
Graphics 2014 

The Rasterization Pipeline 
Projection, Visibility, 

& Shading 



Announcements 

Practicals this week 

Tuesday (today) 

 Tue 9-11 (was held) 

 Tue 13-15 canceled (programming contest) 

Wednesday (tomorrow) 

 Wed 15-17: additional practical slot 

 We 17-19: additional practical slot 

Thursday: no practicals 



core topics 

important 

CORE 

Addendum: 

Matrix Algebra 



Transposition 

Matrix Transposition 

 Swap rows and columns 

 In other words: Flip around diagonal 

 Formally: 
⋱ ⋅ ⋰
⋅ ⋅ ⋅
⋅      ⋅
⋅ ⋅ ⋅
⋰ ⋅ ⋱

T

=
⋱ ⋅ ⋅ ⋅ ⋰
⋅ ⋅     ⋅ ⋅
⋰ ⋅ ⋅ ⋅ ⋱

 

    
                           

 

T 

= 

𝑎𝑖,𝑗 𝑎𝑗,𝑖 



Orthogonal Matrices 

Othogonal Matrices 

 (i.e., column vectors orthonormal) 
𝐌𝑇 = 𝐌−1 

 Proof: next three slides 



Matrix Multiplication 

General matrix products: 

 𝐁 ⋅ 𝐀: possible if 
#Row(𝐀) = #Columns(𝐁) 

° 

𝐀 

𝐁 

𝐀 =

𝑎1,1 ⋯ 𝑎1,𝑛
⋮  ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

 

𝐁 =

𝑏1,1 ⋯ 𝑏1,𝑚
⋮  ⋮
𝑏𝑘,1 ⋯ 𝑏𝑘,𝑚

 

𝑘 

𝑚 𝑛 

𝑛 

𝑚 

𝑘 

𝐑 =

𝑟1,1 ⋯ 𝑟1,𝑛
⋮  ⋮
𝑟𝑘,1 ⋯ 𝑟𝑘,𝑛

 

𝐑 = 𝐁 ⋅ 𝐀 

𝑟𝑖,𝑗 =  𝑎𝑞,𝑗 ⋅ 𝑏𝑖,𝑞

𝑚

𝑞=1

 



Matrix Multiplication 

Matrix Multiplication 

𝐀 ⋅ 𝐁 
  

=

− 𝐚1 −
 ⋮  
− 𝐚𝑑 −

⋅

|  |
𝐛1 ⋯ 𝐛𝑑
|  |

 

  

=
⋱  ⋰
 𝐚𝑖 , 𝐛𝑗  
⋰  ⋱

 

  

 Scalar products of rows and columns 



Matrix Multiplication 

Othogonal matrices: 

𝐀T ⋅ 𝐀 
  

=

− 𝐚1 −
 ⋮  
− 𝐚𝑑 −

⋅
|  |
𝐚1 ⋯ 𝐚𝑑
|  |

 

  

=
⋱  ⋰
 𝐚𝑖 , 𝐚𝑗  
⋰  ⋱

=
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

= 𝐈 

  

 

𝐚1 

𝐚2 



Transposition Rules 

Transposition 

 Multiplication: 𝐀 ⋅ 𝐁 T = 𝐁T ⋅ 𝐀T 

 Inversion: 𝐀 ⋅ 𝐁 −1 = 𝐁−1 ⋅ 𝐀−1 

 Inverse-transp.: 𝐀T
−1
= 𝐀−1 T 

 Othogonality: 𝐀T = 𝐀−1 ⇔ 𝐀 is orthogonal  

 



core topics 

important 

CORE 

Homogeneous Coordinates 
(short version) 



Problem 

Translations are not linear 

 𝐱 → 𝐌𝐱 cannot encode translations 

 Proof: Origin cannot be moved: 
 

𝐌 ⋅ 𝟎 =

𝑚11 𝑚12 𝑚13
𝑚21 𝑚22 𝑚23
𝑚31 𝑚32 𝑚33

0
0
0
=
0
0
0

 



Homogeneous Coordinates 

Solution: Just add a constant one 

 Increase dimension ℝ𝑑 → ℝ𝑑+1 

 Last entry = 1 in vectors 

 “Cheap Trick”, “Evil Hack” 
 

𝐌′ ⋅ 𝐱 =

𝑚11 𝑚12 𝑚13 𝑡1
𝑚21 𝑚22 𝑚23 𝑡2
𝑚31 𝑚32 𝑚33 𝑡3
0 0 0 1

𝑥
𝑦
𝑧
1

 

  

 =

⋱ ⋰ |

𝐌 𝐭
⋰ ⋱ |
0 0 0 1

|
𝐱
|
1

=

|
𝐌𝐱 + 𝐭
|
1

 



Homogeneous Coordinates 

General case 
 

𝐌 ⋅ 𝐱 =

𝑚11 𝑚12 𝑚13 𝑚14
𝑚21 𝑚22 𝑚23 𝑚24
𝑚31 𝑚32 𝑚33 𝑚34
𝑚41 𝑚42 𝑚43 𝑚44

𝑥
𝑦
𝑧
1

=

𝑥′
𝑦′

𝑧′
𝑤′

 

 𝑤′ might be different from 1 

 Convention: Divide by 𝑤-coord. before using  
 

Result: 

𝑥′/𝑤′

𝑦′/𝑤′

𝑧′/𝑤′
1

 



Homogeneous Coordinates 

General case 
 

𝐌 ⋅ 𝐱 =

𝑚11 𝑚12 𝑚13 𝑚14
𝑚21 𝑚22 𝑚23 𝑚24
𝑚31 𝑚32 𝑚33 𝑚34
𝑚41 𝑚42 𝑚43 𝑚44

𝑥1
𝑥2
𝑥3
1

=

𝑦1
𝑦2
𝑦3
𝑦4

≡

𝑦1/𝑦4
𝑦2/𝑦4
𝑦3/𝑦4
1

 

 Can express divisions by common denominator 
 

𝑦4 = 𝑚41𝑥1 +𝑚42𝑥2 +𝑚43𝑥3 +𝑚44𝑥4 

 Rules: 

 Before using as 3D point, divide by last (4th) entry 

 No normalization required during 
subsequent transformations (matrix-mult.) 



The Full Story? 

Projective Geometry 

 Not just an evil hack 

 Deep & interesting theoretical background 

 More on this later 

For simplicity 

 We’ll treat it as a computational trick for now 

 Focus on the graphics application 

 Remember for now: 

 We can build “4D Translation matrices” for 3D+1 points 

 We can “divide” by a common linear factor 



Now for 

3D Rendering 



basic topics 

study completely 

BASIC 

3D Rendering Overview 



3D Computer Graphics 

Three main aspects 

 Modeling 

 Describe 3D geometry mathematically 

– From machine parts (e.g., CAD) 

– To natural phenomena (e.g., fractals) 

 Animation 

 Set scenes into motion 

– Simple: Camera fly-through 

– Complex: Fluid simulation, human motion 

 Rendering 

 Convert geometry into images 

 Our Focus right now 



3D Rendering 

Assumption 

 3D Model is given 

 Triangle mesh 
(for simplicity) 

How do we get it to the screen? 



Agenda 

Upcoming Topics 

 Modeling: mesh representation 

 Physics: Perspective projection 

 Rendering: Two main rendering methods 

 Rasterization 

– Perspective projection 

– Rasterization 

– Visibility 

– Shading  

– Programmable shaders / GPUs 

 Raytracing 



Geometric Model 

Perspective Visibility Local Illumination 

Smooth Shading Simple Shadows Global Illumination 

3D Rendering Steps 



Perspective Visibility Local Illumination 

Smooth Shading Simple Shadows Global Illumination 

Geometric Model 

3D Rendering Steps 



basic topics 

study completely 

BASIC 

Modeling 

Mesh Representation 

basic topics 

study completely 

BASIC 

basic topics 

study completely 

BASIC 



Modeling Shapes 

Primitives 

 Elementary geometric building blocks 

 Easy to handle directly 

Complex models 

 Sets of primitives 

 Approximate shapes 
with primitives 

Most-frequently-used 

 Triangles! 

yep, 
triangles! 



Simple Triangle List 

Vertex list 
Vector3D vertices[n]; 

(1)  𝐩1 = (𝑥1, 𝑦1, 𝑧1) 

(2)  𝐩2 = (𝑥2, 𝑦2, 𝑧2) 

(3)  𝐩3 = (𝑥3, 𝑦3, 𝑧3) 

(4)  𝐩4 = (𝑥4, 𝑦4, 𝑧4) 
 

⋮     

(n)  𝐩n = (𝑥𝑛, 𝑦𝑛, 𝑧𝑛) 

 

Triangle list 
(int[3]) triangles[m]; 

(1)  𝐭1 = (𝑖1, 𝑗1, 𝑘1) 

(2)  𝐭2 = (𝑖2, 𝑗2, 𝑘2) 

(3)  𝐭3 = (𝑖3, 𝑗3, 𝑘3) 
 

⋮     

(m) 𝐭m = (𝑖𝑚, 𝑗𝑚, 𝑘𝑚) 

 



Modeling a Triangle 

Triangle 

Triangles: 
𝐱 𝜆, 𝜇 = 𝐩1 + 𝜆𝐭1 + 𝜇𝐭2 

= 𝐩1 + 𝜆 𝐩2 − 𝐩1 + 𝜇 𝐩3 − 𝐩1  
 

0 ≤ 𝜆 ≤ 1, 
0 ≤ 𝜇 ≤ 1, 
𝜇 + 𝜆 ≤ 1 

Parametric  
Plane Equation 

(with constraints) 
 

0 

𝐩1  

t1 

t2 

𝐩3  

𝐩2  



Attributes 

How to define a triangle? 

 We need three points in ℝ3 

 But we can have more: 

per-vertex normal 

per-vertex color 

texture per-vertex texture 
coordinates 

(etc...) 



Complete Data Structures 

Multiple Arrays: Vertices, Triangles 
 

v1: (posx posy posz), attrib1, ..., attribn 
                    ... 

vN: (posx posy posz), attrib1, ..., attribn 

 

e1: (index1 index2), attrib1, ..., attribk 
                    ... 

eK: (index1 index2), attrib1, ..., attribk 

 

t1: (idx1 idx2 idx3), attrib1, ..., attribm 
                    ... 

tM: (idx1 idx2 idx3), attrib1, ..., attribm 
 

edges: 
optional 

, Edges 



Visibility Local Illumination 

Smooth Shading Simple Shadows Global Illumination 

Geometric Model 

3D Rendering Steps 

Perspective 



core topics 

important 

CORE 

Physics 

Ray Optics & Color 



Ray Optics 

Geometric ray model 

 Light travels along rays 



Ray Optics 

Geometric ray model 

 Rays have “intensity” and “color” 



Ray Optics 

Color spectrum 

 Continuous spectrum 

 Intensity for each wavelength 

wavelength 𝜆 

390nm 700nm 

reddish bluish 

gray with a  
tint of green 



Human Vision 

Color spectrum 

 Two types of receptive cells (color/low-light) 

 Three types of color cells 

reddish 
bluish 

greenish 

wavelength 𝜆 

390nm 700nm 

low light 
(monochrome) 

(curves: schematic, not accurate) 



RGB Model 

Bitmap (Pixel Display) 

 Screen: 𝑤 ⋅ ℎ discrete pixels 

 Origin: usually upper left 

 Varying color per pixel 

RGB Model 

 Every pixel can emit red, green, blue light 

 Intensity range:  

 Usually: bytes 0...255 

 000 = dark 

 255 = maximum brightness 

 

𝑤 

ℎ 

x-coord. 

y
-c

o
o

rd
. 

0 w – 1 

h – 1 



Human Vision 

Create color impressions 

 Basis for three-dimensional color space 

 Wide spacing, narrow bands: purer colors 

 Otherwise: washed out colors 

wavelength 𝜆 

390nm 700nm 

(curves: schematic, not accurate) 

Response curves: 
human eye (ideal) monitor: 

emitted spectra 



basic topics 

study completely 

BASIC 

Physics 

Perspective Projection 



Pinhole Camera 

Pinhole camera 

 Create image by selecting rays of specific angles 

 Low efficiency (small holes for sharp images) 



Pinhole Camera 

Pinhole camera 

 Create image by selecting rays of specific angles 

 Low efficiency (small holes for sharp images) 



Pinhole Camera 

Central Projection 



Pinhole Camera 

Central projection 

𝑥′ = 𝑓
𝑥

𝑧
 

𝑦′ = 𝑓
𝑦

𝑧

 

𝑦′ 

𝑦 

𝑓 
𝑧 

Proof: 
Intercept theorem! 



(Actual Camera) 

Camera with Lens 

 Higher efficiency (bundles many rays) 

 Finite Depth of field 

 We will consider pinhole cameras only. 



Pinhole Camera 

𝑦′ 

𝑦 

𝑓 
𝑧 

Undetermined degree of freedom 

 Focal length vs. image size 

 Source of a lot of confusion! 

𝑥′ = 𝑓
𝑥

𝑧
 

𝑦′ = 𝑓
𝑦

𝑧

 



Pinhole Camera 

Parameters 

 h - size of the screen (pixels, cm, ±1.0,...) 

 f – focal length (classical photography) 

 Meaningful parameter:     – viewing angle 

h 
𝑓 

𝛼 

𝛼 



Pinhole Camera 

Relation: 

tan
𝛼

2
=
ℎ

2𝑓
 

h 
𝑓 

𝛼 



Pinhole Camera 

Invariance 

 

 

 Scaling h and f by a common factor: no change 

h 

𝑓′ 

𝛼 

tan
𝛼

2
=
ℎ

2𝑓
=
ℎ′

2𝑓′
=
ℎ′′

2𝑓′′
 

ℎ′ ℎ′′ 

𝑓 𝑓′′ 



Pinhole Camera 

Typical choices (vertical angles) 

 “Normal” perspective: 𝛼 ≈ 30° (“50mm” lens: 27°) 

 Tele photography: 𝛼 ≈ 5° − 20° (275–70mm) 

 Wide angle lens: 𝛼 ≈ 45° − 90° (28–12mm) 

h 
𝑓 

𝛼 



General Camera 

Our camera so far: 

 Focus point: origin 

 View direction: z-axis 

 General position/orientation? 

𝑦′ 

𝑦 

𝑓 
𝑧 

𝑥′ = 𝑓
𝑥

𝑧
 

𝑦′ = 𝑓
𝑦

𝑧

 



Homogeneous Coordinates 

Write in homogeneous coordinates 

 Third row is arbitrary (for now), not used. 

𝑥′ = 𝑓
𝑥

𝑧 
 

  𝑦′ = 𝑓
𝑦

𝑧
 

  𝑧′ =
𝑧 − 1

𝑧
 

 𝑤′ = 𝑧 

𝑥′
𝑦′

𝑧′
𝑤′

=

𝑓 0 0 0
0 𝑓 0 0
0 0 1 −1
0 0 1 0

𝑥
𝑦
𝑧
1

 

Projection Matrix P 



View transform 

Reminder: 

h 𝛼 

tan
𝛼

2
=
ℎ

2𝑓
 

ℎ′′ 

𝑓 



To Screen Coordinates 

Scale to unit screen coordinates 

 We set 𝑓 to 1 in previous matrix 

 Third row is arbitrary (for now), 
not used. 

1

tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0  1 0
0 0 0  1 

 

+ 1 

– 1 

+ 1 
– 1 

0 

+ 1 – 1 

+ 1 

– 1 

0 

normalized screen 
coordinates 



Aspect Ratio 

Non-square screens? 

 Screen: w× ℎ pixels 

 Aspect ratio 
𝑤

ℎ
  

 Different horizontal angle! 

1
𝑤
ℎ
⋅ tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0  1 0
0 0 0  1 

 

+ 1 – 1 

+ 1 

– 1 

0 

normalized screen 
coordinates 

non-square 
screen 

h – 1 

w – 1 



To Screen Coordinates 

Scale to pixels 

 Third row is 
arbitrary (for now), 
not used. 

𝑤/2 0 0 𝑤/2
0 −ℎ/2 0 ℎ/2
0 0  1 0
0 0 0  1 

 

x-coord. 

y
-c

o
o

rd
. 

0 w – 1 

h – 1 

0 

+ 1 

– 1 

+ 1 
– 1 

0 
+ 1 – 1 

+ 1 

– 1 

0 

0 

h – 1 

w – 1 



To Screen Coordinates 

Overall 

 Multiple both 

ℎ/2

tan
𝛼
2

0 0
𝑤/2

tan
𝛼
2

0 −
ℎ/2

tan
𝛼
2

0
ℎ/2

tan
𝛼
2

0 0  1 0
0 0 1  0 

 

Additionally: 
Also scale + shift such that 

𝑧′ =
𝑧 − 1

𝑧
 

are in value [0..1] for inputs 
𝑧 ∈ [𝑧𝑛𝑒𝑎𝑟 , 𝑧𝑓𝑎𝑟] 

a         b 

𝑎 =
𝑧𝑓𝑎𝑟 + 𝑧𝑛𝑒𝑎𝑟

𝑧𝑛𝑒𝑎𝑟 − 𝑧𝑓𝑎𝑟
 

𝑏 =  
2 ⋅ 𝑧𝑛𝑒𝑎𝑟 ⋅ 𝑧𝑓𝑎𝑟

𝑧𝑛𝑒𝑎𝑟 − 𝑧𝑓𝑎𝑟
 



Summary 

Projection matrix 

𝐏 =

𝑓 0 0 0
0 𝑓 0 0
0 0 1 −1
0 0 1 0

 

Projection & conversion to screen coords 

𝐏𝑠 =

𝑤/2 0 0 𝑤/2

0 −ℎ/2 0 ℎ/2

0 0  1 0

0 0 0  1 

 ̇

1
𝑤
ℎ
tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0  1 0

0 0 0  1 

 ̇

1 0 0 0

0 1 0 0

0 0 1 −1

0 0 1 0

 

projection 
matrix 

normalized 
 screen coord’s 

scaling to pixels, 
upper left origin 

(𝑓 = 1) 



Alternative (1) 

Alternative formulation: Only two steps 

𝐏𝑠 =

𝑤/2 0 0 𝑤/2

0 −ℎ/2 0 ℎ/2

0 0  1 0

0 0 0  1 

 ̇

1
𝑤
ℎ
tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0 1 −1

0 0 1 0

 

 

 

 Different scale factors (not a focal length) 

 Use two different scale factors 𝑓𝑥 =
1

𝑤

ℎ
tan
𝛼

2

, 𝑓𝑦 =
1

tan
𝛼

2

 

projection 
matrix 

normalized 
 screen coord’s 

scaling to pixels, 
upper left origin & 



Alternative (2) 

Another Alternative Formulation 

𝐏𝑠 =

ℎ/2 0 0 𝑤/2

0 −ℎ/2 0 ℎ/2

0 0  1 0

0 0 0  1 

 ̇

1

tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0 1 −1

0 0 1 0

 

 

 

 Constant focal length 𝑓 =
1

tan
𝛼

2

 

 Intermediate result not normalized to −1,1 2 

projection 
matrix 

vertically normalized 
 screen coord’s 

scaling to pixels, 
upper left origin & + 

𝑤

ℎ
 – 

𝑤

ℎ
 

+ 1 

– 1 

0 



Alternatives 

All three derivations lead to the same result 

 Intermediate results not used ⇒ all equivalent 

 Product of the 2/3 matrices is the same 

Intermediate results being used: 

 Some graphics APIs (e.g., OpenGL) do use 
normalized device coordinates as intermediate 

 OpenGL – for pixels to appear on screen: 

      𝑥′ ∈ [−1,1] 
      𝑦′ ∈ [−1,1] 
      𝑧′ ∈ [0,1) 

      𝑤 ∈ 𝑧𝑛𝑒𝑎𝑟 , 𝑧𝑓𝑎𝑟   

 

 

 

coupled, so this 
is the same criterion 



General Camera 

general camera 

𝐲 
𝐱 

𝐳 

camera in origin, view in z-direction 

object of interest 



General Camera 

general camera 

𝐲 
𝐱 

𝐳 

camera in origin, view in z-direction 

object of interest 

𝐯 

𝐮 
𝐰 

𝐜 



General Camera 

general camera 

𝐲 
𝐱 

𝐳 

camera in origin, 
view: z-direction 

𝐯 

𝐮 
𝐰 

𝐜 

Camera coordinate system 𝐮, 𝐯,𝐰  
Origin: 𝐜 

Standard coordinates 𝐱, 𝐲, 𝐳 =
1
0
0
,
0
1
0
,
0
0
1

 



Derivation 

𝐲 
𝐱 

𝐳 

𝐲 
𝐱 

𝐳 

𝐯 

𝐮 
𝐰 

𝐜 



Derivation 

𝐲 
𝐱 

𝐳 

𝐯′ 

𝐮′ 𝐰′ 

−𝐜 

Same effect: 
Transform the world with 
inverse camera transform 

| | |

𝐮′ 𝐯′ 𝐰′
| | |

=
| | |
𝐮 𝐯 𝐰
| | |

−1

 



Derivation 

𝐲 
𝐱 

𝐳 

𝐯′ 

𝐮′ 𝐰′ 

−𝐜 

Transform: 

𝐩 →
| | |
𝐮 𝐯 𝐰
| | |

−1

𝐩 − 𝐜   

| | |

𝐮′ 𝐯′ 𝐰′
| | |

=
| | |
𝐮 𝐯 𝐰
| | |

−1

 



Derivation 

𝐲 
𝐱 

𝐳 

−𝐜 

Transform: 

𝐩 →
 − 𝐮 −
− 𝐯 −
− 𝐰 −

𝐩 − 𝐜   

𝐮, 𝐯,𝐰  orthogonal! 

𝐯′ 

𝐮′ 𝐰′ | | |
𝐮′ 𝐯′ 𝐰′
| | |

=
| | |
𝐮 𝐯 𝐰
| | |

−1

 



General Camera 

general camera 

𝐲 
𝐱 

𝐳 

camera in origin, 
view: z-direction 

𝐮 

𝐫 
𝐯 

𝐜 

Camera coordinate system 𝐮, 𝐫, 𝐯  
Origin: 𝐜 

Standard coordinates 𝐱, 𝐲, 𝐳 =
1
0
0
,
0
1
0
,
0
0
1

 

Transform: 

𝐩 →
 − 𝐮 −
− 𝐯 −
− 𝐰 −

(𝐩 − 𝐜)  



General Camera 

general camera 

𝐲 
𝐱 

𝐳 

𝐮 

𝐫 
𝐯 

𝐜 

Camera coordinate system 𝐮, 𝐫, 𝐯  
Origin: 𝐜 

Homogeneous: 
 

𝐩 →

 − 𝐮 − |

− 𝐯 − −𝐜′

− 𝐰 − |
0 0 0 1

𝐩   

𝐜′ =
 − 𝐮 −
− 𝐯 −
− 𝐰 −

𝐜 



Summary 

Projection (screen coord’s) 

𝐏𝑠 =

ℎ/2 0 0 𝑤/2
0 −ℎ/2 0 ℎ/2
0 0  1 0
0 0 0  1 

 ̇

1

tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0  1 0
0 0 0  1 

 ̇

1 0 0 0
0 1 0 0
0 0 1 −1
0 0 1 0

 

Add View Matrix 

𝐏𝑠 ⋅

 − 𝐮 − |

− 𝐯 − −𝐜′

− 𝐰 − |
0 0 0 1

 

Benefit: 
 

Still only one overall 
4×4 matrix 

to multiply with! 

(𝑓 = 1) 



Local Illumination 

Smooth Shading Simple Shadows Global Illumination 

3D Rendering Steps 

Visibility Perspective 

Geometric Model 



core topics 

important 

CORE 

basic topics 

study completely 

BASIC 

Visibility Algorithms 



Two Rendering Pipelines 

Rasterization 

 Project all triangles to the screen 

 Rasterize them (convert to pixels) 

 Determine visibility 

 Apply shading (compute color) 

Raytracing 

 Iterate over all pixels 

 Determine visible triangle 

 Compute shading, color pixel 

 



Triangle / Polygon Rasterization 

After Perspective 
Projection 

Observations 
 

Straight lines 
remain straight! 
 

Triangles mapped 
to triangles 
 

Polygons 
to polyogns 



Rasterization 

3D Scene 

Projection Visibility Rasterization 

Visiblity 

• preprocessing 

or 

• during rasterization 



Raytracing 

3D Scene 



Comparison 

Rasterization 

FOR (each triangle) { 

 compute pixels covered 
(“fragments”) 

 FOR (all fragments) { 

  fragment visible? 

  IF (visible) { 

   shade fragment 

   write color 

  } 

 } 

} 

Raytracing 

FOR (each pixel) { 

 compute visible triangle 

 IF (found) { 

  shade fragment 

  write color 

 } 

} 

 



Rasterization 

Focus for now: 

 Rasterization (Raytracing covered later) 

Two main algorithms 

 Painter’s algorithm (old) 

 Simple version 

 Correct version 

 z-Buffer algorithm 

 Dominant real-time method today 



core topics 

important 

CORE 

Painter’s Algorithm 



Painter’s Algorithm 

Painters Algorithm 

 Sort primitives back-to-front 

 Draw with overwrite 

Drawbacks 

 Slowish 

 𝒪(𝑛 ⋅ log 𝑛) for 𝑛 primitives 

 “Millions per second” 

 Wrong 

 Not guaranteed to always work 



Counter Example 

Correct Algorithm 

 Need to cut primitives 

 Several strategies 

 Notable: BSP Algorithm in Quake 

 Old graphics textbooks list many variants 

 No need for us to go deeper 



basic topics 

study completely 

BASIC 

z-Buffer Algorithm 



z-Buffer Algorithm 

Algorithm 

 Store depth value 
for each pixel 

 Initialize to MAX_FLOAT 

 Rasterize all primitives 

 Compute fragment depth & color 

 Do not overwrite if fragment is 
farer away than the one stored 
the one in the buffer 

color depth 



Discussion: z-Buffer 

Advantages 

 Extremely simple 

 Versatile – only primitive rasterization required 

 Very fast 

 GeForce 2 Ultra: 2GPixel /sec  
(release year: 2000) 

 GeForce 700 GTX Titan: 35 GPixel / sec 
(release year: 2013) 



Discussion: z-Buffer 

Disadvantages 

 Extra memory required 

 This was a serious in obstacle back then... 

 Invented 39 years ago (1974; Catmull / Straßer) 

 Only pixel resolution 

 Need painter’s algorithm for certain  
vector graphics computations 

 No transparency 

 This is a real problem for 3D games / interactive media 

 Often fall-back to sorting 

 Solution: A-Buffer, but no hardware support 

 



Smooth Shading Simple Shadows Global Illumination 

3D Rendering Steps 

Visibility Perspective 

Geometric Model 

Local Illumination 



core topics 

important 

CORE 

Shading Models 



mirror 

diffuse surface 

Reflectance Models 

glossy surface 



Interaction with Surfaces 

Local Shading Model 

 Single point light source 

 Shading model / material model 

 Input: light vector 𝐥 = 𝐩𝐨𝐬𝑙𝑖𝑔ℎ𝑡 − 𝐩𝐨𝐬𝑜𝑏𝑗𝑒𝑐𝑡  

 Input: view vector 𝐯 = 𝐩𝐨𝐬𝑐𝑎𝑚𝑒𝑟𝑎 − 𝐩𝐨𝐬𝑜𝑏𝑗𝑒𝑐𝑡  

 Input: surface normal 𝐧 (orthogonal to surface) 

 Output: color (RGB) 

Viewer 

Light 

object surface 

𝐯 𝐥 𝐧 

Formalization: BRDF 



Interaction with Surfaces 

General scenario 

 Multiple light sources? 

 Light is linear 

 Multiple light sources: add up contributions 

 Double light strength ⇒ double light output 

Formalization: BRDF 

Viewer 

Light 

object surface 

𝐯 𝐥 𝐧 



Remark 

Simplify notation 

 Define component-wise vector product 

𝐱 ∘ 𝐲 =

𝑥1
𝑥2
𝑥3
∘

𝑦1
𝑦2
𝑦3
≔

𝑥1 ⋅ 𝑦1
𝑥2 ⋅ 𝑦2
𝑥3 ⋅ 𝑦3

 

 No fixed convention in literature 

 The symbol “∘” only used in these lecture slides! 



Remark 

Lighting Calculations 

 Need to perform calculations for 𝑟, 𝑔, 𝑏-channels 

 Often: 
𝑜𝑢𝑡𝑝𝑢𝑡𝑟 = 𝑙𝑖𝑔ℎ𝑡𝑟 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑟 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐯, 𝐥, 𝐧  
𝑜𝑢𝑡𝑝𝑢𝑡𝑔 = 𝑙𝑖𝑔ℎ𝑡𝑔 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑔 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐯, 𝐥, 𝐧) 

𝑜𝑢𝑡𝑝𝑢𝑡𝑏 = 𝑙𝑖𝑔ℎ𝑡𝑏 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑏 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐯, 𝐥, 𝐧) 

 Shorter 
               𝐨𝐮𝐭𝐩𝐮𝐭 = 
𝐥𝐢𝐠𝐡𝐭_𝐬𝐭𝐫𝐞𝐧𝐠𝐭𝐡 ∘ 𝐦𝐚𝐭𝐞𝐫𝐢𝐚𝐥 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐯, 𝐥, 𝐧  



Area Light Sources 

Area Light Sources 

 Integrate over area 

 In practice often: 

 Sample with many point-light sources 

 Add-up contributions 

𝐥 

𝐯 

𝐧 

𝑛 light sources 
1

𝑛
 intensity 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Diffuse (“Lambertian”) Surfaces 

Equation 
𝑐 ~ cos 𝜃 

 Less light received at flat angles 
 

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃 

𝜃 
𝐧 

𝜃 

𝐧 𝐧 
surface 
normal 

light color 
surface color 

𝑐 – intensity (scalar) 

𝐜 – color (RGB, ℝ3) 

𝐜𝑟 – surface color (RGB) 

𝐜𝑙 – light color (RGB) 

(set to zero if negative) 



Diffuse (“Lambertian”) Surfaces 

Equation 
𝑐 ~ cos 𝜃             

 Less light received at flat angles 
 

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃 ⋅ 

𝜃 
𝐧 

𝜃 

𝐧 𝐧 
surface 
normal 

light color 
surface color 

𝑐 – intensity (scalar) 

𝐜 – color (RGB, ℝ3) 

𝐜𝑟 – surface color (RGB) 

𝐜𝑙 – light color (RGB) 

Attenuation: 
1

𝑑𝑖𝑠𝑡2
 

(point lights) 

1

𝑑𝑖𝑠𝑡2
 

1

𝑑𝑖𝑠𝑡2
 



Diffuse Reflection 

Diffuse Reflection 

 Very rough surface microstructure 

 Incoming light is scattered in all directions 
uniformly 

 “Diffuse” surface (material) 

 “Lambertian” surface (material) 



Surface Normal? 

What is a surface normal? 

 Tangent space: 

 Plane approximation 
at a point 𝐱 ∈ 𝒮 

 Normal vector:  

 Perpendicular to that plane 

 Oriented surfaces: 

 Pointing outwards 
(by convention) 

 Orientation defined only for 
closed solids 

point 𝐱 

surface 
normal 
𝐧 𝐱 ∈ ℝ3 

tangent 
space 

𝒮 



Triangles 

Single Triangle 

 Parametric equation 
 

𝐩1 + 𝜆 𝐩2 − 𝐩1 + 𝜇 𝐩3 − 𝐩1 |𝜆, 𝜇 ∈ ℝ  
 

 Tangent space: the plane itself 

 Normal vector 
𝐩2 − 𝐩1 × 𝐩3 − 𝐩1  

 Orientation convention: 
𝐩1, 𝐩2, 𝐩3 oriented counter-clockwise 

 Length: Any positive multiple works (often 𝐧 = 1) 

𝐩1 

𝐩2 

𝐩3 

𝐧 



Triangle Meshes 

Smooth Triangle Meshes 

 Store three different “vertex normals” 

 E.g., from original surface (if known) 

 Heuristic: 
Average neighboring triangle normals 



Lambertian Surfaces 

Equation 
 

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃 
 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ 𝐧, 𝐥  

𝜃 
𝐧 

𝜃 

𝐧 𝐧 
surface 
normal 

light direction 
normal vector 

𝐧 
𝐥 

(assuming: 𝐧 = 𝐥 = 1) 



Lambertian Bunny 

Face Normals Interpolated 
Normals 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



“Ambient Reflection” 

Problem 

 Shadows are pure black 

 Realistically, they should be gray 

 Some light should bounce around... 

 Solution: Add constant 
𝐜 = 𝐜𝑎 ∘ 𝐜𝑎 

 

 

 Not very realistic 

 Need global light transport simulation 
for realistic results 

ambient light color 
surface color 



Ambient Bunny 

Pure Lambertian Mixed with 
Ambient Light 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Perfect Reflection 

Perfect Reflection 

 Rays are perfectly 
reflected on surface 

 Reflection about 
surface normal 

     𝐫 = 2 𝐧, 𝐥 ⋅ 𝐧 − 𝐥 + 𝐥, 
𝐧 = 1 

            𝐥 arbitrary 

 

𝐧 

𝐥 𝐫 



Silver Bunny 

Perfect Reflection 

 Difficult to compute 

 Need to match camera 
and light emitter 

 More later: 

 Recursive raytracing 

 Right image: 
Environment mapping 
 

Reflective Bunny 
(Interpolated Normals) 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Glossy Reflection 

Glossy Reflection 

 Imperfect mirror 

 Semi-rough surface 

 Various models 



Phong Illumination Model 

Traditional Model: Phong Model 

 Physically incorrect 
(e.g.: energy conservation not guaranteed) 

 But “looks ok” 

 Always looks like plastic 

 On the other hand, our world is full of plastic... 



0

0,2

0,4

0,6

0,8

1

1,2

-90 -60 -30 0 30 60 90

p=1 p=2 p=5 p=10 p=50 p=100

How does it work? 

Phong Model: 

 “Specular” (glossy) part: 

𝐜 = 𝐜𝑝 ∘ 𝐜𝑙 ⋅
𝐫

𝐫
,
𝐯

𝐯

𝑝

 

 Ambient part: 
𝐜 = 𝐜𝑟 ∘ 𝐜𝑎 

 Diffuse part: 
𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ 𝐧, 𝐥  

 Add all terms together 

                       
cos ∠𝐫,𝐯

 

𝐥 

𝐯 
𝐫 

(high-) light 
color 

Phong Exponents 

𝐧 



Blinn-Phong 

Blinn-Phong Model: 

 “Specular” (glossy) part: 

𝐜 = 𝐜𝑝 ∘ 𝐜𝑙 ⋅
𝐡

𝐡
,
𝐧

𝐧

𝑝

 

 

 Half-angle direction 
 

𝐡 =
𝟏

𝟐

𝐥

𝐥
+
𝐯

𝐯
 

                       
cos ∠𝐡,𝐧

 
𝐥 

𝐯 𝐡 
𝐧 

 In the plane: ∠
𝐡

𝐡
,
𝐧

𝐧
=
1

2
∠
𝐫

𝐫
,
𝐯

𝐯
 

 Approximation in 3D 



Phong+Diffuse+Ambient Bunny 

Blinn-Phong Bunny Interpolated Normals 



Phong+Diffuse+Ambient Bunny 

Blinn-Phong Bunny Interpolated Normals 



Cook-Torrance Model 

Physically-Motivated Model 

 D – Infinitesimal micro-facets 

 Characterize by distribution 

 Expected reflection (density) 

 Gaussian, Beckmann,… 

 Approximate occlusion term (G) 

 F – Fresnel term 

 Model: wave-optics 

 Interaction of wave with surface under different angles 

 Percentage reflection/refraction 
𝐹 𝜃 = 𝑅0 + 1 − 𝑅0 1 − cos 𝜃

5 

cos 𝜃 = 𝐡, 𝐯        𝑅0 ="ratio of refractive indices" 

𝑐𝑠𝑝𝑒𝑐 =
𝐷 ⋅ 𝐺 ⋅ 𝐹

4 𝐯, 𝐧 𝐧, 𝐥
  



Artistic “Fresnel” 
Reflection 

unweighted reflection 

Approx. Fresnel-Reflection 

 𝐹 𝜃 ∼ 1 − cos 𝜃 𝑝 

Exponent 4 

Exponent 5 



Better Models 

Phong Bunny Cook-Torrance 
Model 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Transparency 

Transparency 

 “Alpha-blending” 

 𝛼 = “opacity” 

 Color + opacity: RGB𝛼  

Blending 

 Mix in 𝛼 of front color, 
keep 1 − 𝛼 of back color 
 

𝐜 = 𝛼 ⋅ 𝐜𝑓𝑟𝑜𝑛𝑡 + 1 − 𝛼 ⋅ 𝐜𝑏𝑎𝑐𝑘  
   

 Not commutative! (order matters) 

 unless monochrome 

50% red, 
50% green 

0.0
1.0
0.0
0.5

 

1.0
0.0
0.0
0.5

 

back 

front 



Refraction: Snell’s Law 

Refraction 

 Materials of different  
“index of refraction” 

 Light rays change direction 
at interfaces 

Snell’s Law 
sin 𝜃1
sin 𝜃2

=
𝑛2
𝑛1

 

 𝑛1, 𝑛2: indices of refraction 

 vacuum: 1.0, air: 1.000293 

 water: 1.33, glass: 1.45-1.6 

𝐧 

−𝐧 

𝜃1 

𝜃2 

𝑛2 
𝑛1 



Refraction 

Implementation 

 Not a local shading model 

 Global algorithms: mostly raytracing 

 Various “fake” approximations for local shading 

Refraction 

Reflection 

(raytraced) 



Simple Shadows Global Illumination 

3D Rendering Steps 

Visibility Perspective 

Geometric Model 

Local Illumination 

Smooth Shading 



core topics 

important 

CORE 

Shading Algorithms 



Flat Shading 

Flat Shading 
constant color per triangle 



Flat Shading 

“Gouraud Shading” Algorithm 
compute color at vertices, interpolate color for pixels 



Flat Shading 

“Phong Shading” Algorithm 
interpolate normals for each pixel 



Geometric Model 

Perspective Visibility Local Illumination 

Smooth Shading 

3D Rendering Steps 

Simple Shadows Global Illumination 

Next: Advanced Rasterization 



Geometric Model 

Perspective Visibility Local Illumination 

Smooth Shading 

3D Rendering Steps 

Simple Shadows Global Illumination 

Global Illum: Keep this for later 


