Graphics 2014

[Faculty of Science] Information and Computing Sciences

Advanced Rasterization

Universiteit Utrecht

Announcements

Extra tutorials next week

- The usual times: Thu 15:15h 17:00h
- Rooms: BBL 023, BBL 079, BBL 083 (not BBL 165)

Questions + Answers

- Please mail me your questions
 - Will be passed on to tutors
 - Best: mail before end of this week
- Preparation for final exam

3D Rendering Steps

Topics

Supplementary Details

- Projective geometry
- Rasterization and clipping
- Transformations & Normals

Texture Mapping

- Basic idea
- Perspective correction

Topics

Advanced Texture Mapping

- Aliasing, Filtering & Mipmapping (short)
- 2D and 3D Textures
- Shadow maps
- Displacement maps
- Bump mapping / normal maps
- Environment Maps
- Image-based Lighting

Topics

Modern Rasterization Pipeline

- Vertex and Pixel Shaders
 - Extensions

Render targets

- Color buffers
- Float buffers
- Stencil buffer

Textures

- 2D & 3D textures
- Cube maps

Addendum Projective Geometry

Constructing Projective Spaces

Projective Space P^d:

- Euclidian ("affine") space \mathbb{R}^d embedded in \mathbb{R}^{d+1}
- At w = 1
- Identify all points on lines through the origin
 - *Representing* the same Euclidian point

Constructing Projective Spaces

Translations:

- Sheering of the projective space $\begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix}$
- Translation of the embedded affine space

Normalization

Conversion between

- Cartesian coordinates (Euclidian space)
- Homogeneous coordinates (projective space)

Mathematical Language

Form equivalence classes

•
$$(\mathbf{x} \equiv \mathbf{y}) \Leftrightarrow \exists \lambda \in \mathbb{R}: (\mathbf{x} = \lambda \mathbf{y})$$

Think of overloading operator=()

Even more formally (math students)

Consider group of uniform scalings

•
$$G = \left\{ \begin{pmatrix} \lambda & & 0 \\ & \ddots & \\ 0 & & \lambda \end{pmatrix} \middle| \lambda \neq 0 \right\}$$

- Symmetry group of the representation: $\mathbf{P}^{d} = \mathbb{R}^{d} \mod G$
 - Ignore "irrelevant information"

Properties

Projective Maps

- Linear maps in the higher dimensional space
- Scale at any time:

$$\mathbf{y} = \mathbf{M} \cdot \mathbf{x} \equiv \frac{\mathbf{M} \cdot \mathbf{x}}{\mathbf{x} \cdot \mathbf{w}} \equiv \frac{\mathbf{M} \cdot \mathbf{x}}{\mathbf{y} \cdot \mathbf{w}} \text{ (for } \mathbf{w} \neq 0 \text{)}$$

Why? Scaling yields the same point!

Properties

Important:

- We have: $\mathbf{x} \equiv \lambda \mathbf{x} \text{ (for } \lambda \neq 0 \text{)}$
- But in general: $\mathbf{x} + \mathbf{y} \neq \mathbf{x} + \lambda \mathbf{y}$
 - For correct result: Normalize first (same w)

Vectors & Points

Interpretation

• Points:
$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$
, $w \neq 0$
• Vectors: $\begin{pmatrix} x \\ y \\ z \\ 0 \end{pmatrix}$ - "pure directions"

Vectors & Points

Rules

- Substracting points yields vectors
 - Normalize first!
- Vectors can be added to
 - Other vectors
 - Points (normalize first!)

Rasterization and Clipping

Rasterization

How to rasterize Primitives?

Two problems

- Rasterization
- Clipping

depth

Rasterization

Assumption

- Triangles only
- Triangle not outside screen
- No clipping required

Triangle Rasterization

Several Algorithms...

Triangle Rasterization

Example: two slabs (tutorials)

Triangle Rasterization

Incremental rasterization

Incremental Rasterization

Precompute steps in x, y-direction

- For boundary lines
- For linear interpolation within triangle
 - Colors
 - Texture coordinates (more later)
- Inner loop
 - Only one addition ("DDA" algorithm)
 - Floating point value
 - Strategies
 - Fixed-point arithmetics
 - Bresenham / midpoint algorithm (requires if; problematic on modern CPUs)

Rasterization

How to rasterize Primitives?

Two problems

Rasterization

Crashes – write to off-screen memory!

Clipping Strategies

Pixel Rejection

"if (x,y ∉ screen) continue;"

- Can be arbitrarily slow (large triangles)
- Nope. Not a good idea.

Screen space clipping

- Modify rasterizer to jump to visible pixels
 - See tutorial 5
- Efficient
- Still problems with when crossing camera plane
 (w = 0) ⇒ a semi-good idea

Does not crash, optimal complexity

O(k) for k output fragments

Problem

Problem:

- Triangles crossing camera plane!
 - Wrong results
- Need object space clipping

Further Optimization

View Frustum Culling

- Complex shapes (whole bunnies)
- Coarse bounding volume (superset)
 - Cube, Sphere
 - Often: Axis-aligned bounding box
- Reject all triangles inside if bounding volume outside view frustrum

Transformations & Normals

Remark 1: Scene Graphs

compound object

(III) transf

body

â

(III) transf

(iiii) transf

(IIII) transf

wheel

(a) two objects

(b) instantiation

Animation

Hierarchical Animation

- Rotate wheels
- Move car with rotating wheels

"Kinematic Chains"

- Body, upper arm, lower arm, hand, fingers,...
- Relative transformations handled correctly automatically

Implementation

Data Structure

- Simplest version: Tree
- Instancing: Directed Acyclic Graph (DAG)

Algorithm

- Depth-first-traversal
- Multiply transformation nodes
- Use associativity to order
 - Matrix stack to store intermediate results

$$\begin{pmatrix} ((\mathbf{M}_1 \cdot \mathbf{M}_2) \cdots \mathbf{M}_{n-1}) \cdot \mathbf{M}_n \end{pmatrix} \\ \uparrow \\ & \uparrow \\ & \bullet \\ \text{topmost (visited first)} \end{pmatrix}$$

Remark 2: Transforming Normals

How to transform normals of a surface?

Three cases

- Translations
 - Do not apply to normals!
- Orthogonal transformations
 - Rotations, reflections

← nothing to worry about

- Transform normals and points the same way
- General linear transformations
 - Points: $\mathbf{p}' = \mathbf{M}\mathbf{p}$
 - Normals: $\mathbf{n}' = (\mathbf{M}^T)^{-1}\mathbf{n}$

← be careful in this case!

Explanation

Implicit plane equation $\langle \mathbf{n}, \mathbf{p} \rangle = \mathbf{n}^{\mathrm{T}} \cdot \mathbf{p} = d$

- p is a vector
- n is a co-vector

Change of coordinates:

•
$$\mathbf{p} \rightarrow \mathbf{M} \cdot \mathbf{p}$$

•
$$\mathbf{n}^{\mathrm{T}} \rightarrow \left(\mathbf{M}^{-1} \cdot \mathbf{n}\right)^{\mathrm{T}}$$

Result: same plane $(\mathbf{M}^{-1} \cdot \mathbf{n})^{\mathrm{T}} \cdot \mathbf{M} \cdot \mathbf{p} = \mathbf{n}^{\mathrm{T}} (\mathbf{M}^{-1} \cdot \mathbf{M}) \cdot \mathbf{p} = \mathbf{n}^{\mathrm{T}} \cdot \mathbf{p} = d$

Texture Mapping

Texture Mapping

Idea:

- Map image to triangle
- Additional details
- Hard to model with geometry
- Much cheaper than fine geometric tessellation

Texture Coordinates

Define Mapping to Image

- Texture coordinates at vertices
- In between: linear interpolation
- Defines an affine map

2D Texture Mapping

Texture Coordinates

Define Mapping to Image

- Texture coordinates at vertices
- In between: affine ("linear") interpolation
- Defines an affine map

technically, this is an affine map, but people often call it "linear interpolation"

Affine Map

Affine Map

• Map coordinate system $\{\mathbf{p}_{1}', (\mathbf{t}_{1}', \mathbf{t}_{2}')\}$ to $\{\mathbf{p}_{1}, (\mathbf{t}_{1}, \mathbf{t}_{2})\}$

$$\mathbf{x} \rightarrow \mathbf{p}_1 + \begin{pmatrix} | & | \\ \boldsymbol{t}_1 & \boldsymbol{t}_2 \\ | & | \end{pmatrix} \cdot \begin{pmatrix} | & | \\ \boldsymbol{t}'_1 & \boldsymbol{t}'_2 \\ | & | \end{pmatrix}^{-1} (\mathbf{x} - \mathbf{p}'_1)$$

Rasterization

Rasterization

- Project vertices
 - Keep texture coordinates as specified
- Create fragments
 - Lookup texture color

Texture Lookup lookup color for each fragment

Rasterization: Inverse Map

Affine Map

• Map coordinate system $\{\mathbf{p}_1, (\mathbf{t}'_1, \mathbf{t}'_2)\}$ to $\{\mathbf{p}_2, (\mathbf{t}_1, \mathbf{t}_2)\}$

$$\mathbf{x} \to \mathbf{p}_1' + \begin{pmatrix} | & | \\ \mathbf{t}_1' & \mathbf{t}_2' \\ | & | \end{pmatrix} \cdot \begin{pmatrix} | & | \\ \mathbf{t}_1 & \mathbf{t}_2 \\ | & | \end{pmatrix}^{-1} (\mathbf{x} - \mathbf{p}_1)$$

Texture Mapping

Texture space to screen space:

$$\mathbf{x} \rightarrow \mathbf{p}_1 + \begin{pmatrix} | & | \\ \boldsymbol{t}_1 & \boldsymbol{t}_2 \\ | & | \end{pmatrix} \cdot \begin{pmatrix} | & | \\ \boldsymbol{t}'_1 & \boldsymbol{t}'_2 \\ | & | \end{pmatrix}^{-1} (\mathbf{x} - \mathbf{p}'_1)$$

Screen space to world space:

$$\mathbf{x} \rightarrow \mathbf{p}_1' + \begin{pmatrix} | & | \\ \mathbf{t}_1' & \mathbf{t}_2' \\ | & | \end{pmatrix} \cdot \begin{pmatrix} | & | \\ \mathbf{t}_1 & \mathbf{t}_2 \\ | & | \end{pmatrix}^{-1} (\mathbf{x} - \mathbf{p}_1)$$

*) **Formally:** this is a change of coordinate system

Barycentric Coordinates

 $\frac{\tau_3}{\tau_2 + \tau_3}$

 $\frac{\tau_2}{\tau_2 + \tau_3}$

Barycentric coordinates

- 2D coordinate system (in plane)
- Triangle edge coordinates
- Same as ratio of area of opposing triangle to overall triangle area

Barycentric Coordinates

Interpretation:

$$\mathbf{x} \rightarrow \mathbf{p}_1' + \begin{pmatrix} | & | \\ \mathbf{t}_1' & \mathbf{t}_2' \\ | & | \end{pmatrix} \cdot \begin{pmatrix} | & | \\ \mathbf{t}_1 & \mathbf{t}_2 \\ | & | \end{pmatrix}^{-1} (\mathbf{x} - \mathbf{p}_1)$$

 Transform to barycentric coordinates, then to texture coordinates

Non-uniform spacing!

• 2D texture mapping will create artifacts!

Example

Example

2D Texture Mapping

3D Texture Mapping Obviously, we want this!

A Related Problem

2D Texture Mapping triangulation dependent nonlinear map ("homography")

3D Texture Mapping triangulation independent

Perspective Correction

Incorrect results:

Linear*) interpolation in screen space

Correct results

- Linear*) interpolation in object space
- Uneven steps in texture coordinates between pixels

How to compute?

 *) again, this is actually an affine map, but the term "linear interpolation" is almost exclusively used here

Correct Perspective Texturing

Two solutions

Absolute computation

- Setup ray equation for each pixel
- Compute ray-triangle intersection
- Possible and correct, but slow
- Incremental interpolation
 - Do not interpolate u, v but $\frac{u}{z}, \frac{v}{z}$
 - Gives correct results in screen space!
 - Multiply by *z* in the end
 - Interpolate $\frac{1}{z}$ in screen space (z also non-linear!)
 - Divide by $\frac{1}{z}$ (approximation strategies for speed)

(Lazy "option" #3: use GPU/GfxLib and don't worry :-))

3D Triangles

Non-uniform spacing!

3D Triangles

Aliasing and Anti-Aliasing

Aliasing

simple sampling

antialiasing (Gaussian)

Aliasing

Minification: Moiré Sampling aliasing

Magnification: "Staircasing" Reconstruction aliasing

*) same here, it is a (bi-) affine map, but called "(bi-) linear" in literature / APIs

pixel sampling

In hardware:

- Bi-linear^{*}) interpolation
- Linear blend in *u* and *v*-direction

*) you know, linear ~ affine...

Magnification

pixel sampling

In hardware:

- Bi-linear^{*}) interpolation
- Linear blend in *u* and *v*-direction

Minification: Interfering Grids

Sampling Aliasing

- Sampling grid misses information, spacing too big
- Creates Moiré (or noise, if unstructured)

Solution

- Average over neighborhood
 - Heuristic: "leave no free space"
- Best: weighted filters with overlap (e.g. Gaussians)

*) same here Graphics Hardware

Two Steps

Moderate Minification

Bilinear^{*}) interpolation

Strong Minification

- Mip-mapping
 - Average 2 × 2 pixels
 - Store reduce size by 1/2
 - Iterate
- Trilinear interpolation

Summary

Minification

Average multiple texels

Magnification

 Average over multiple pixels

Swap screen & texture

The Full Story: Fourier Transforms

(b) a regular sampling pattern (impulse train) and its frequency spectrum $(s(t) \cdot u(t)) \otimes FT^{-1}(\mathbf{R})$ $FT^{-1}(\mathbf{R})$ t

(d) reconstruction: filtering with a low-pass filter R to remove replicated spectra

- more in "advanced graphics" -

Topics

Texture mapping variants

- 3D Textures
- Shadow maps
 - Ambient Occlusion
- Environment Maps
 - Image-based Lighting
- Bump mapping / normal maps
- Displacement maps

3D Textures

3D Textures

- Use 3D array of "voxels"
- u,v,w-coordinates
- Texture space itself

Shadow Maps

Create shadow map

- Render scene from light source
- Store depth buffer

Render scene from camera

- Project fragment to depth buffer/light source
 - If occluder in front \rightarrow dark
 - Otherwise \rightarrow bright

Example Result

Shadow Maps Pitfalls

Offset problem

- Camera pixels (slightly) different from light pixels
- Need small offset for depth comparison

Aliasing

- Visible staircasing
- Light projection ≠ screen pixels

Spot-lights only

→ Cubemaps (later)

Resolution

low resolution

medium resolution

Resolution

high resolution

very high resolution

Offset Problem

good offset

bad offset

Ambient Occlusion

Ambient Occlusion

Environment Maps

Approximate Reflections

- Store panoramic image ("360°") of environment
- Use for reflection

Approximation

- Far away environment
- Single bounce
- No occlusion in path
- Refraction less accurate (single bounce?)

Reflective Bunny (Environment Mapping)

Implementation: Cube-Maps

Cube maps

- Cube with 6 textured faces
- "Infinite size"

Cube-map texture lookup

- Very easy!
- Arbitrary vector
- texcube $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ = texcube $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ = 1. arg max (12) 2. sign = 3. divide by $|\cdot|$
- 1. arg max $\{|x|, |y|, |y|\}$

texture (c) Paul Debevec, USC

- Select face: largest entry, sign
- 2D coordinates: divide by maximum entry

Cube Map Lookups

|y| largest → horizontal $y > 0 \rightarrow$ right face $\frac{x}{y} \rightarrow$ texture coordinate

Rendering with Natural Light

Traditional Cube Maps

- Created using rendering
- 6 passes with different camera settings
- Latest hardware: "render to cubemap"

Rendering with Natural Light

- Use HDR photographs for cube maps
 - High-dynamic range is important
- Diffuse, specular, glossy
 ⇒ filter (blur) cube map

specular

diffuse

Title-Bunny Ambient Occlusion with Natural Light

texture (c) Paul Debevec, USC

adaptive sampling density ~ intensity

Bump-Maps / Normal Maps

Normal Maps

- Store normal in texture
- Map to tangent coordinate frame
- Need normals n and tangent field t
- Then: coordinate transform

Bump Maps

Bump Maps

- Same as normal maps
- But only height field given
- Need to precompute normals

Precompute Normals

• Discrete partial derivatives

$$\Delta x \coloneqq \frac{f(x+1,y) - f(x)}{h}$$

$$\Delta y \coloneqq \frac{f(x,y+1) - f(x)}{h}$$

$$n \approx \begin{pmatrix} -\Delta x \\ -\Delta y \\ 1 \end{pmatrix}$$

Displacement Maps

Simplest Method

- Start with Bump Map
- Create actual mesh by displacement in normal direction

Needs powerful hardware

- Fancy in the past few years for real-time / games
- Offline rendering used this ever since

Hardware Architecture

Simplified GPU Model

Simplified GPU Model

A GPU is a vector processor

- SIMD single instruction, multiple data
- "Branching" possible at costs
 - Divergent instructions executed serially (write masks)

Specifically: Stream processor

- Memory interface main problem
- Idea: big on-chip buffer, work within buffer
- Write to/from memory more rarely
 - Direct access still possible ("texture fetches")
 - Caching, hide latency using multi-threading

Advantages

High throughput

- Geforce GTX Titan Z: 8 TFlops (32-bit SP 2 chips)
- Radeon R9 295x2: 11 TFlops (32-bit SP 2 chips)

*) example numbers! architectures

have different advantages

- Xeon Phi 7120: 2.5 TFlops (32-bit SP)
- Dual Xeon E5-2697: 500 GFlops (32-bit SP)

Not all workloads

- Parallel problems
 - Not all problems are parallelizable!
- Instruction stream coherence
 - Additional constraints over MIMD computers!

Hardware Architecture

Programmable Vertex Shaders

- Input: Vertex Buffer
 - Multiple attributes
 - Position, color, normals, texture coordinates, etc...
- Execute program
 - Texture reads possible
- Output: one vertex per vertex
 - One-in-one-out
 - Internal queue (efficiency)

Rasterizer

Rasterizer

- Clipping of triangles
- Creation of fragments
- Interpolate attributes
 - With perspective correction!
- Hard-wired for efficiency
- Output: Long sequence of fragments

Pixel Shader

Pixel shader

- Input: Fragment with interpolated attributes
- Perform computation
 - Arithmetics
 - Texture reads: tex2D, tex3D, texCube,...
 - Includes filtering (anti-aliasing)

Output:

- Color (always)
- Alpha-value (optional)
- Depth (optional, reduces efficiency; no early fragment rejection)

Final Combiner

Write to frame-buffer

- Depth test and update
- Color update
 - Overwrite, additive, subtractive, alpha-blending (and a few more)
- (Usually) hardwired

Recent Extensions

Geometry shader

Between vertex shader and rasterizer

- Convert single primitive into a small number of additional ones
- Amount limited (e.g., 32 vertices output)

Hull shader / tessellation shader

- Better adaptive subdivision
 - Spline surfaces
 - Displacement mapping