
Graphics 2014 

The Rasterization Pipeline 
Projection, Visibility, 

& Shading 



Announcements 

Practicals this week 

Tuesday (today) 

 Tue 9-11 (was held) 

 Tue 13-15 canceled (programming contest) 

Wednesday (tomorrow) 

 Wed 15-17: additional practical slot 

 We 17-19: additional practical slot 

Thursday: no practicals 



core topics 

important 

CORE 

Addendum: 

Matrix Algebra 



Transposition 

Matrix Transposition 

 Swap rows and columns 

 In other words: Flip around diagonal 

 Formally: 
⋱ ⋅ ⋰
⋅ ⋅ ⋅
⋅      ⋅
⋅ ⋅ ⋅
⋰ ⋅ ⋱

T

=
⋱ ⋅ ⋅ ⋅ ⋰
⋅ ⋅     ⋅ ⋅
⋰ ⋅ ⋅ ⋅ ⋱

 

    
                           

 

T 

= 

𝑎𝑖,𝑗 𝑎𝑗,𝑖 



Orthogonal Matrices 

Othogonal Matrices 

 (i.e., column vectors orthonormal) 
𝐌𝑇 = 𝐌−1 

 Proof: next three slides 



Matrix Multiplication 

General matrix products: 

 𝐁 ⋅ 𝐀: possible if 
#Row(𝐀) = #Columns(𝐁) 

° 

𝐀 

𝐁 

𝐀 =

𝑎1,1 ⋯ 𝑎1,𝑛
⋮  ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

 

𝐁 =

𝑏1,1 ⋯ 𝑏1,𝑚
⋮  ⋮
𝑏𝑘,1 ⋯ 𝑏𝑘,𝑚

 

𝑘 

𝑚 𝑛 

𝑛 

𝑚 

𝑘 

𝐑 =

𝑟1,1 ⋯ 𝑟1,𝑛
⋮  ⋮
𝑟𝑘,1 ⋯ 𝑟𝑘,𝑛

 

𝐑 = 𝐁 ⋅ 𝐀 

𝑟𝑖,𝑗 =  𝑎𝑞,𝑗 ⋅ 𝑏𝑖,𝑞

𝑚

𝑞=1

 



Matrix Multiplication 

Matrix Multiplication 

𝐀 ⋅ 𝐁 
  

=

− 𝐚1 −
 ⋮  
− 𝐚𝑑 −

⋅

|  |
𝐛1 ⋯ 𝐛𝑑
|  |

 

  

=
⋱  ⋰
 𝐚𝑖 , 𝐛𝑗  
⋰  ⋱

 

  

 Scalar products of rows and columns 



Matrix Multiplication 

Othogonal matrices: 

𝐀T ⋅ 𝐀 
  

=

− 𝐚1 −
 ⋮  
− 𝐚𝑑 −

⋅
|  |
𝐚1 ⋯ 𝐚𝑑
|  |

 

  

=
⋱  ⋰
 𝐚𝑖 , 𝐚𝑗  
⋰  ⋱

=
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

= 𝐈 

  

 

𝐚1 

𝐚2 



Transposition Rules 

Transposition 

 Multiplication: 𝐀 ⋅ 𝐁 T = 𝐁T ⋅ 𝐀T 

 Inversion: 𝐀 ⋅ 𝐁 −1 = 𝐁−1 ⋅ 𝐀−1 

 Inverse-transp.: 𝐀T
−1
= 𝐀−1 T 

 Othogonality: 𝐀T = 𝐀−1 ⇔ 𝐀 is orthogonal  

 



core topics 

important 

CORE 

Homogeneous Coordinates 
(short version) 



Problem 

Translations are not linear 

 𝐱 → 𝐌𝐱 cannot encode translations 

 Proof: Origin cannot be moved: 
 

𝐌 ⋅ 𝟎 =

𝑚11 𝑚12 𝑚13
𝑚21 𝑚22 𝑚23
𝑚31 𝑚32 𝑚33

0
0
0
=
0
0
0

 



Homogeneous Coordinates 

Solution: Just add a constant one 

 Increase dimension ℝ𝑑 → ℝ𝑑+1 

 Last entry = 1 in vectors 

 “Cheap Trick”, “Evil Hack” 
 

𝐌′ ⋅ 𝐱 =

𝑚11 𝑚12 𝑚13 𝑡1
𝑚21 𝑚22 𝑚23 𝑡2
𝑚31 𝑚32 𝑚33 𝑡3
0 0 0 1

𝑥
𝑦
𝑧
1

 

  

 =

⋱ ⋰ |

𝐌 𝐭
⋰ ⋱ |
0 0 0 1

|
𝐱
|
1

=

|
𝐌𝐱 + 𝐭
|
1

 



Homogeneous Coordinates 

General case 
 

𝐌 ⋅ 𝐱 =

𝑚11 𝑚12 𝑚13 𝑚14
𝑚21 𝑚22 𝑚23 𝑚24
𝑚31 𝑚32 𝑚33 𝑚34
𝑚41 𝑚42 𝑚43 𝑚44

𝑥
𝑦
𝑧
1

=

𝑥′
𝑦′

𝑧′
𝑤′

 

 𝑤′ might be different from 1 

 Convention: Divide by 𝑤-coord. before using  
 

Result: 

𝑥′/𝑤′

𝑦′/𝑤′

𝑧′/𝑤′
1

 



Homogeneous Coordinates 

General case 
 

𝐌 ⋅ 𝐱 =

𝑚11 𝑚12 𝑚13 𝑚14
𝑚21 𝑚22 𝑚23 𝑚24
𝑚31 𝑚32 𝑚33 𝑚34
𝑚41 𝑚42 𝑚43 𝑚44

𝑥1
𝑥2
𝑥3
1

=

𝑦1
𝑦2
𝑦3
𝑦4

≡

𝑦1/𝑦4
𝑦2/𝑦4
𝑦3/𝑦4
1

 

 Can express divisions by common denominator 
 

𝑦4 = 𝑚41𝑥1 +𝑚42𝑥2 +𝑚43𝑥3 +𝑚44𝑥4 

 Rules: 

 Before using as 3D point, divide by last (4th) entry 

 No normalization required during 
subsequent transformations (matrix-mult.) 



The Full Story? 

Projective Geometry 

 Not just an evil hack 

 Deep & interesting theoretical background 

 More on this later 

For simplicity 

 We’ll treat it as a computational trick for now 

 Focus on the graphics application 

 Remember for now: 

 We can build “4D Translation matrices” for 3D+1 points 

 We can “divide” by a common linear factor 



Now for 

3D Rendering 



basic topics 

study completely 

BASIC 

3D Rendering Overview 



3D Computer Graphics 

Three main aspects 

 Modeling 

 Describe 3D geometry mathematically 

– From machine parts (e.g., CAD) 

– To natural phenomena (e.g., fractals) 

 Animation 

 Set scenes into motion 

– Simple: Camera fly-through 

– Complex: Fluid simulation, human motion 

 Rendering 

 Convert geometry into images 

 Our Focus right now 



3D Rendering 

Assumption 

 3D Model is given 

 Triangle mesh 
(for simplicity) 

How do we get it to the screen? 



Agenda 

Upcoming Topics 

 Modeling: mesh representation 

 Physics: Perspective projection 

 Rendering: Two main rendering methods 

 Rasterization 

– Perspective projection 

– Rasterization 

– Visibility 

– Shading  

– Programmable shaders / GPUs 

 Raytracing 



Geometric Model 

Perspective Visibility Local Illumination 

Smooth Shading Simple Shadows Global Illumination 

3D Rendering Steps 



Perspective Visibility Local Illumination 

Smooth Shading Simple Shadows Global Illumination 

Geometric Model 

3D Rendering Steps 



basic topics 

study completely 

BASIC 

Modeling 

Mesh Representation 

basic topics 

study completely 

BASIC 

basic topics 

study completely 

BASIC 



Modeling Shapes 

Primitives 

 Elementary geometric building blocks 

 Easy to handle directly 

Complex models 

 Sets of primitives 

 Approximate shapes 
with primitives 

Most-frequently-used 

 Triangles! 

yep, 
triangles! 



Simple Triangle List 

Vertex list 
Vector3D vertices[n]; 

(1)  𝐩1 = (𝑥1, 𝑦1, 𝑧1) 

(2)  𝐩2 = (𝑥2, 𝑦2, 𝑧2) 

(3)  𝐩3 = (𝑥3, 𝑦3, 𝑧3) 

(4)  𝐩4 = (𝑥4, 𝑦4, 𝑧4) 
 

⋮     

(n)  𝐩n = (𝑥𝑛, 𝑦𝑛, 𝑧𝑛) 

 

Triangle list 
(int[3]) triangles[m]; 

(1)  𝐭1 = (𝑖1, 𝑗1, 𝑘1) 

(2)  𝐭2 = (𝑖2, 𝑗2, 𝑘2) 

(3)  𝐭3 = (𝑖3, 𝑗3, 𝑘3) 
 

⋮     

(m) 𝐭m = (𝑖𝑚, 𝑗𝑚, 𝑘𝑚) 

 



Modeling a Triangle 

Triangle 

Triangles: 
𝐱 𝜆, 𝜇 = 𝐩1 + 𝜆𝐭1 + 𝜇𝐭2 

= 𝐩1 + 𝜆 𝐩2 − 𝐩1 + 𝜇 𝐩3 − 𝐩1  
 

0 ≤ 𝜆 ≤ 1, 
0 ≤ 𝜇 ≤ 1, 
𝜇 + 𝜆 ≤ 1 

Parametric  
Plane Equation 

(with constraints) 
 

0 

𝐩1  

t1 

t2 

𝐩3  

𝐩2  



Attributes 

How to define a triangle? 

 We need three points in ℝ3 

 But we can have more: 

per-vertex normal 

per-vertex color 

texture per-vertex texture 
coordinates 

(etc...) 



Complete Data Structures 

Multiple Arrays: Vertices, Triangles 
 

v1: (posx posy posz), attrib1, ..., attribn 
                    ... 

vN: (posx posy posz), attrib1, ..., attribn 

 

e1: (index1 index2), attrib1, ..., attribk 
                    ... 

eK: (index1 index2), attrib1, ..., attribk 

 

t1: (idx1 idx2 idx3), attrib1, ..., attribm 
                    ... 

tM: (idx1 idx2 idx3), attrib1, ..., attribm 
 

edges: 
optional 

, Edges 



Visibility Local Illumination 

Smooth Shading Simple Shadows Global Illumination 

Geometric Model 

3D Rendering Steps 

Perspective 



core topics 

important 

CORE 

Physics 

Ray Optics & Color 



Ray Optics 

Geometric ray model 

 Light travels along rays 



Ray Optics 

Geometric ray model 

 Rays have “intensity” and “color” 



Ray Optics 

Color spectrum 

 Continuous spectrum 

 Intensity for each wavelength 

wavelength 𝜆 

390nm 700nm 

reddish bluish 

gray with a  
tint of green 



Human Vision 

Color spectrum 

 Two types of receptive cells (color/low-light) 

 Three types of color cells 

reddish 
bluish 

greenish 

wavelength 𝜆 

390nm 700nm 

low light 
(monochrome) 

(curves: schematic, not accurate) 



RGB Model 

Bitmap (Pixel Display) 

 Screen: 𝑤 ⋅ ℎ discrete pixels 

 Origin: usually upper left 

 Varying color per pixel 

RGB Model 

 Every pixel can emit red, green, blue light 

 Intensity range:  

 Usually: bytes 0...255 

 000 = dark 

 255 = maximum brightness 

 

𝑤 

ℎ 

x-coord. 

y
-c

o
o

rd
. 

0 w – 1 

h – 1 



Human Vision 

Create color impressions 

 Basis for three-dimensional color space 

 Wide spacing, narrow bands: purer colors 

 Otherwise: washed out colors 

wavelength 𝜆 

390nm 700nm 

(curves: schematic, not accurate) 

Response curves: 
human eye (ideal) monitor: 

emitted spectra 



basic topics 

study completely 

BASIC 

Physics 

Perspective Projection 



Pinhole Camera 

Pinhole camera 

 Create image by selecting rays of specific angles 

 Low efficiency (small holes for sharp images) 



Pinhole Camera 

Pinhole camera 

 Create image by selecting rays of specific angles 

 Low efficiency (small holes for sharp images) 



Pinhole Camera 

Central Projection 



Pinhole Camera 

Central projection 

𝑥′ = 𝑓
𝑥

𝑧
 

𝑦′ = 𝑓
𝑦

𝑧

 

𝑦′ 

𝑦 

𝑓 
𝑧 

Proof: 
Intercept theorem! 



(Actual Camera) 

Camera with Lens 

 Higher efficiency (bundles many rays) 

 Finite Depth of field 

 We will consider pinhole cameras only. 



Pinhole Camera 

𝑦′ 

𝑦 

𝑓 
𝑧 

Undetermined degree of freedom 

 Focal length vs. image size 

 Source of a lot of confusion! 

𝑥′ = 𝑓
𝑥

𝑧
 

𝑦′ = 𝑓
𝑦

𝑧

 



Pinhole Camera 

Parameters 

 h - size of the screen (pixels, cm, ±1.0,...) 

 f – focal length (classical photography) 

 Meaningful parameter:     – viewing angle 

h 
𝑓 

𝛼 

𝛼 



Pinhole Camera 

Relation: 

tan
𝛼

2
=
ℎ

2𝑓
 

h 
𝑓 

𝛼 



Pinhole Camera 

Invariance 

 

 

 Scaling h and f by a common factor: no change 

h 

𝑓′ 

𝛼 

tan
𝛼

2
=
ℎ

2𝑓
=
ℎ′

2𝑓′
=
ℎ′′

2𝑓′′
 

ℎ′ ℎ′′ 

𝑓 𝑓′′ 



Pinhole Camera 

Typical choices (vertical angles) 

 “Normal” perspective: 𝛼 ≈ 30° (“50mm” lens: 27°) 

 Tele photography: 𝛼 ≈ 5° − 20° (275–70mm) 

 Wide angle lens: 𝛼 ≈ 45° − 90° (28–12mm) 

h 
𝑓 

𝛼 



General Camera 

Our camera so far: 

 Focus point: origin 

 View direction: z-axis 

 General position/orientation? 

𝑦′ 

𝑦 

𝑓 
𝑧 

𝑥′ = 𝑓
𝑥

𝑧
 

𝑦′ = 𝑓
𝑦

𝑧

 



Homogeneous Coordinates 

Write in homogeneous coordinates 

 Third row is arbitrary (for now), not used. 

𝑥′ = 𝑓
𝑥

𝑧 
 

  𝑦′ = 𝑓
𝑦

𝑧
 

  𝑧′ =
𝑧 − 1

𝑧
 

 𝑤′ = 𝑧 

𝑥′
𝑦′

𝑧′
𝑤′

=

𝑓 0 0 0
0 𝑓 0 0
0 0 1 −1
0 0 1 0

𝑥
𝑦
𝑧
1

 

Projection Matrix P 



View transform 

Reminder: 

h 𝛼 

tan
𝛼

2
=
ℎ

2𝑓
 

ℎ′′ 

𝑓 



To Screen Coordinates 

Scale to unit screen coordinates 

 We set 𝑓 to 1 in previous matrix 

 Third row is arbitrary (for now), 
not used. 

1

tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0  1 0
0 0 0  1 

 

+ 1 

– 1 

+ 1 
– 1 

0 

+ 1 – 1 

+ 1 

– 1 

0 

normalized screen 
coordinates 



Aspect Ratio 

Non-square screens? 

 Screen: w× ℎ pixels 

 Aspect ratio 
𝑤

ℎ
  

 Different horizontal angle! 

1
𝑤
ℎ
⋅ tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0  1 0
0 0 0  1 

 

+ 1 – 1 

+ 1 

– 1 

0 

normalized screen 
coordinates 

non-square 
screen 

h – 1 

w – 1 



To Screen Coordinates 

Scale to pixels 

 Third row is 
arbitrary (for now), 
not used. 

𝑤/2 0 0 𝑤/2
0 −ℎ/2 0 ℎ/2
0 0  1 0
0 0 0  1 

 

x-coord. 

y
-c

o
o

rd
. 

0 w – 1 

h – 1 

0 

+ 1 

– 1 

+ 1 
– 1 

0 
+ 1 – 1 

+ 1 

– 1 

0 

0 

h – 1 

w – 1 



To Screen Coordinates 

Overall 

 Multiple both 

ℎ/2

tan
𝛼
2

0 0
𝑤/2

tan
𝛼
2

0 −
ℎ/2

tan
𝛼
2

0
ℎ/2

tan
𝛼
2

0 0  1 0
0 0 1  0 

 

Additionally: 
Also scale + shift such that 

𝑧′ =
𝑧 − 1

𝑧
 

are in value [0..1] for inputs 
𝑧 ∈ [𝑧𝑛𝑒𝑎𝑟 , 𝑧𝑓𝑎𝑟] 

a         b 

𝑎 =
𝑧𝑓𝑎𝑟 + 𝑧𝑛𝑒𝑎𝑟

𝑧𝑛𝑒𝑎𝑟 − 𝑧𝑓𝑎𝑟
 

𝑏 =  
2 ⋅ 𝑧𝑛𝑒𝑎𝑟 ⋅ 𝑧𝑓𝑎𝑟

𝑧𝑛𝑒𝑎𝑟 − 𝑧𝑓𝑎𝑟
 



Summary 

Projection matrix 

𝐏 =

𝑓 0 0 0
0 𝑓 0 0
0 0 1 −1
0 0 1 0

 

Projection & conversion to screen coords 

𝐏𝑠 =

𝑤/2 0 0 𝑤/2

0 −ℎ/2 0 ℎ/2

0 0  1 0

0 0 0  1 

 ̇

1
𝑤
ℎ
tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0  1 0

0 0 0  1 

 ̇

1 0 0 0

0 1 0 0

0 0 1 −1

0 0 1 0

 

projection 
matrix 

normalized 
 screen coord’s 

scaling to pixels, 
upper left origin 

(𝑓 = 1) 



Alternative (1) 

Alternative formulation: Only two steps 

𝐏𝑠 =

𝑤/2 0 0 𝑤/2

0 −ℎ/2 0 ℎ/2

0 0  1 0

0 0 0  1 

 ̇

1
𝑤
ℎ
tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0 1 −1

0 0 1 0

 

 

 

 Different scale factors (not a focal length) 

 Use two different scale factors 𝑓𝑥 =
1

𝑤

ℎ
tan
𝛼

2

, 𝑓𝑦 =
1

tan
𝛼

2

 

projection 
matrix 

normalized 
 screen coord’s 

scaling to pixels, 
upper left origin & 



Alternative (2) 

Another Alternative Formulation 

𝐏𝑠 =

ℎ/2 0 0 𝑤/2

0 −ℎ/2 0 ℎ/2

0 0  1 0

0 0 0  1 

 ̇

1

tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0 1 −1

0 0 1 0

 

 

 

 Constant focal length 𝑓 =
1

tan
𝛼

2

 

 Intermediate result not normalized to −1,1 2 

projection 
matrix 

vertically normalized 
 screen coord’s 

scaling to pixels, 
upper left origin & + 

𝑤

ℎ
 – 

𝑤

ℎ
 

+ 1 

– 1 

0 



Alternatives 

All three derivations lead to the same result 

 Intermediate results not used ⇒ all equivalent 

 Product of the 2/3 matrices is the same 

Intermediate results being used: 

 Some graphics APIs (e.g., OpenGL) do use 
normalized device coordinates as intermediate 

 OpenGL – for pixels to appear on screen: 

      𝑥′ ∈ [−1,1] 
      𝑦′ ∈ [−1,1] 
      𝑧′ ∈ [0,1) 

      𝑤 ∈ 𝑧𝑛𝑒𝑎𝑟 , 𝑧𝑓𝑎𝑟   

 

 

 

coupled, so this 
is the same criterion 



General Camera 

general camera 

𝐲 
𝐱 

𝐳 

camera in origin, view in z-direction 

object of interest 



General Camera 

general camera 

𝐲 
𝐱 

𝐳 

camera in origin, view in z-direction 

object of interest 

𝐯 

𝐮 
𝐰 

𝐜 



General Camera 

general camera 

𝐲 
𝐱 

𝐳 

camera in origin, 
view: z-direction 

𝐯 

𝐮 
𝐰 

𝐜 

Camera coordinate system 𝐮, 𝐯,𝐰  
Origin: 𝐜 

Standard coordinates 𝐱, 𝐲, 𝐳 =
1
0
0
,
0
1
0
,
0
0
1

 



Derivation 

𝐲 
𝐱 

𝐳 

𝐲 
𝐱 

𝐳 

𝐯 

𝐮 
𝐰 

𝐜 



Derivation 

𝐲 
𝐱 

𝐳 

𝐯′ 

𝐮′ 𝐰′ 

−𝐜 

Same effect: 
Transform the world with 
inverse camera transform 

| | |

𝐮′ 𝐯′ 𝐰′
| | |

=
| | |
𝐮 𝐯 𝐰
| | |

−1

 



Derivation 

𝐲 
𝐱 

𝐳 

𝐯′ 

𝐮′ 𝐰′ 

−𝐜 

Transform: 

𝐩 →
| | |
𝐮 𝐯 𝐰
| | |

−1

𝐩 − 𝐜   

| | |

𝐮′ 𝐯′ 𝐰′
| | |

=
| | |
𝐮 𝐯 𝐰
| | |

−1

 



Derivation 

𝐲 
𝐱 

𝐳 

−𝐜 

Transform: 

𝐩 →
 − 𝐮 −
− 𝐯 −
− 𝐰 −

𝐩 − 𝐜   

𝐮, 𝐯,𝐰  orthogonal! 

𝐯′ 

𝐮′ 𝐰′ | | |
𝐮′ 𝐯′ 𝐰′
| | |

=
| | |
𝐮 𝐯 𝐰
| | |

−1

 



General Camera 

general camera 

𝐲 
𝐱 

𝐳 

camera in origin, 
view: z-direction 

𝐮 

𝐫 
𝐯 

𝐜 

Camera coordinate system 𝐮, 𝐫, 𝐯  
Origin: 𝐜 

Standard coordinates 𝐱, 𝐲, 𝐳 =
1
0
0
,
0
1
0
,
0
0
1

 

Transform: 

𝐩 →
 − 𝐮 −
− 𝐯 −
− 𝐰 −

(𝐩 − 𝐜)  



General Camera 

general camera 

𝐲 
𝐱 

𝐳 

𝐮 

𝐫 
𝐯 

𝐜 

Camera coordinate system 𝐮, 𝐫, 𝐯  
Origin: 𝐜 

Homogeneous: 
 

𝐩 →

 − 𝐮 − |

− 𝐯 − −𝐜′

− 𝐰 − |
0 0 0 1

𝐩   

𝐜′ =
 − 𝐮 −
− 𝐯 −
− 𝐰 −

𝐜 



Summary 

Projection (screen coord’s) 

𝐏𝑠 =

ℎ/2 0 0 𝑤/2
0 −ℎ/2 0 ℎ/2
0 0  1 0
0 0 0  1 

 ̇

1

tan
𝛼
2

0 0 0

0
1

tan
𝛼
2

0 0

0 0  1 0
0 0 0  1 

 ̇

1 0 0 0
0 1 0 0
0 0 1 −1
0 0 1 0

 

Add View Matrix 

𝐏𝑠 ⋅

 − 𝐮 − |

− 𝐯 − −𝐜′

− 𝐰 − |
0 0 0 1

 

Benefit: 
 

Still only one overall 
4×4 matrix 

to multiply with! 

(𝑓 = 1) 



Local Illumination 

Smooth Shading Simple Shadows Global Illumination 

3D Rendering Steps 

Visibility Perspective 

Geometric Model 



core topics 

important 

CORE 

basic topics 

study completely 

BASIC 

Visibility Algorithms 



Two Rendering Pipelines 

Rasterization 

 Project all triangles to the screen 

 Rasterize them (convert to pixels) 

 Determine visibility 

 Apply shading (compute color) 

Raytracing 

 Iterate over all pixels 

 Determine visible triangle 

 Compute shading, color pixel 

 



Triangle / Polygon Rasterization 

After Perspective 
Projection 

Observations 
 

Straight lines 
remain straight! 
 

Triangles mapped 
to triangles 
 

Polygons 
to polyogns 



Rasterization 

3D Scene 

Projection Visibility Rasterization 

Visiblity 

• preprocessing 

or 

• during rasterization 



Raytracing 

3D Scene 



Comparison 

Rasterization 

FOR (each triangle) { 

 compute pixels covered 
(“fragments”) 

 FOR (all fragments) { 

  fragment visible? 

  IF (visible) { 

   shade fragment 

   write color 

  } 

 } 

} 

Raytracing 

FOR (each pixel) { 

 compute visible triangle 

 IF (found) { 

  shade fragment 

  write color 

 } 

} 

 



Rasterization 

Focus for now: 

 Rasterization (Raytracing covered later) 

Two main algorithms 

 Painter’s algorithm (old) 

 Simple version 

 Correct version 

 z-Buffer algorithm 

 Dominant real-time method today 



core topics 

important 

CORE 

Painter’s Algorithm 



Painter’s Algorithm 

Painters Algorithm 

 Sort primitives back-to-front 

 Draw with overwrite 

Drawbacks 

 Slowish 

 𝒪(𝑛 ⋅ log 𝑛) for 𝑛 primitives 

 “Millions per second” 

 Wrong 

 Not guaranteed to always work 



Counter Example 

Correct Algorithm 

 Need to cut primitives 

 Several strategies 

 Notable: BSP Algorithm in Quake 

 Old graphics textbooks list many variants 

 No need for us to go deeper 



basic topics 

study completely 

BASIC 

z-Buffer Algorithm 



z-Buffer Algorithm 

Algorithm 

 Store depth value 
for each pixel 

 Initialize to MAX_FLOAT 

 Rasterize all primitives 

 Compute fragment depth & color 

 Do not overwrite if fragment is 
farer away than the one stored 
the one in the buffer 

color depth 



Discussion: z-Buffer 

Advantages 

 Extremely simple 

 Versatile – only primitive rasterization required 

 Very fast 

 GeForce 2 Ultra: 2GPixel /sec  
(release year: 2000) 

 GeForce 700 GTX Titan: 35 GPixel / sec 
(release year: 2013) 



Discussion: z-Buffer 

Disadvantages 

 Extra memory required 

 This was a serious in obstacle back then... 

 Invented 39 years ago (1974; Catmull / Straßer) 

 Only pixel resolution 

 Need painter’s algorithm for certain  
vector graphics computations 

 No transparency 

 This is a real problem for 3D games / interactive media 

 Often fall-back to sorting 

 Solution: A-Buffer, but no hardware support 

 



Smooth Shading Simple Shadows Global Illumination 

3D Rendering Steps 

Visibility Perspective 

Geometric Model 

Local Illumination 



core topics 

important 

CORE 

Shading Models 



mirror 

diffuse surface 

Reflectance Models 

glossy surface 



Interaction with Surfaces 

Local Shading Model 

 Single point light source 

 Shading model / material model 

 Input: light vector 𝐥 = 𝐩𝐨𝐬𝑙𝑖𝑔ℎ𝑡 − 𝐩𝐨𝐬𝑜𝑏𝑗𝑒𝑐𝑡  

 Input: view vector 𝐯 = 𝐩𝐨𝐬𝑐𝑎𝑚𝑒𝑟𝑎 − 𝐩𝐨𝐬𝑜𝑏𝑗𝑒𝑐𝑡  

 Input: surface normal 𝐧 (orthogonal to surface) 

 Output: color (RGB) 

Viewer 

Light 

object surface 

𝐯 𝐥 𝐧 

Formalization: BRDF 



Interaction with Surfaces 

General scenario 

 Multiple light sources? 

 Light is linear 

 Multiple light sources: add up contributions 

 Double light strength ⇒ double light output 

Formalization: BRDF 

Viewer 

Light 

object surface 

𝐯 𝐥 𝐧 



Remark 

Simplify notation 

 Define component-wise vector product 

𝐱 ∘ 𝐲 =

𝑥1
𝑥2
𝑥3
∘

𝑦1
𝑦2
𝑦3
≔

𝑥1 ⋅ 𝑦1
𝑥2 ⋅ 𝑦2
𝑥3 ⋅ 𝑦3

 

 No fixed convention in literature 

 The symbol “∘” only used in these lecture slides! 



Remark 

Lighting Calculations 

 Need to perform calculations for 𝑟, 𝑔, 𝑏-channels 

 Often: 
𝑜𝑢𝑡𝑝𝑢𝑡𝑟 = 𝑙𝑖𝑔ℎ𝑡𝑟 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑟 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐯, 𝐥, 𝐧  
𝑜𝑢𝑡𝑝𝑢𝑡𝑔 = 𝑙𝑖𝑔ℎ𝑡𝑔 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑔 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐯, 𝐥, 𝐧) 

𝑜𝑢𝑡𝑝𝑢𝑡𝑏 = 𝑙𝑖𝑔ℎ𝑡𝑏 ⋅ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑏 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐯, 𝐥, 𝐧) 

 Shorter 
               𝐨𝐮𝐭𝐩𝐮𝐭 = 
𝐥𝐢𝐠𝐡𝐭_𝐬𝐭𝐫𝐞𝐧𝐠𝐭𝐡 ∘ 𝐦𝐚𝐭𝐞𝐫𝐢𝐚𝐥 ⋅ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐯, 𝐥, 𝐧  



Area Light Sources 

Area Light Sources 

 Integrate over area 

 In practice often: 

 Sample with many point-light sources 

 Add-up contributions 

𝐥 

𝐯 

𝐧 

𝑛 light sources 
1

𝑛
 intensity 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Diffuse (“Lambertian”) Surfaces 

Equation 
𝑐 ~ cos 𝜃 

 Less light received at flat angles 
 

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃 

𝜃 
𝐧 

𝜃 

𝐧 𝐧 
surface 
normal 

light color 
surface color 

𝑐 – intensity (scalar) 

𝐜 – color (RGB, ℝ3) 

𝐜𝑟 – surface color (RGB) 

𝐜𝑙 – light color (RGB) 

(set to zero if negative) 



Diffuse (“Lambertian”) Surfaces 

Equation 
𝑐 ~ cos 𝜃             

 Less light received at flat angles 
 

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃 ⋅ 

𝜃 
𝐧 

𝜃 

𝐧 𝐧 
surface 
normal 

light color 
surface color 

𝑐 – intensity (scalar) 

𝐜 – color (RGB, ℝ3) 

𝐜𝑟 – surface color (RGB) 

𝐜𝑙 – light color (RGB) 

Attenuation: 
1

𝑑𝑖𝑠𝑡2
 

(point lights) 

1

𝑑𝑖𝑠𝑡2
 

1

𝑑𝑖𝑠𝑡2
 



Diffuse Reflection 

Diffuse Reflection 

 Very rough surface microstructure 

 Incoming light is scattered in all directions 
uniformly 

 “Diffuse” surface (material) 

 “Lambertian” surface (material) 



Surface Normal? 

What is a surface normal? 

 Tangent space: 

 Plane approximation 
at a point 𝐱 ∈ 𝒮 

 Normal vector:  

 Perpendicular to that plane 

 Oriented surfaces: 

 Pointing outwards 
(by convention) 

 Orientation defined only for 
closed solids 

point 𝐱 

surface 
normal 
𝐧 𝐱 ∈ ℝ3 

tangent 
space 

𝒮 



Triangles 

Single Triangle 

 Parametric equation 
 

𝐩1 + 𝜆 𝐩2 − 𝐩1 + 𝜇 𝐩3 − 𝐩1 |𝜆, 𝜇 ∈ ℝ  
 

 Tangent space: the plane itself 

 Normal vector 
𝐩2 − 𝐩1 × 𝐩3 − 𝐩1  

 Orientation convention: 
𝐩1, 𝐩2, 𝐩3 oriented counter-clockwise 

 Length: Any positive multiple works (often 𝐧 = 1) 

𝐩1 

𝐩2 

𝐩3 

𝐧 



Triangle Meshes 

Smooth Triangle Meshes 

 Store three different “vertex normals” 

 E.g., from original surface (if known) 

 Heuristic: 
Average neighboring triangle normals 



Lambertian Surfaces 

Equation 
 

𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ cos 𝜃 
 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ 𝐧, 𝐥  

𝜃 
𝐧 

𝜃 

𝐧 𝐧 
surface 
normal 

light direction 
normal vector 

𝐧 
𝐥 

(assuming: 𝐧 = 𝐥 = 1) 



Lambertian Bunny 

Face Normals Interpolated 
Normals 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



“Ambient Reflection” 

Problem 

 Shadows are pure black 

 Realistically, they should be gray 

 Some light should bounce around... 

 Solution: Add constant 
𝐜 = 𝐜𝑎 ∘ 𝐜𝑎 

 

 

 Not very realistic 

 Need global light transport simulation 
for realistic results 

ambient light color 
surface color 



Ambient Bunny 

Pure Lambertian Mixed with 
Ambient Light 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Perfect Reflection 

Perfect Reflection 

 Rays are perfectly 
reflected on surface 

 Reflection about 
surface normal 

     𝐫 = 2 𝐧, 𝐥 ⋅ 𝐧 − 𝐥 + 𝐥, 
𝐧 = 1 

            𝐥 arbitrary 

 

𝐧 

𝐥 𝐫 



Silver Bunny 

Perfect Reflection 

 Difficult to compute 

 Need to match camera 
and light emitter 

 More later: 

 Recursive raytracing 

 Right image: 
Environment mapping 
 

Reflective Bunny 
(Interpolated Normals) 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Glossy Reflection 

Glossy Reflection 

 Imperfect mirror 

 Semi-rough surface 

 Various models 



Phong Illumination Model 

Traditional Model: Phong Model 

 Physically incorrect 
(e.g.: energy conservation not guaranteed) 

 But “looks ok” 

 Always looks like plastic 

 On the other hand, our world is full of plastic... 



0

0,2

0,4

0,6

0,8

1

1,2

-90 -60 -30 0 30 60 90

p=1 p=2 p=5 p=10 p=50 p=100

How does it work? 

Phong Model: 

 “Specular” (glossy) part: 

𝐜 = 𝐜𝑝 ∘ 𝐜𝑙 ⋅
𝐫

𝐫
,
𝐯

𝐯

𝑝

 

 Ambient part: 
𝐜 = 𝐜𝑟 ∘ 𝐜𝑎 

 Diffuse part: 
𝐜 = 𝐜𝑟 ∘ 𝐜𝑙 ⋅ 𝐧, 𝐥  

 Add all terms together 

                       
cos ∠𝐫,𝐯

 

𝐥 

𝐯 
𝐫 

(high-) light 
color 

Phong Exponents 

𝐧 



Blinn-Phong 

Blinn-Phong Model: 

 “Specular” (glossy) part: 

𝐜 = 𝐜𝑝 ∘ 𝐜𝑙 ⋅
𝐡

𝐡
,
𝐧

𝐧

𝑝

 

 

 Half-angle direction 
 

𝐡 =
𝟏

𝟐

𝐥

𝐥
+
𝐯

𝐯
 

                       
cos ∠𝐡,𝐧

 
𝐥 

𝐯 𝐡 
𝐧 

 In the plane: ∠
𝐡

𝐡
,
𝐧

𝐧
=
1

2
∠
𝐫

𝐫
,
𝐯

𝐯
 

 Approximation in 3D 



Phong+Diffuse+Ambient Bunny 

Blinn-Phong Bunny Interpolated Normals 



Phong+Diffuse+Ambient Bunny 

Blinn-Phong Bunny Interpolated Normals 



Cook-Torrance Model 

Physically-Motivated Model 

 D – Infinitesimal micro-facets 

 Characterize by distribution 

 Expected reflection (density) 

 Gaussian, Beckmann,… 

 Approximate occlusion term (G) 

 F – Fresnel term 

 Model: wave-optics 

 Interaction of wave with surface under different angles 

 Percentage reflection/refraction 
𝐹 𝜃 = 𝑅0 + 1 − 𝑅0 1 − cos 𝜃

5 

cos 𝜃 = 𝐡, 𝐯        𝑅0 ="ratio of refractive indices" 

𝑐𝑠𝑝𝑒𝑐 =
𝐷 ⋅ 𝐺 ⋅ 𝐹

4 𝐯, 𝐧 𝐧, 𝐥
  



Artistic “Fresnel” 
Reflection 

unweighted reflection 

Approx. Fresnel-Reflection 

 𝐹 𝜃 ∼ 1 − cos 𝜃 𝑝 

Exponent 4 

Exponent 5 



Better Models 

Phong Bunny Cook-Torrance 
Model 



Shading Effects 

Shading effects 

 Diffuse reflection 

 “Ambient reflection” 

 Perfect mirrors 

 Glossy reflection  

 Phong / Blinn-Phong 

 (Cook Torrance) 

 Transparency & refraction 

 



Transparency 

Transparency 

 “Alpha-blending” 

 𝛼 = “opacity” 

 Color + opacity: RGB𝛼  

Blending 

 Mix in 𝛼 of front color, 
keep 1 − 𝛼 of back color 
 

𝐜 = 𝛼 ⋅ 𝐜𝑓𝑟𝑜𝑛𝑡 + 1 − 𝛼 ⋅ 𝐜𝑏𝑎𝑐𝑘  
   

 Not commutative! (order matters) 

 unless monochrome 

50% red, 
50% green 

0.0
1.0
0.0
0.5

 

1.0
0.0
0.0
0.5

 

back 

front 



Refraction: Snell’s Law 

Refraction 

 Materials of different  
“index of refraction” 

 Light rays change direction 
at interfaces 

Snell’s Law 
sin 𝜃1
sin 𝜃2

=
𝑛2
𝑛1

 

 𝑛1, 𝑛2: indices of refraction 

 vacuum: 1.0, air: 1.000293 

 water: 1.33, glass: 1.45-1.6 

𝐧 

−𝐧 

𝜃1 

𝜃2 

𝑛2 
𝑛1 



Refraction 

Implementation 

 Not a local shading model 

 Global algorithms: mostly raytracing 

 Various “fake” approximations for local shading 

Refraction 

Reflection 

(raytraced) 



Simple Shadows Global Illumination 

3D Rendering Steps 

Visibility Perspective 

Geometric Model 

Local Illumination 

Smooth Shading 



core topics 

important 

CORE 

Shading Algorithms 



Flat Shading 

Flat Shading 
constant color per triangle 



Flat Shading 

“Gouraud Shading” Algorithm 
compute color at vertices, interpolate color for pixels 



Flat Shading 

“Phong Shading” Algorithm 
interpolate normals for each pixel 



Geometric Model 

Perspective Visibility Local Illumination 

Smooth Shading 

3D Rendering Steps 

Simple Shadows Global Illumination 

Next: Advanced Rasterization 



Geometric Model 

Perspective Visibility Local Illumination 

Smooth Shading 

3D Rendering Steps 

Simple Shadows Global Illumination 

Global Illum: Keep this for later 


