Graphics 2014

The Rasterization Pipeline

[Faculty of Science] PrOJ@CtIOﬂ, \/|S|b|||ty,
CDn:gL‘i:rgag;g:c':: & S h a d | n g # Universiteit Utrecht

Announcements
Practicals this week

Tuesday (today)
= Tue 9-11 (was held)
= Tue 13-15 canceled (programming contest)

Wednesday (tomorrow)
= Wed 15-17: additional practical slot
= We 17-19: additional practical slot

Thursday: no practicals

Addendum:

Matrix Algebra

core topics
important

Transposition

T -

Q

AN

Matrix Transposition

= Swap rows and columns
In other words: Flip around diagonal

= Formally:

o.._ T

Orthogonal Matrices

Othogonal Matrices

= (i.e., column vectors orthonormal)
MT =M1

= Proof: next three slides

Matrix Multiplication

o al’l *ee al,n
General matrix products: , _| : .]
= B A: possible if Am,1 Amn
#Row(A) = #Columns(B) 11 - bim]
n B=]1] : :
A _bkl bk,m_
1,1 1n
B - k1 Tkn
o .
k k
ij = z q,j " big
7=1
=B-A

Matrix Multiplication

Matrix Multiplication
A-B

~(, en)

= Scalar products of rows and columns

Matrix Multiplication

Othogonal matrices:

Transposition Rules

Transposition

= Multiplication:

= |[nversion:

= Inverse-transp.:

= Othogonality:

(A-B)f =B'. A
(A-B)"'=B"1.A"1
CORRICSR

[AT = A~1] & [A is orthogonal]

omogeneous Coordinates
(short version)

core topics
important

Problem

Translations are not linear
= x - Mx cannot encode translations
= Proof: Origin cannot be moved:

mq1 My Mq3\ /0 0
M-0= <m21 Mapy Maz3 ||O0]=10
Mgzq Mz M33/ \0 0

Homogeneous Coordinates

Solution: Just add a constant one

= |ncrease dimension R4 —» R4+1

= Last entry =1 in vectors
“Cheap Trick”, “Evil Hack”

myp My Mz U
My My Mp3z Ly
mszq M3y Mgz I3

0 0 0 1

M -x=

0 0 0 1/ \1

Homogeneous Coordinates

General case

M:-x =

S
N
(WY

S
N
N

S
N
w

S
N
N

_ N X

xl
g
Z
WI
= w' might be different from 1

= Convention: Divide by w-coord. before using

xI/WI
Result: (y:/w,)
zZ [w
1

Homogeneous Coordinates

General case

myp Mz Mq3 Myg\ /X V1 V1/Va
M. x = Ma1 Mpz Mz Mag \[X2 | _ (V2 — Vo /Va

M3zq Mgz Mgzz M3y || X3 V3 V3/Va

My1 My My3z Myy 1 Va 1

= Can express divisions by common denominator

Va = MyqXq + MypXy T My3X3 T MysXy

= Rules:
= Before using as 3D point, divide by last (4th) entry

= No normalization required during
subsequent transformations (matrix-mult.)

The Full Story?

Projective Geometry
= Not just an evil hack
= Deep & interesting theoretical background
= More on this later

For simplicity
= We'll treat it as a computational trick for now

Focus on the graphics application

= Remember for now:
We can build “4D Translation matrices” for 3D+1 points
We can “divide” by a common linear factor

D Rendering Overview

BASIC

basic topics
study completely

3D Computer Graphics

Three main aspects
= Modeling

= Describe 3D geometry mathematically
—~ From machine parts (e.g., CAD)
— To natural phenomena (e.g., fractals)

= Animation
= Set scenes into motion
- Simple: Camera fly-through
— Complex: Fluid simulation, huma

= Rendering
« Convert geometry into images
= Our Focus right now

-

INF Animation

Assumption
= 3D Model is given

= Triangle mesh
(for simplicity)

How do we get it to the screen?

Agenda

Upcoming Topics
= Modeling: mesh representation
= Physics: Perspective projection
= Rendering: Two main rendering methods

Rasterization

Perspective projection

Rasterization

Visibility

Shading

Programmable shaders / GPUs
Raytracing

3D Rendering Steps

Perspective Visibility Local lllumination

Smooth Shading Simple Shadows Global Illumination

3D Rendering Steps

Geometric Model

basic topics
study completely

Mesh Representation

Modeling Shapes

Primitives
= Elementary geometric building blocks
= Easy to handle directly yep,
triangles!

Complex models
= Sets of primitives

= Approximate shapes
with primitives

Most-frequently-used
= Triangles!

Simple Triangle List

Vertex list Triangle list

Vector3D vertices[n]; (int[3]) triangles[m];

(1) py=(x,v1,2,) @ ° (1) ty = (i1,)1, k1) A
(2) P2 = (x2,¥2,22) @ (2) ty = (iz, 2, k2) A
(3) P3 = (x3,¥3,23) @ (3) t3 = (i3»j3:k3) A
(4) Ps = (X4, Va,24) o

(1) Pn = (Xny Yy Zn) o

— (lm']r m/'-\ A
A
‘:°] 9*‘ TN

Modeling a Triangle
Triangle
Parametric

Plane Equation

(with constraints)

Triangles:
X(,):pl‘l‘ t1+ tz
=p; + A(p2 — p1) + 1(pP3 — p1)

0</.1<1,
0<u<sl,
+1<1

Attributes

How to define a triangle?
= We need three points in R?

= But we can have more:

per-vertex normal

texture per-vertex texture

< coordinate
per-vertex color
(etc...)

Complete Data Structures

Multiple Arrays: Vertices, Triangles, Edges

v,: (posx posy posz), attrib,, ..., attrib,
vy: (posx posy posz), attrib,, ..., attrib,
e;: (index; 1index,), attrib,, ..., attrib,

- edges:
ex: (index, index,), attrib,, ..., attrib, optional
t,: (1dx; 1dx, 1dx,), attrib,, ..., attrib,

ty: (1dx,; 1dx, 1dx,), attrib,, ..., attrib, i

3D Rendering Steps

Geometric Mode

Perspective

Physics
Ray Optics & Color

core topics
important

Ray Optics

\,

—

Geometric ray model
= Light travels along rays

Ray Optics

\.

—

Geometric ray model
= Rays have “intensity” and “color”

Ray Optics

reddish bluish

wavelength 1
700nm 390nm

Color spectrum
= Continuous spectrum
= |[ntensity for each wavelength

Human Vision

greenish

low light
(monochrome)

SN

re"'d! “\e bluish

wavelength 1
700nm 390nm

(curves: schematic, not accurate)

Color spectrum
= Two types of receptive cells (color/low-light)
= Three types of color cells

RGB Model

Bitmap (Pixel Display)

= Screen: w - h discrete pixels
Origin: usually upper left

= Varying color per pixel h=-17
RGB Model
= Every pixel can emit red, , blue light

= [ntensity range:

Usually: bytes 0...255 ﬂ e
a G: NN W=~ 2557
0 = dark Vo m— 55

W Hex: FFFFFF

255 = maximum brightness

Human Vision

Response curves: |

(ideal) monitor: human eye
emitted spectra -

Ny

wavelength 1
700nm 390nm

(curves: schematic, not accurate)

Create color impressions
= Basis for three-dimensional color space

= Wide spacing, narrow bands: purer colors
Otherwise: washed out colors

Physics
Perspective Projection

BASIC)

basic topics
study completely

Pinhole Camera

\/

/

Pinhole camera
= Create image by selecting rays of specific angles
= Low efficiency (small holes for sharp images)

Pinhole Camera

/”
- -
-
-
-
-
-
/"
s

AN
N
| &l
1'\

Ss
S
~,

Pinhole camera
= Create image by selecting rays of specific angles
= Low efficiency (small holes for sharp images)

Pinhole Camera

Central Projection

Pinhole Camera

— R 4
-
-
-
s
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- !/
-
-
-
-
.
-
-
-
-
-
-

F g
Central projection
F_ fo Proof:
X ='z Intercept theorem!

y' =/ égi

(Actual Camera)

| — N

Camera with Lens
= Higher efficiency (bundles many rays)
= Finite Depth of field
= We will consider pinhole cameras only.

Pinhole Camera

/”
-
/”
-
-
/”
-
-
-
P
-
-
-
- !/
-
-
-
-
-
-

O\

Undetermined degree of freedom

= Focal length vs. image size
= Source of a lot of confusion!

Pinhole Camera

‘ /

A\f -h

AN

Parameters
= /1 - size of the screen (pixels, cm, £1.0,...)
= [—focal length (classical photography)
= Meaningful parameter: a - viewing angle

Pinhole Camera

e

Relation:

Pinhole Camera

e

o o | L
'_

oa@_h W
N Y

= Scaling h and | by a common factor: no change

Invariance

Pinhole Camera

e

A\f—h

AN

Typical choices (vertical angles)
= “Normal” perspective: @ = 30° (“50mm” lens: 27°)
= Tele photography: a = 5°—20° (275-70mm)
= Wide angle lens: a =~ 45° —90° (28-12mm)

General Camera

Our camera so far:
= Focus point: origin
= View direction: z-axis
= General position/orientation?

Homogeneous Coordinates

X

I __ —_

x'=17

x' f0 0 0 X y
/ I

y_[o 5 0 o ||V y' =77

z' 0 0 1 —-1)\z °
W' 001 0/\1 i

\ v J 7
Projection Matrix P w' =2z

Write in homogeneous coordinates
= Third row is arbitrary (for now), not used.

View transtorm
/-

-ﬂ(L L

Reminder:

To Screen Coordinates

[- 0 0 0) 3
o)
tan (%) *':::;::"---"------- ------——+» 1
0 - 0 0 NIy &
tan (%) -
\ 0 0 1 0 / 1
0 0 0 1
+ 1
Scale to unit screen coordinates
0
= We set / to 1 in previous matrix =<]
-1

= Third row is arbitrary (for now), ~ormalized screen
not used. coordinates

Aspect Ratio

/W. (a) 0 0 0\

7 tan 5
1
0 — 0 0
tan (7)
\ 0 0 1 O /
0 0 0 1

Non-square screens?
= Screen: w X h pixels

= Aspect ratio —

= Different horizontal angle!

non-square
screen

+1

-1 0 +1

-1

normalized screen
coordinates

To Screen Coordinates

w /2 0 0 w/2
0 -—-h/2 0 h/2
0 0 1 0
0 0 0 1

Scale to pixels

= Third row is
arbitrary (for now),
not used.

+1
+1
_1
0
1 =’ T
_1 _1
0 w1
O »
0 w =1
Hh -1
h-1

To Screen Coordinates

h/2 w /2
@ =
) /2 h/2

a(3) w3
Vo 0 1 o/

Overall Additionally:
i Al le + shift such that
= Multiple both 50 scale * shift such tha
4= Zfar T Znear 7 =
N Z

Znear — Zfar : _
2 Znear Zrqr AT€IN value [0..1] for inputs

b= Z € [Znear: Zfar]

Znear — Zfar

sSummary

Projection matrix

0 0 0
b_[0 f 0 0
0 0 1 -1
00 1 0

w/2 0 0 wy/2\ | 7tanly 0 0 0
0 —h/2 0 h/2). 1 {0 0 0
P. =
S<o 0 1 o) 0 (a)o 0 <oo1—1>
tan | =
0 0 0 1 2 0 0 1 O
\ 0 0 1 o/
0 0 0 1
| v J | Y J | v J
scaling to pixels, normalized projection

upper left origin screen coord’s matrix

Alternative (1)

Alternative formulation: Only two steps
: an(3)

1
/mtan(g) 0 0 0\
w/2 0 h 2
0 —h/2
Ps=1 o 0/
0 0 1
\ 0 0 —1/
0 0 1 0
|

0 w/2
0 h/2). 1
1 0 0 O
0
1
l J o\

|
scaling to pixels, normalized g Projection
upper left origin screen coord’s™ matrix

= Different scale factors (not a focal length)

. 1 1
Use two different scale factors f, = Tran(2) fy = tan(®)

Alternative (2)

Another Alternative Formulation
/ - 0 0 O\

a
h/2 0 0 w/2 tan(})
0 -—-h/2 0 h/2}). 1
p. = / /)
0 0 1 0 tan(g)
0 o 0 1 2
\ 0 0 —1/
+1 vl 0 0 1 0
l J \)
. ' . . ' .
w0 v scaling to pixels, vertically normalized 2 projection
h H upper left origin screen coord’s matrix
=1

1

tan(5)

= Intermediate result not normalized to [—1,1]?

= Constant focal length /=

Alternatives

All three derivations lead to the same result
= Intermediate results not used = all equivalent
= Product of the 2/3 matrices is the same

Intermediate results being used:

= Some graphics APIs (e.g., OpenGL) do use
normalized device coordinates as intermediate

OpenGL - for pixels to appear on screen:

x" € [—1,1]

y' € [-1,1]

- __0,1) coupled, so this

wE -Znear'zfar) is the same criterion

General Camera

general camera

*
N7

' 3
~
RN Sso
N NSO
N .o

camera in origin, view in z-direction

General Camera

general camera

camera in origin, view in z-direction

General Camera

general camera

\%

". Camera coordinate system (u, v, w)
Y Y Origin: c
W

17 107 [0
Standard coordinates (x,y,z) = ([0] , [1] , [OD
0ol 104 L1

camera in origin,
view: z-direction

Derivation

Derivation

Same effect:
Transform the world with

inverse camera transform

N
A

IR
»4@\‘? 1L

W=
Y

Derivation

Transform:

Derivation

Transform: {u, v, w} orthogonal!

_ im'bAk \/

1 > / §
<| | |> v ALY
=(u v w ,

2

General Camera

general camera

_ u
%

Camera coordinate system (u,r, V)

7 r . e
’ 7 v Origin: c

Transform:

—u -
p—><— \4 —)(p—C)
e

17 107 [0
Standard coordinates (x,y,z) = ([0] , [1] , [OD
0ol 104 L1

camera in origin,
view: z-direction

General Camera

general camera

u

<

%\. Camera coordinate system (u,r, V)
\'/ ' Origin:
Vv

Homogeneous:
— 0 — \
— Vv —_ —C’

P (p)
0o 0 0 1/

Summary

Projection (screen coord’s)

/tan(%) 0 0 O\

S~

o O

_ -0 O

o O

-1

-}

hj2 0 0 w/2
[0o -n;2 0 np2). 1 o
o o0 0 1 2 0
\ 0 0 1 o/
0 0 0 1
Add View Matrix
-
Benefit: - u - |
Still only one overall p.-|— VvV ~ —c’
4x4 matrix - W - |
to multiply with! o 0 0 1

Geometric Model

Perspective Visibility

thms

lity Algor

Visib

core topics

important

basic topics
study completely

Two Rendering Pipelines

Rasterization

Project all triangles to the screen
Rasterize them (convert to pixels)

Determine visibility

= Apply shading (compute color)

Raytracing
= |[terate over all pixels

= Determine visible triangle

= Compute shading, color pixel

Triangle / Polygon Rasterization

After Perspective
Projection

Observations

Straight lines
remain straight!

Triangles mapped
to triangles

Polygons
to polyogns

Rasterization

J Visiblity
& * preprocessing
or
* during rasterization
3D Scene &
D’
/‘*V
|

Projection Visibility Rasterization

Raytracing

3D Scene

I

Comparison

Rasterization

FOR (each triangle) {

compute pixels covered
(“fragments”)

FOR (all fragments) {
fragment visible?
IF (visible) {
shade fragment
write color

Raytracing

FOR (each pixel) {
compute visible triangle
IF (found) {
shade fragment
write color

Rasterization

Focus for now:
= Rasterization (Raytracing covered later)

Two main algorithms

= Painter’s algorithm (old)
Simple version
Correct version

= z-Buffer algorithm
Dominant real-time method today

Painter’s Algorithm

core topics
important

Painter's Algorithm

Painters Algorithm
= Sort primitives back-to-front
= Draw with overwrite

Drawbacks

= Slowish
O(n - logn) for n primitives
“Millions per second”

= Wrong

Not guaranteed to always work

x| > X5

Counter Example
7

Correct Algorithm
= Need to cut primitives

= Several strategies
Notable: BSP Algorithm in Quake
Old graphics textbooks list many variants
No need for us to go deeper

Buffer Algorithm

BASIC

basic topics
study completely

z-Butfer Algorithm

Algorithm

= Store depth value
for each pixel

= |nitialize to MAX_FLOAT

= Rasterize all primitives
Compute fragment depth & color

Do not overwrite if fragment is
farer away than the one stored
the one in the buffer

color depth

Discussion: z-Buffer

Advantages
= Extremely simple
= Versatile - only primitive rasterization required

= Very fast

GeForce 2 Ultra: 2GPixel /sec
(release year: 2000)

GeForce 700 GTX Titan: 35 GPixel / sec
(release year: 2013)

Discussion: z-Buffer

Disadvantages

= Extra memory required
= This was a serious in obstacle back then...
= Invented 39 years ago (1974; Catmull / Stral3er)

= Only pixel resolution
= Need painter’s algorithm for certain
vector graphics computations
= No transparency
= This is a real problem for 3D games / interactive media
= Often fall-back to sorting
= Solution: A-Buffer, but no hardware support

Perspective Visibility Local lllumination

Shading Models

core topics
important

Reflectance Models

mirror

4

e —————

glossy surface

,,,,,

diffuse surface

,,,,,,,

INteraction with Surfaces

%“’v/ Light -—

\ (=7)
Viewer\‘ n é

J
object surface

Local Shading Model
= Single point light source Formalization: BRDF

= Shading model / material model
Input: light vector 1 = (— posobject)
Input: view vector v = (poScamera — POSopject)

Input: surface normal n (orthogonal to surface)
Output: color (RGB)

INteraction with Surfaces

T S
\ Hght o
Viewer\‘n é
L
object surface
General scenario Formalization: BRDF

= Multiple light sources?

Light is linear

Multiple light sources: add up contributions
Double light strength = double light output

Remark

Simplify notation
= Define component-wise vector product

X1 V1 X1V
Xoy=|Xz2|o|V2]|:=|X2"D2
X3 Y3 X3 Y3

= No fixed convention in literature
= The symbol “°” only used in these lecture slides!

Remark

Lighting Calculations

= Need to perform calculations for r, g, b-channels
= Often:

output, = light, - material, - function(v,1,n)

output, = light, - material, - function(v,1,n)

output, = light, - material, - function(v,1, n)
= Shorter

output =
light_strength o material - function(v,1,n)

Area Light Sources

Area Light Sources
= Integrate over area

= |n practice often:
Sample with many point-light sources

, , n light sources
Add-up contributions

1. .
~ intensity

””

Shading Effects

Shading effects
= Diffuse reflection
= “Ambient reflection”
= Perfect mirrors

= Glossy reflection
Phong / Blinn-Phong
(Cook Torrance)

= Transparency & refraction

Shading Effects

Shading effects
=| Diffuse reflection
= “Ambient reflection”
= Perfect mirrors

= Glossy reflection
Phong / Blinn-Phong
(Cook Torrance)

= Transparency & refraction

Diffuse (“Lambertian”) Surfaces

::......" n ”"_"““‘
surface
normal

c - intensity (scalar)

Eq UatiOn (set to zero {negative) ¢ - color (RGE, R)
C ~ COoS 0 c, - surface color (RGB)
- light color (RGB)

= Less light received at flat angles

C=C,oC,-CoS0O
T t— light color
surface color

Diffuse (“Lambertian”) Surfaces

::......f” n "”-‘_"““‘
surface
normal
c - intensity (scalar)

Equatlon , c - color (RGB, R3)
Cc ~ coS 6 T c, - surface color (RGB)

- light color (RGB)

= Less light received at flat angles
1

— (o) . .
Attenuation: — =& ' CO-S(H) dist?
' dist? I light color

(point lights)

surface color

Diffuse Reflection

—————————————————————— ‘
- ~ - . - ~
- N - ~ . N
7 ~ 7 ~ / “ \
, \ , \ , \
4 \ 4 \ 4 N
/ \ / \ / \
/ \ / \ / \
/ \ / \ ’
/ \ K \ /
] \ / \ \
1 \ \ 1 \ 1 —Y \
i \ I \ I \

Diffuse Reflection
= Very rough surface microstructure

= Incoming light is scattered in all directions
uniformly

= “Diffuse” surface (material)
= “Lambertian” surface (material)

Surface Normal?

surface
What is a surface normal? normal s
nx) e R
= Tangent space: S
Plane approximation
ata pointxes ¢ .
= Normal vector: tangentass SER *

_ space
Perpendicular to that plane

= Oriented surfaces:

Pointing outwards
(by convention)

Orientation defined only for
closed solids

Triangles

P2
Tn

Ps3

Single Triangle
= Parametric equation P1
{p1 + 4(p2 — p1) + (p3s — PIL 1L ER}

Tangent space: the plane itself

= Normal vector
(P2 — pP1) X (p3 — p1)

Orientation convention:
P1, P2, P3 Oriented counter-clockwise

Length: Any positive multiple works (often ||n|| = 1)

Triangle Meshes

Smooth Triangle Meshes
= Store three different “vertex normals”

E.g., from original surface (if known)

= Heuristic:
Average neighboring triangle normals

Lambertian Surfaces

::......" n ”"_"““‘
surface
normal

Equation
C=c,o

:CTO

. cos 6 n

-(n, 1)

‘ L— light direction
normal vector

(assuming: [[nf| = [|I| = 1)

Lambertian Bunny

Face Normals Interpolated
Normals

Shading Effects

Shading effects
= Diffuse reflection
= “Ambient reflection”
= Perfect mirrors

= Glossy reflection
Phong / Blinn-Phong
(Cook Torrance)

= Transparency & refraction

"Ambient Reflection”

Problem
= Shadows are pure black
= Realistically, they should be gray

Some light should bounce around...

= Solution: Add constant
C=cC,o©
I t— ambient light color
surface color

= Not very realistic

Need global light transport simulation
for realistic results

Ambient Bunny

 /

Pure Lambertian Mixed with
Ambient Light

Shading Effects

Shading effects
= Diffuse reflection
= “Ambient reflection”
=| Perfect mirrors

= Glossy reflection
Phong / Blinn-Phong
(Cook Torrance)

= Transparency & refraction

Perfect Reflection

Perfect Reflection

= Rays are perfectly
reflected on surface

= Reflection about L

surface normal Y
r=2(n,1)-n—1)+1, r
In|[=1

arbitrary

—

[S/ |

.-
s'\ / é

Silver Bunny

Perfect Reflection

= Difficult to compute
Need to match camera
and light emitter

= More later:
Recursive raytracing

Right image:
Environment mapping

Reflective Bunny
(Interpolated Normals)

Shading Effects

Shading effects
= Diffuse reflection
= “Ambient reflection”
= Perfect mirrors

= Glossy reflection
Phong / Blinn-Phong
(Cook Torrance)

= Transparency & refraction

Glossy Reflection

I,’ \\
4 P S
/ \ ’ AN
1 \] \
\ 1 i \
\ I H \
\] \ 1
\\ / \ 1 [p——
7 N, 1 - S
\\¥// ~ ' —~—
N / \\ \ \\
\\\’ / ~ ~ —
4 S S

Glossy Reflection
= Imperfect mirror
= Semi-rough surface
= Various models

Phong lllumination Model

Traditional Model: Phong Model

= Physically incorrect
(e.g.. energy conservation not guaranteed)

= But “looks ok”

Always looks like plastic
On the other hand, our world is full of plastic...

How does it work?

Phong Model:
= “Specular” (glossy) part:

p
r V
C =(C., o .
p)
(nigh-)light 1 <||1‘|| ||V|>

color ~ —

= Ambient part:
C=¢C,o0

COS 41,V

= Diffuse part:
C = CT © | <n,)

= Add all terms together

Phong Exponents
1

0,8
0,6
0,4
0,2

0

-90 -60 -30 0 30 60 90
—p=1—p=2 —p=5-—p=10—p=50 —p=100

Blinn-Phong

Blinn-Phong Model.
= “Specular” (glossy) part:

A\
h n p Q

C =C.,o
P IIhII IInII

CcoS Ah n

= Half-angle direction

1(V)
r \'%

g h

-

-Intheplane:A(h,“):EA(,
™ [|n] 2 NIl vl
= Approximation in 3D

)

Phong+Diffuse+Ambient Bunny

Blinn-Phong Bunny Interpolated Normals

Phong+Diffuse+Ambient Bunny

Blinn-Phong Bunny Interpolated Normals

Cook-Torrance Model

Physically-Motivated Model
= D - Infinitesimal micro-facets D-C-F

- Characterize by distribution “spec = 20y n)(n, 1)
= Expected reflection (density)
= Gaussian, Beckmann,...

= Approximate occlusion term (G)

= F - Fresnel term

= Model: wave-optics
= Interaction of wave with surface under different angles
= Percentage reflection/refraction
F(8) =Ry + (1 —Ry)(1—cosh)>
cosd = (h,v) R, ="ratio of refractive indices"

Artistic “Fresnel” exponent4
Reflection

Approx. Fresnel-Reflection
F(@) ~ (1 —cosB)P

unweighted reflection
Exponent 5

Better Models

Phong Bunny Cook-Torrance
Model

Shading Effects

Shading effects
= Diffuse reflection
= “Ambient reflection”
= Perfect mirrors

= Glossy reflection
Phong / Blinn-Phong
(Cook Torrance)

= Transparency & refraction

Transparency

Transparency o o
= “Alpha-blending” 0.0 ‘W/‘ 0.0
= o ="opacity” 05l TR -

| N/
= Color + opacity: RGBa 50% red, front
50% green back

Blending 0 4

= Mix in « of front color, — T

keep 1 — a of back color
C=0a- Crront + (1—a) - Ccpack

= Not commutative! (order matters)
unless monochrome

Refraction: Snell's Law

Refraction

= Materials of different
“index of refraction”

= Light rays change direction
at interfaces

Snell's Law
sinfy ny
sinf, ny

= n4,n,: indices of refraction
vacuum: 1.0, air: 1.000293
water: 1.33, glass: 1.45-1.6

Refraction

'R

Refraction

(raytraced)
Implementation

= Not a local shading model

= Global algorithms: mostly raytracing

= Various “fake” approximations for local shading

3D Rendering Steps

Perspective Visibility Local lllumination

Smooth Shading

Shading Algorithms

core topics
important

Flat Shading

@,

Flat Shading
constant color per triangle

Flat Shading

“Gouraud Shading” Algorithm
compute color at vertices, interpolate color for pixels

Flat Shading

“Phong Shading” Algorithm
interpolate normals for each pixel

3D Rendering Steps

Next: Advanced Rasterization

—

e

Simple Shadows Global lllumination

3D Rendering Steps

Global lllum: Keep this for later

—

e

Simple Shadows Global lllumination

