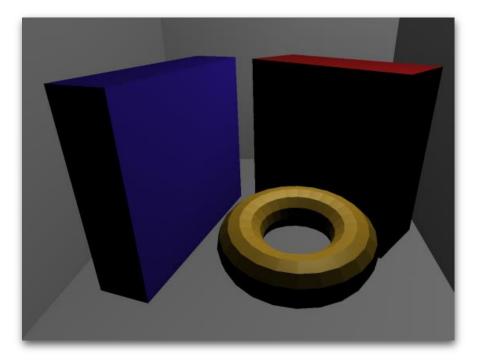
- This is a real problem for 3D games / interactive media
- Often fall-back to sorting
- Solution: A-Buffer, but no hardware support

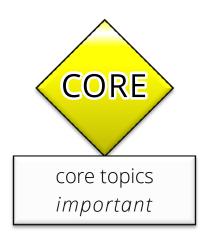


3D Rendering Steps

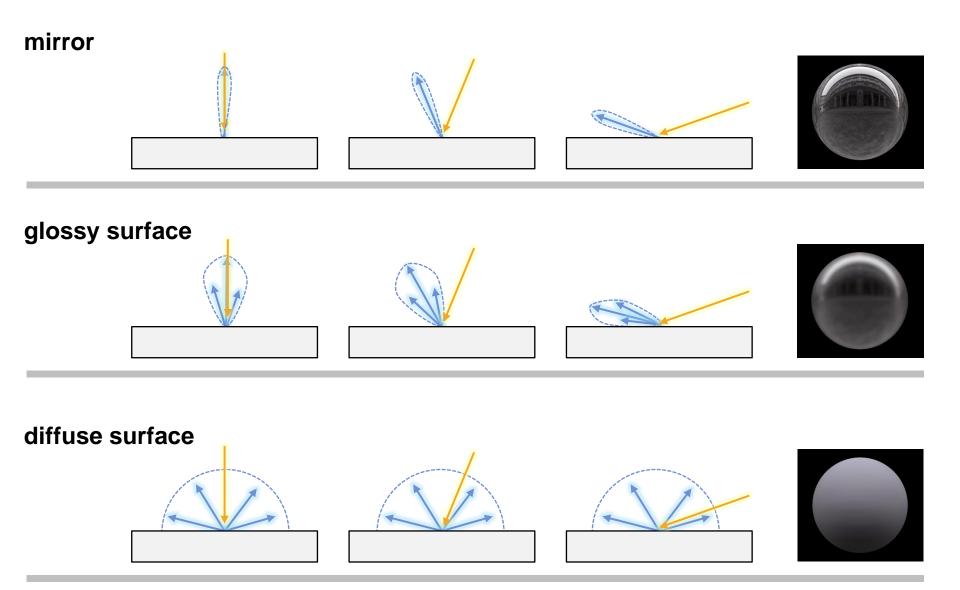


Shading Models

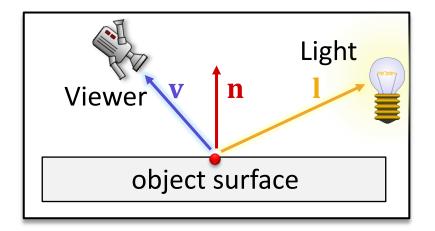




Reflectance Models

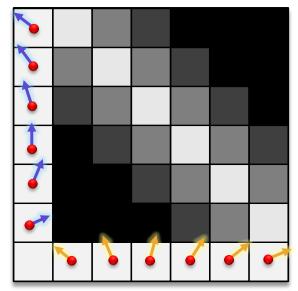


Interaction with Surfaces



Local Shading Model

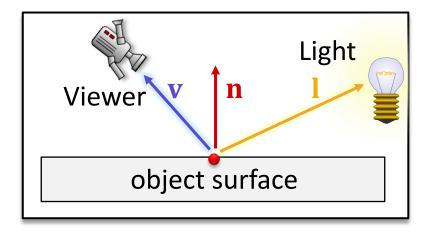
Single point light source

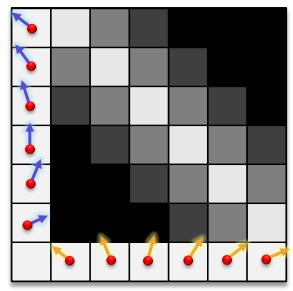


Formalization: BRDF

- Shading model / material model
 - Input: light vector $\mathbf{l} = (\mathbf{pos}_{light} \mathbf{pos}_{object})$
 - Input: view vector $\mathbf{v} = (\mathbf{pos}_{camera} \mathbf{pos}_{object})$
 - Input: surface normal n (orthogonal to surface)
 - Output: color (RGB)

Interaction with Surfaces





General scenario

Formalization: BRDF

- Multiple light sources?
 - Light is linear
 - Multiple light sources: add up contributions
 - Double light strength \Rightarrow double light output

Remark

Simplify notation

Define component-wise vector product

$$\mathbf{x} \circ \mathbf{y} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \circ \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \coloneqq \begin{pmatrix} x_1 \cdot y_1 \\ x_2 \cdot y_2 \\ x_3 \cdot y_3 \end{pmatrix}$$

- No fixed convention in literature
- The symbol "o" only used in these lecture slides!

Remark

Lighting Calculations

- Need to perform calculations for r, g, b-channels
- Often:

 $output_{r} = light_{r} \cdot material_{r} \cdot function(\mathbf{v}, \mathbf{l}, \mathbf{n})$ $output_{g} = light_{g} \cdot material_{g} \cdot function(\mathbf{v}, \mathbf{l}, \mathbf{n})$ $output_{b} = light_{b} \cdot material_{b} \cdot function(\mathbf{v}, \mathbf{l}, \mathbf{n})$

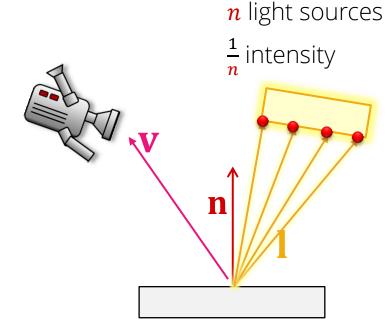
Shorter

output = light_strength o material · function(v, l, n)

Area Light Sources

Area Light Sources

- Integrate over area
- In practice often:
 - Sample with many point-light sources
 - Add-up contributions



Shading Effects

Shading effects

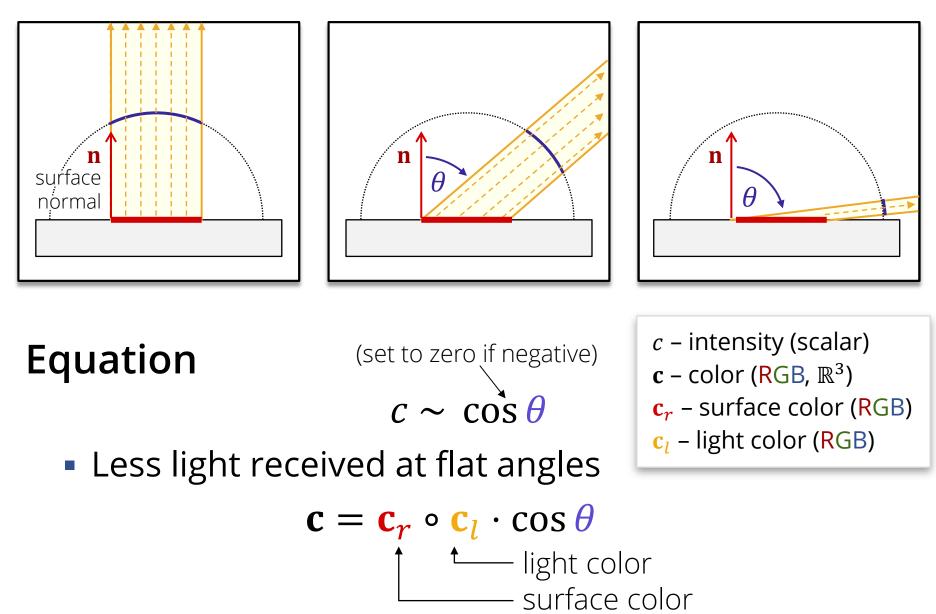
- Diffuse reflection
- "Ambient reflection"
- Perfect mirrors
- Glossy reflection
 - Phong / Blinn-Phong
 - (Cook Torrance)
- Transparency & refraction

Shading Effects

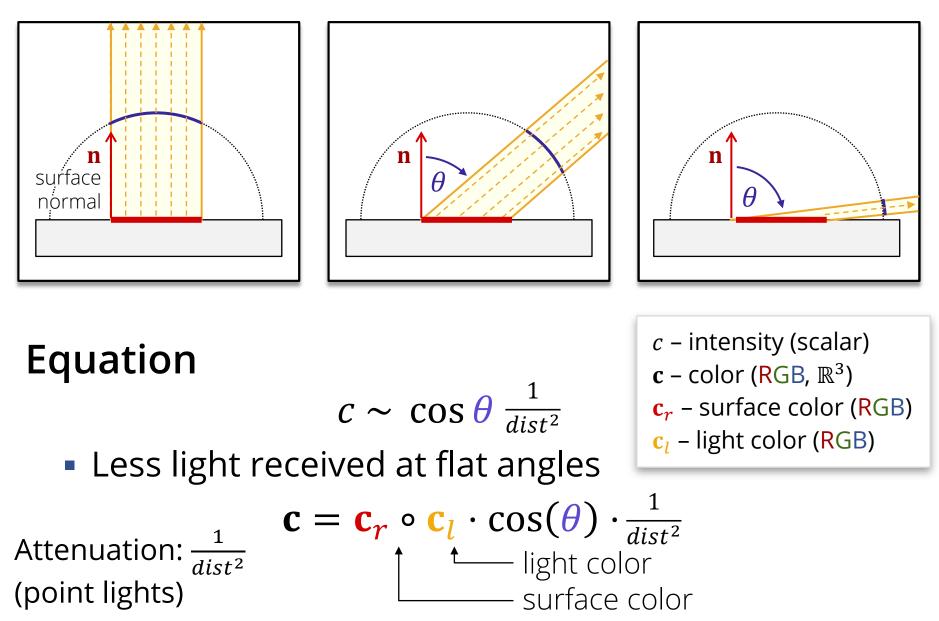
Shading effects

- Diffuse reflection
- "Ambient reflection"
- Perfect mirrors
- Glossy reflection
 - Phong / Blinn-Phong
 - (Cook Torrance)
- Transparency & refraction

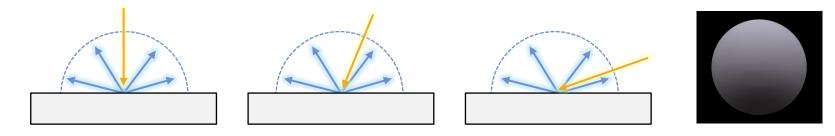
Diffuse ("Lambertian") Surfaces



Diffuse ("Lambertian") Surfaces



Diffuse Reflection



Diffuse Reflection

- Very rough surface microstructure
- Incoming light is scattered in all directions uniformly
- "Diffuse" surface (material)
- "Lambertian" surface (material)

Surface Normal?

What is a surface normal?

- Tangent space:
 - Plane approximation at a point $\mathbf{x} \in S$
- Normal vector:
 - Perpendicular to that plane
- Oriented surfaces:
 - Pointing outwards (by convention)
 - Orientation defined only for closed solids

surface normal $n(x) \in \mathbb{R}^3$ Solution S point x space

Single Triangle

Parametric equation

 $\{\mathbf{p}_1 + \lambda(\mathbf{p}_2 - \mathbf{p}_1) + \mu(\mathbf{p}_3 - \mathbf{p}_1) | \lambda, \mu \in \mathbb{R}\}\$

p₁

Triangles

p₂

n

p₃

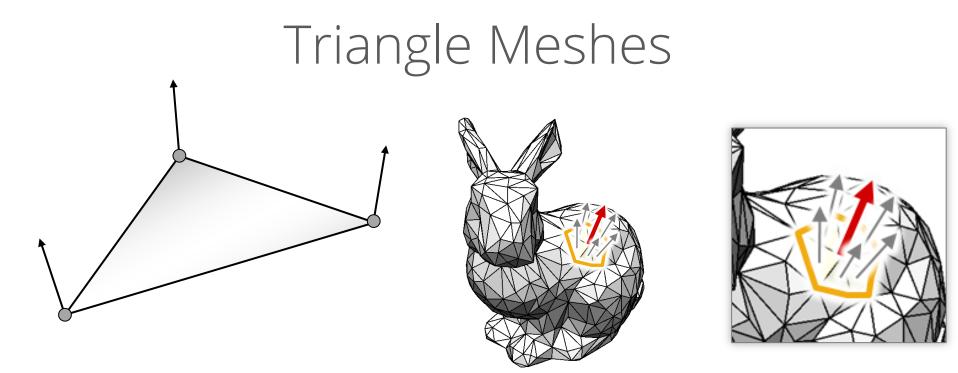
Tangent space: the plane itself

Normal vector

 $(\mathbf{p}_2 - \mathbf{p}_1) \times (\mathbf{p}_3 - \mathbf{p}_1)$

Orientation convention:
 p₁, p₂, p₃ oriented counter-clockwise

- Length: Any positive multiple works (often $||\mathbf{n}|| = 1$)

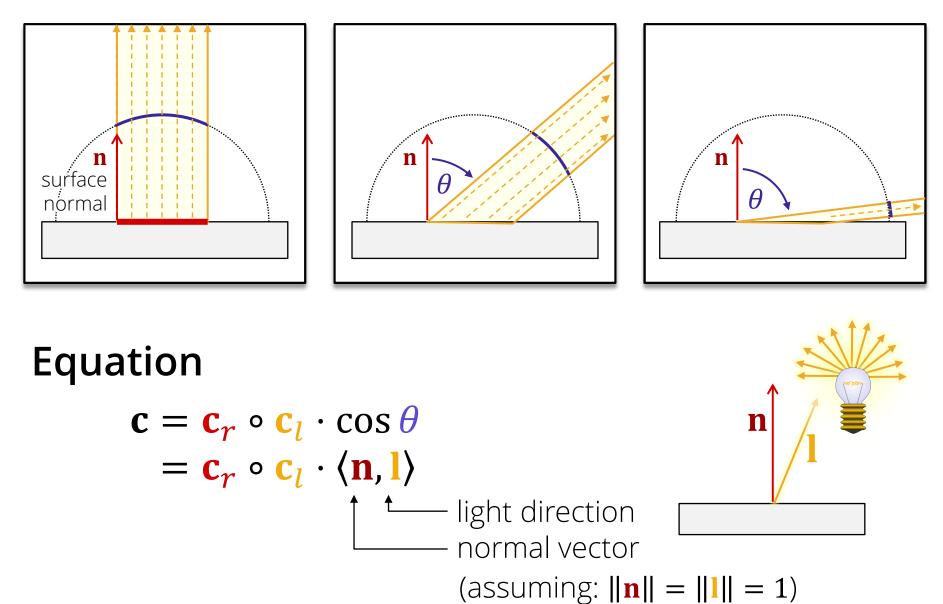


Smooth Triangle Meshes

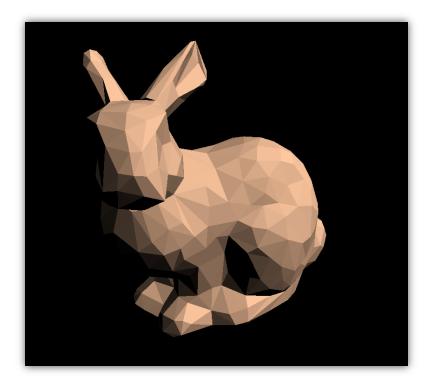
- Store three different "vertex normals"
 - E.g., from original surface (if known)
- Heuristic:

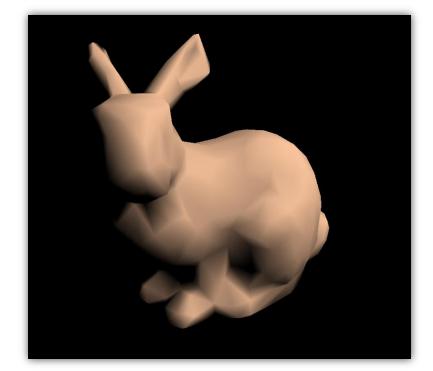
Average neighboring triangle normals

Lambertian Surfaces



Lambertian Bunny





Face Normals

Interpolated Normals

Shading Effects

Shading effects

- Diffuse reflection
- "Ambient reflection"
- Perfect mirrors
- Glossy reflection
 - Phong / Blinn-Phong
 - (Cook Torrance)
- Transparency & refraction

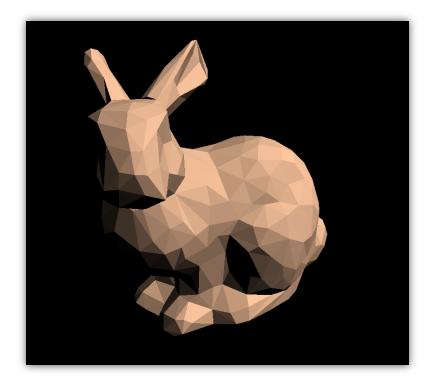
"Ambient Reflection"

Problem

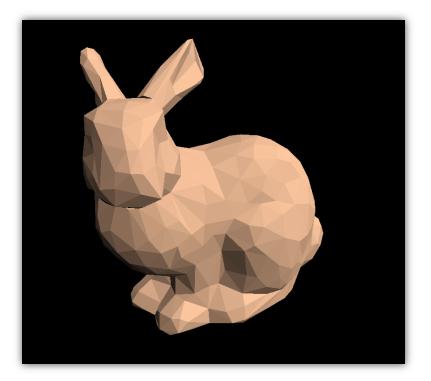
- Shadows are pure black
- Realistically, they should be gray
 - Some light should bounce around...
- Solution: Add constant

- Not very realistic
 - Need global light transport simulation for realistic results

Ambient Bunny



Pure Lambertian



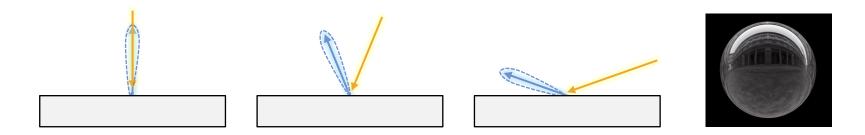
Mixed with Ambient Light

Shading Effects

Shading effects

- Diffuse reflection
- "Ambient reflection"
- Perfect mirrors
- Glossy reflection
 - Phong / Blinn-Phong
 - (Cook Torrance)
- Transparency & refraction

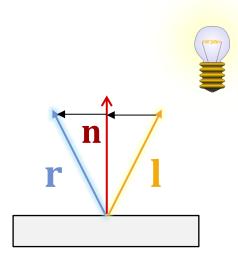
Perfect Reflection



Perfect Reflection

- Rays are perfectly reflected on surface
- Reflection about surface normal

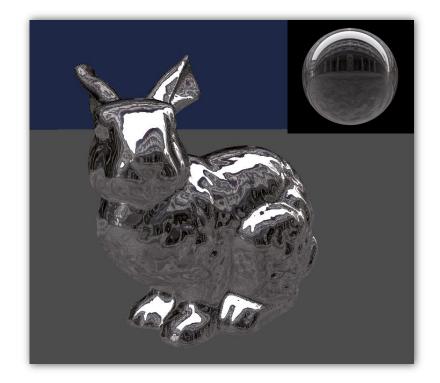
$$\mathbf{r} = 2(\langle \mathbf{n}, \mathbf{l} \rangle \cdot \mathbf{n} - \mathbf{l}) + \mathbf{l},$$
$$\|\mathbf{n}\| = 1$$
$$\mathbf{l} \text{ arbitrary}$$



Silver Bunny

Perfect Reflection

- Difficult to compute
 - Need to match camera and light emitter
- More later:
 - Recursive raytracing
 - Right image: Environment mapping

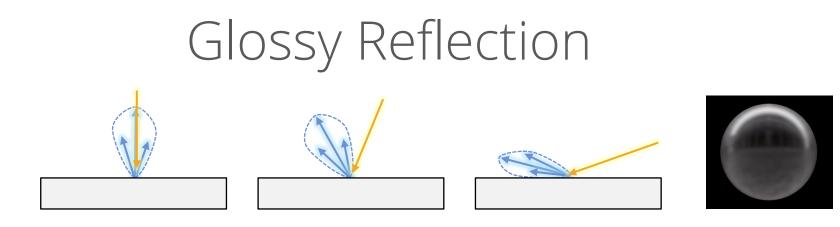


Reflective Bunny (Interpolated Normals)

Shading Effects

Shading effects

- Diffuse reflection
- "Ambient reflection"
- Perfect mirrors
- Glossy reflection
 - Phong / Blinn-Phong
 - (Cook Torrance)
- Transparency & refraction



Glossy Reflection

- Imperfect mirror
- Semi-rough surface
- Various models

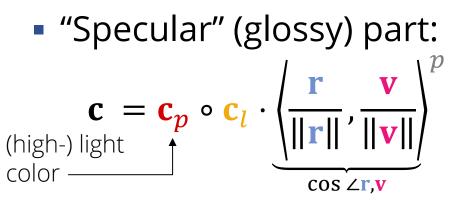
Phong Illumination Model

Traditional Model: Phong Model

- Physically incorrect (e.g.: energy conservation not guaranteed)
- But "looks ok"
 - Always looks like plastic
 - On the other hand, our world is full of plastic...

How does it work?

Phong Model:



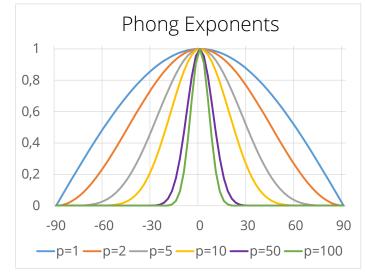
• Ambient part:

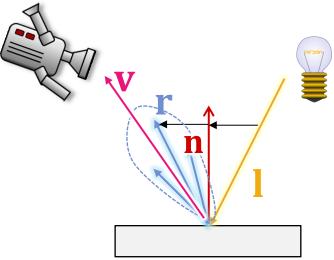
 $\mathbf{c} = \mathbf{c}_r \circ \mathbf{c}_a$

Diffuse part:

 $\mathbf{c} = \mathbf{c}_r \circ \mathbf{c}_l \cdot \langle \mathbf{n}, \mathbf{l} \rangle$

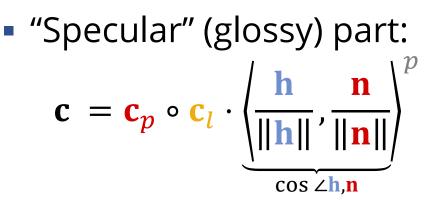
Add all terms together

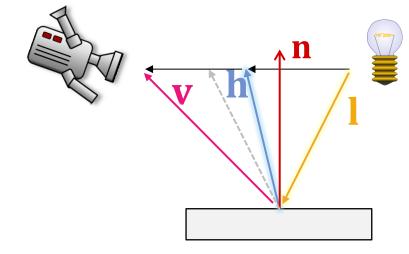




Blinn-Phong

Blinn-Phong Model:





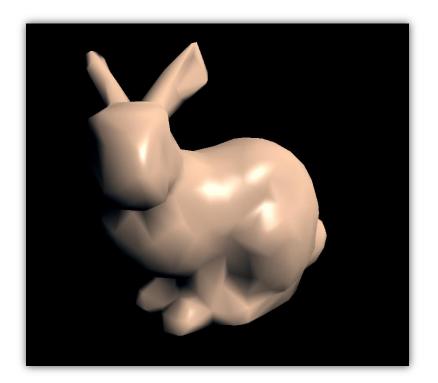
Half-angle direction

$$\mathbf{h} = \frac{1}{2} \left(\frac{\mathbf{l}}{\|\mathbf{l}\|} + \frac{\mathbf{v}}{\|\mathbf{v}\|} \right)$$

- In the plane: $\angle \left(\frac{\mathbf{h}}{\|\mathbf{h}\|}, \frac{\mathbf{n}}{\|\mathbf{n}\|}\right) = \frac{1}{2} \angle \left(\frac{\mathbf{r}}{\|\mathbf{r}\|}, \frac{\mathbf{v}}{\|\mathbf{v}\|}\right)$
 - Approximation in 3D

Phong+Diffuse+Ambient Bunny

Blinn-Phong Bunny



Interpolated Normals

Phong+Diffuse+Ambient Bunny

Blinn-Phong Bunny



Interpolated Normals

Cook-Torrance Model

Physically-Motivated Model

D – Infinitesimal micro-facets

- Characterize by distribution
- Expected reflection (density)
- Gaussian, Beckmann,...
- Approximate occlusion term (G)

• F – Fresnel term

- Model: wave-optics
- Interaction of wave with surface under different angles
- Percentage reflection/refraction

 $F(\theta) = R_0 + (1 - R_0)(1 - \cos \theta)^5$

 $\cos \theta = \langle \mathbf{h}, \mathbf{v} \rangle$ $R_0 =$ "ratio of refractive indices"

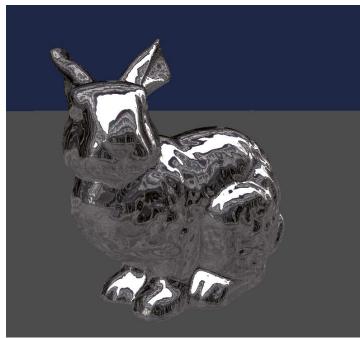
 $c_{spec} = \frac{D \cdot G \cdot F}{4 \langle \mathbf{v}, \mathbf{n} \rangle \langle \mathbf{n}, \mathbf{l} \rangle}$

Artistic "Fresnel" Exponent 4 Reflection

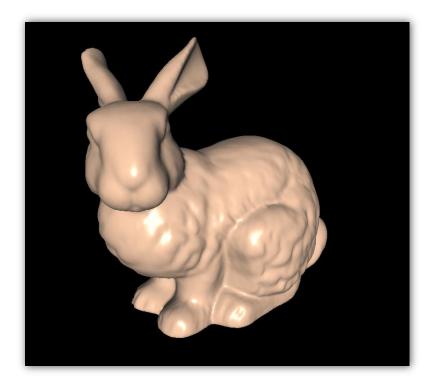
Approx. Fresnel-Reflection $F(\theta) \sim (1 - \cos \theta)^p$

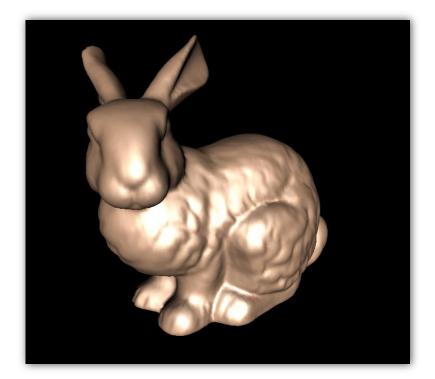
unweighted reflection

Exponent 5



Better Models





Phong Bunny

Shading Effects

Shading effects

- Diffuse reflection
- "Ambient reflection"
- Perfect mirrors
- Glossy reflection
 - Phong / Blinn-Phong
 - (Cook Torrance)

Transparency & refraction

Transparency

Transparency

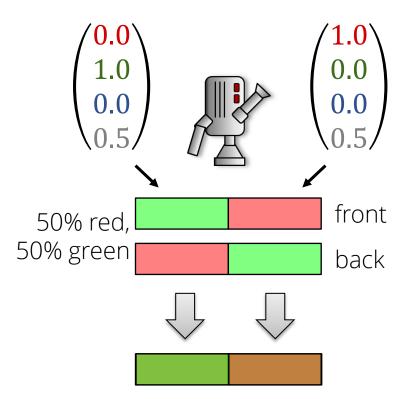
- "Alpha-blending"
- *α* = "opacity"
- Color + opacity: RGBα

Blending

• Mix in α of front color, keep $1 - \alpha$ of back color

$$\mathbf{c} = \alpha \cdot \mathbf{c}_{front} + (1 - \alpha) \cdot \mathbf{c}_{back}$$

- Not commutative! (order matters)
 - unless monochrome



Refraction: Snell's Law

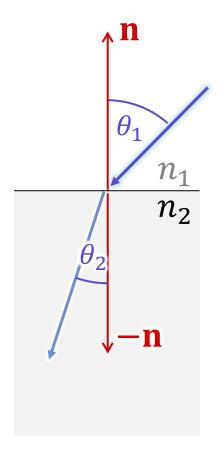
Refraction

- Materials of different "index of refraction"
- Light rays change direction at interfaces

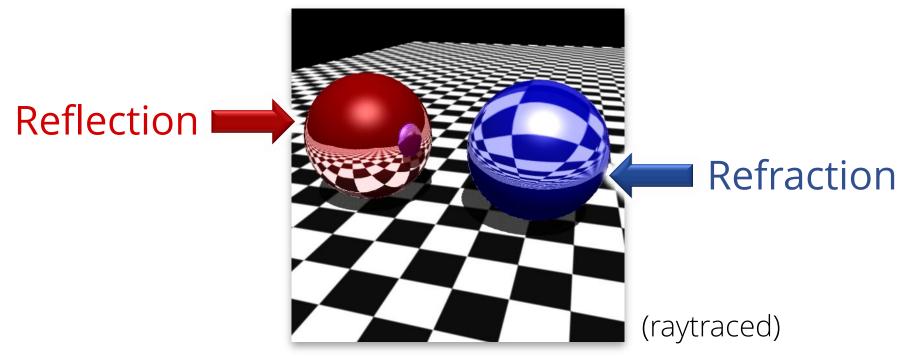
Snell's Law

 $\frac{\sin\theta_1}{\sin\theta_2} = \frac{n_2}{n_1}$

- *n*₁, *n*₂: indices of refraction
 - vacuum: 1.0, air: 1.000293
 - water: 1.33, glass: 1.45-1.6

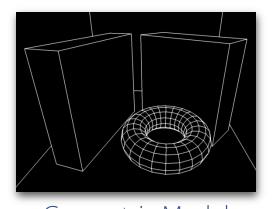


Refraction

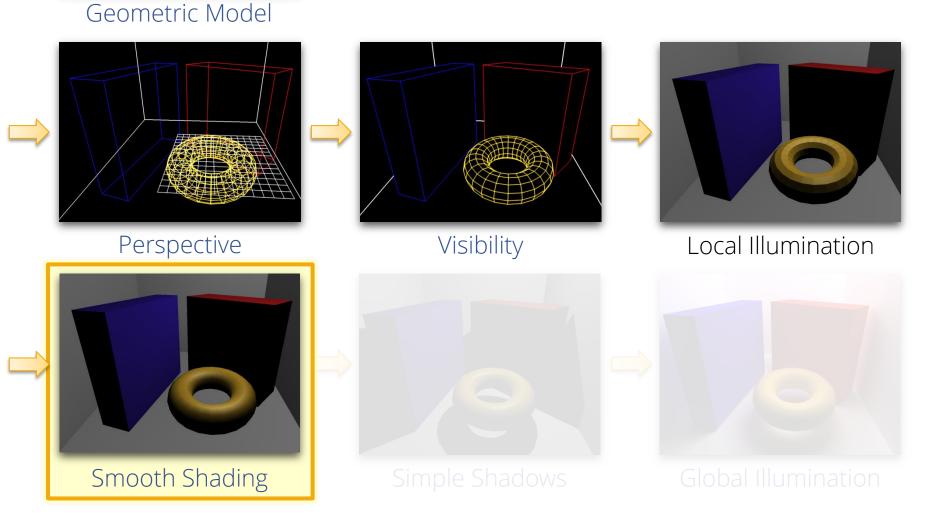


Implementation

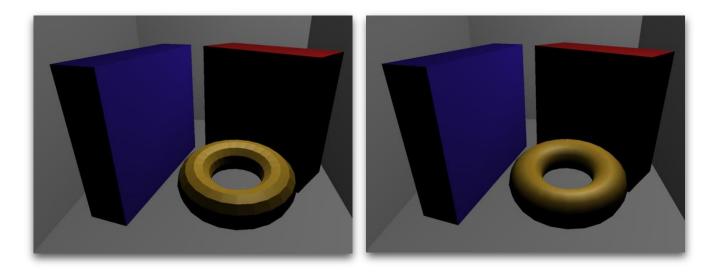
- Not a local shading model
- Global algorithms: mostly raytracing
- Various "fake" approximations for local shading

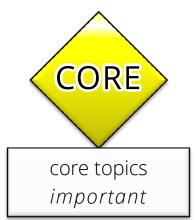


3D Rendering Steps

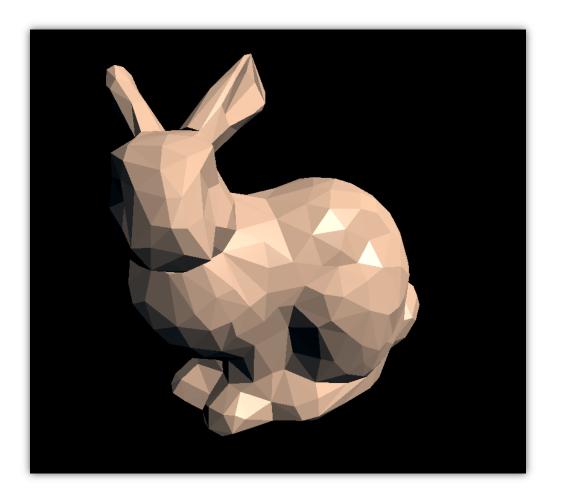


Shading Algorithms



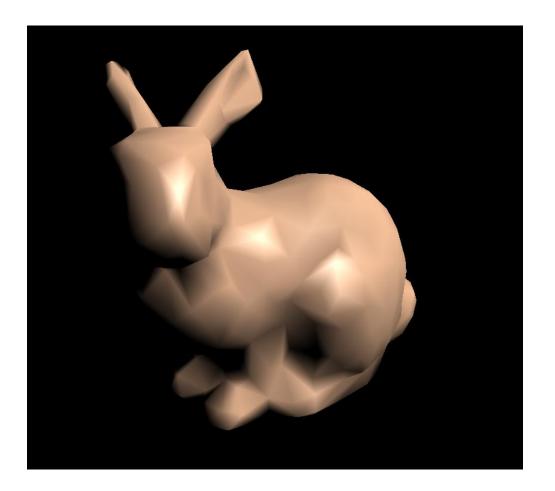


Flat Shading



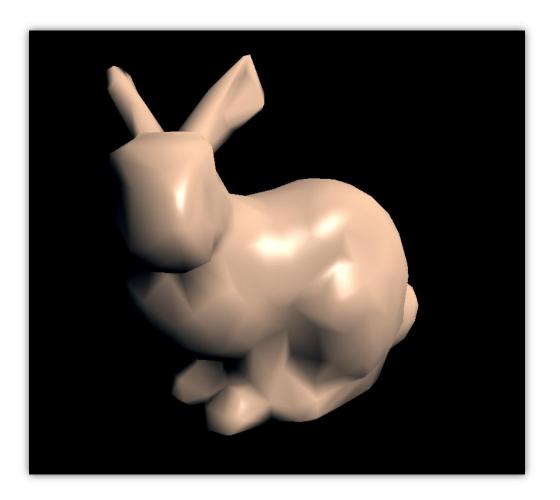
Flat Shading constant color per triangle

Flat Shading

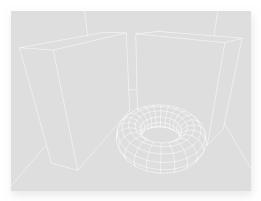


"Gouraud Shading" Algorithm compute color at vertices, interpolate color for pixels

Flat Shading



"Phong Shading" Algorithm interpolate normals for each pixel

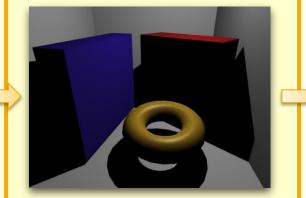


Geometric Mode

Perspective

Smooth Shading

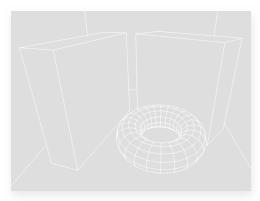
Next: Advanced Rasterization



Simple Shadows



Global Illumination

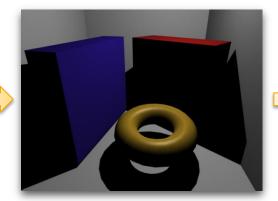


3D Rendering Steps

Geometric Mode



Smooth Shading



Simple Shadows

Global Illumination