
Graphics 2014 

Advanced 
Rasterization 



Announcements 

Extra tutorials next week 

 The usual times: Thu 15:15h – 17:00h 

 Rooms: BBL 023, BBL 079, BBL 083 (not BBL 165) 

Questions + Answers 

 Please mail me your questions 

 Will be passed on to tutors 

 Best: mail before end of this week 

 Preparation for final exam 



Geometric Model 

Perspective Visibility Local Illumination 

Smooth Shading 

3D Rendering Steps 

Advanced Rasterization Global Illumination 



Topics 

Supplementary Details 

 Projective geometry 

 Rasterization and clipping 

 Transformations & Normals 

Texture Mapping 

 Basic idea 

 Perspective correction 

 



Topics 

Advanced Texture Mapping 

 Aliasing, Filtering & Mipmapping (short) 

 2D and 3D Textures 

 Shadow maps 

 Displacement maps 

 Bump mapping / normal maps 

 Environment Maps 

 Image-based Lighting 



Topics 

Modern Rasterization Pipeline 

 Vertex and Pixel Shaders 

 Extensions 

 Render targets 

 Color buffers 

 Float buffers 

 Stencil buffer 

 Textures 

 2D & 3D textures 

 Cube maps 



advanced topics 

main ideas 

ADV 

Addendum 

Projective Geometry 



Constructing Projective Spaces 

Projective Space P𝑑: 

 Euclidian (“affine”) space ℝ𝑑 embedded in ℝ𝑑+1 

 At 𝑤 =  1 

 Identify all points on lines through the origin 

 Representing the same Euclidian point 

ℝ1 P1 

0 

p  ℝ1 

 

p’  P1 

 

ℝ2 P2 

0 

p’  P2 

 p  ℝ2 

 

𝐩′ =
𝑤𝐩
𝑤

𝑤 ∈ ℝ≠0  𝐩′ =
𝑤𝐩
𝑤

𝑤 ∈ ℝ≠0  



Constructing Projective Spaces 

Translations: 

 Sheering of the projective space 
1 0 𝑡𝑥

0 1 𝑡𝑦

0 0 1

 

 Translation of the embedded affine space 

ℝ1 P1 

0 

p  ℝ1 

 

p’  P1 

 

𝑡𝑥 



Normalization 

Conversion between 

 Cartesian coordinates (Euclidian space) 

 Homogeneous coordinates (projective space) 

 

Cartesian coordinates 
(Euclidian space) 

homogenous coordinates 
(projective space) 

𝐱 →
𝑤𝐱
𝑤

 

1

w
𝐱 ←

𝐱
𝑤

 

normalization*) 

*) overloaded name 
   do not confuse with 𝐱/ 𝐱  



Mathematical Language 

Form equivalence classes 

 𝐱 ≡ 𝐲 ⇔ ∃𝜆 ∈ ℝ: (𝐱 = 𝜆𝐲) 

 Think of overloading operator=() 

Even more formally (math students) 

 Consider group of uniform scalings 

 𝐺 =
𝜆 0

⋱
0 𝜆

𝜆 ≠ 0  

 Symmetry group of the representation: 
P𝑑 = ℝ𝑑 mod 𝐺 

 Ignore “irrelevant information” 



Properties 

Projective Maps 

 Linear maps in the higher dimensional space 

 Scale at any time: 

 

 Why? Scaling yields the same point! 

𝐲 = 𝐌 ⋅ 𝐱 ≡
𝐌 ⋅ 𝐱

𝐱. 𝑤
≡

𝐌 ⋅ 𝐱

𝐲. 𝑤
  (for 𝑤 ≠ 0) 



Properties 

Important: 

 We have: 𝐱 ≡ 𝜆𝐱 for 𝜆 ≠ 0  

 But in general: 𝐱 + 𝐲 ≡ 𝐱 + 𝜆𝐲 

 For correct result: 
Normalize first (same 𝑤) 



Vectors & Points 

Interpretation 

 Points: 

𝑥
𝑦
𝑧
𝑤

, 𝑤 ≠ 0 

 Vectors: 

𝑥
𝑦
𝑧
0

 – “pure directions” 

 



Vectors & Points 

Rules 

 Substracting points 
yields vectors 

 Normalize first! 

 Vectors can be 
added to  

 Other vectors 

 Points 
(normalize first!) 

𝐯 

𝐯𝟐 

𝐯 

𝐯2 
𝐨𝐫𝐢𝐠𝐢𝐧 

𝐯 − 𝐯2 



core topics 

important 

CORE 

Rasterization and Clipping 



Rasterization 

How to rasterize Primitives? 

Two problems 

 Rasterization 

 Clipping 

color depth 



Rasterization 

Assumption 

 Triangles only 

 Triangle not outside screen 

 No clipping required 

 



Triangle Rasterization 

Several Algorithms... 



Triangle Rasterization 

Example: two slabs (tutorials) 



Triangle Rasterization 

Incremental rasterization 

Δ𝑥 constant 
precompute and 
add in each step 



Incremental Rasterization 

Precompute steps in x, y-direction 

 For boundary lines 

 For linear interpolation within triangle 

 Colors 

 Texture coordinates (more later) 

 Inner loop 

 Only one addition (“DDA” algorithm) 

 Floating point value 

 Strategies 

– Fixed-point arithmetics 

– Bresenham / midpoint algorithm 
(requires if; problematic on modern CPUs) 



Rasterization 

How to rasterize Primitives? 

Two problems 

 Rasterization 

 Clipping 

color depth 



Why Clipping? 

Crashes – write to off-screen memory! 



Clipping Strategies 

Pixel Rejection 

 “if (x,y ∉ screen) continue;” 

 Can be arbitrarily slow (large triangles) 

 Nope. Not a good idea. 

Screen space clipping 

 Modify rasterizer to jump to visible pixels 

 See tutorial 5 

 Efficient 

 Still problems with when crossing camera plane 
(𝑤 = 0) ⇒ a semi-good idea 



Smart Slab Renderer 

Does not crash, optimal complexity  

 𝑂(𝑘) for 𝑘 output fragments 



Problem 

Problem: 

 Triangles crossing camera plane! 

 Wrong results 

 Need object space clipping 

𝑓 
𝑧1 

𝑦′ = 𝑓
𝑦

𝑧
 

𝑧2 

𝑦1 

𝑦2 

camera 
plane 

image 
plane 



View Frustum Clipping 

near clipping 
plane 

far clipping 
plane 

four side   
planes 

six planes 
clip triangles 
against all  
six planes 



Incremental Algorithm 



Incremental Algorithm 



Incremental Algorithm 

Output: Multiple Triangles 



Further Optimization 

View Frustum Culling 

 Complex shapes (whole bunnies) 

 Coarse bounding volume (superset) 

 Cube, Sphere 

 Often: Axis-aligned bounding box 

 Reject all triangles inside if bounding volume 
outside view frustrum 



core topics 

important 

CORE 

Transformations & Normals 



Remark 1: Scene Graphs 



Animation 

Hierarchical Animation 

 Rotate wheels 

 Move car with rotating wheels 

“Kinematic Chains” 

 Body, upper arm, lower arm, 
hand, fingers,... 

 Relative transformations 
handled correctly  
automatically 



Implementation 

Data Structure 

 Simplest version: Tree 

 Instancing: Directed Acyclic Graph (DAG) 

Algorithm 

 Depth-first-traversal 

 Multiply transformation nodes 

 Use associativity to order 

 Matrix stack to store intermediate results 

 𝐌1 ⋅ 𝐌2 ⋯ 𝐌𝑛−1 ⋅ 𝐌𝑛  

deepest (applied first) 
topmost (visited first) 

𝐌1 

𝐌2 

traversal 



Remark 2: Transforming Normals 

How to transform normals of a surface? 

Three cases 

 Translations 

 Do not apply to normals! 

 Orthogonal transformations 

 Rotations, reflections 

 Transform normals and points the same way 

 General linear transformations 

 Points: 𝐩′ = 𝐌𝐩 

 Normals: 𝐧′ = 𝐌T −𝟏
𝐧 

← nothing to 
worry about 

← be careful 
in this case! 



Explanation 

Implicit plane equation 
𝐧, 𝐩 = 𝐧T ⋅ 𝐩 = 𝑑 

 𝐩 is a vector 

 𝐧 is a co-vector 

Change of coordinates: 

 𝐩 → 𝐌 ⋅ 𝐩 

 𝐧T → 𝐌−𝟏 ⋅ 𝐧
T

 

Result: same plane 

𝐌−𝟏 ⋅ 𝐧
T

⋅ 𝐌 ⋅ 𝐩 = 𝐧T 𝐌−𝟏 ⋅ 𝐌 ⋅ 𝐩 = 𝐧T ⋅ 𝐩 = 𝑑 

 



core topics 

important 

CORE 

Texture Mapping 



Texture Mapping 

Idea: 

 Map image to triangle 

 Additional details 

 Hard to model with geometry 

 Much cheaper than fine geometric tessellation 



Texture Coordinates 

Define Mapping to Image 

 Texture coordinates at vertices 

 In between: linear interpolation 

 Defines an affine map 

2D texture 
(image) 

vertices 
per-vertex texture 
coordinates 



2D Texture Mapping 



Texture Coordinates 

Define Mapping to Image 

 Texture coordinates at vertices 

 In between: affine (“linear”) interpolation 

 Defines an affine map 

2D texture 
(image) 

screen 

per-vertex 
texture 

coordinates 

screen 
coordinates 

texture 
coord’s 

technically, this is an affine map, 
but people often call it 
“linear interpolation” 



Affine Map 

Affine Map 

 Map coordinate system 𝐩1
′ , 𝐭1

′ , 𝐭2
′  to 𝐩1, 𝒕1, 𝒕2  

texture 

  𝐭1
′ =  

   𝐩2
′ − 𝐩1

′  

  𝐭2
′ =  

   𝐩3
′ − 𝐩1

′  

𝐩3 

𝐩1 

𝐩2 

𝐩3
′  

𝐩1
′  

𝐩2
′  

𝐱 → 𝐩1 +
| |

𝒕1 𝒕2

| |
⋅

| |

𝐭1
′ 𝐭2

′

| |

−1

(𝐱 − 𝐩1
′ ) 

𝐭2 = 𝐩3 − 𝐩1 
𝐭1 = 𝐩2 − 𝐩1 



Rasterization 

2D texture 
(image) 

Rasterization 

 Project vertices 

 Keep texture coordinates as specified 

 Create fragments 

 Lookup texture color 

Texture Lookup 
lookup color 

for each fragment 

screen 



Rasterization: Inverse Map 

Affine Map 

 Map coordinate system 𝐩1, 𝐭1
′ , 𝐭2

′  to 𝐩2, 𝒕1, 𝒕2  

texture 

texture 

  𝐭1
′ =  

   𝐩2
′ − 𝐩1

′  

  𝐭2
′ =  

   𝐩3
′ − 𝐩1

′  

𝐩3 

𝐩1 

𝐩2 

𝐩3
′  

𝐩1
′  

𝐩2
′  

𝐱 → 𝐩1
′ +

| |

𝐭1
′ 𝐭2

′

| |
⋅

| |
𝒕1 𝒕2

| |

−1

(𝐱 − 𝐩1) 

𝐭2 = 𝐩3 − 𝐩1 
𝐭1 = 𝐩2 − 𝐩1 



Texture Mapping 

Texture space to screen space: 

𝐱 → 𝐩1 +
| |

𝒕1 𝒕2

| |
⋅

| |

𝐭1
′ 𝐭2

′

| |

−1

(𝐱 − 𝐩1
′ ) 

Screen space to world space: 

𝐱 → 𝐩1
′ +

| |

𝐭1
′ 𝐭2

′

| |
⋅

| |
𝒕1 𝒕2

| |

−1

(𝐱 − 𝐩1) 

*) Formally: this is a change of coordinate system 



Barycentric Coordinates 

Barycentric coordinates 

 2D coordinate system (in plane) 

 Triangle edge coordinates 

 Same as ratio of area of opposing triangle to 
overall triangle area 

𝐩3 𝐩1 

𝐩2 

𝐭2 = 𝐩3 − 𝐩1 

𝐭1 = 𝐩2 − 𝐩1 
𝜏1 

𝐩2 

𝐩3 
𝐩1 

𝜏2 

𝜏3 

𝜆 =
𝜏3

𝜏1 + 𝜏2 + 𝜏3
 

  

𝜇 =
𝜏2

𝜏1 + 𝜏2 + 𝜏3
 

𝜇 

𝜆 



Barycentric Coordinates 

Interpretation: 

𝐱 → 𝐩1
′ +

| |

𝐭1
′ 𝐭2

′

| |
⋅

| |
𝒕1 𝒕2

| |

−1

(𝐱 − 𝐩1) 

 Transform to barycentric coordinates, 
then to texture coordinates 

𝐩3 𝐩1 

𝐩2 

𝐭2 = 𝐩3 − 𝐩1 

𝐭1 = 𝐩2 − 𝐩1 

texture 

  𝐭1
′ =  

   𝐩2
′ − 𝐩1

′  

𝐩3
′  

𝐩1
′  

𝐩2
′  

  𝐭2
′ =  

   𝐩3
′ − 𝐩1

′  



3D Triangles 

Non-uniform spacing! 

 2D texture mapping will create artifacts! 



Example 



Example 

2D Texture Mapping 3D Texture Mapping 

Obviously, we want this! 



A Related Problem 

2D Texture Mapping 

triangulation dependent 

3D Texture Mapping 

triangulation independent 

two linear maps glued together nonlinear map (“homography”) 



Perspective Correction 

Incorrect results: 

 Linear   interpolation in screen space 

Correct results 

 Linear   interpolation in object space 

 Uneven steps in texture coordinates 
between pixels 

How to compute? 

*)  again, this is actually an affine map, 
but the term “linear interpolation” is 
almost exclusively used here 

*) 

*) 



Correct Perspective Texturing 

Two solutions 

 Absolute computation 
 Setup ray equation for each pixel 

 Compute ray-triangle intersection 

 Possible and correct, but slow 

 Incremental interpolation 

 Do not interpolate u,v but 
𝑢

𝑧
,

𝑣

𝑧
 

– Gives correct results in screen space! 

 Multiply by z in the end 

– Interpolate 
1

𝑧
 in screen space (z also non-linear!) 

– Divide by 
1

𝑧
 (approximation strategies for speed) 

(Lazy “option” #3: use GPU/GfxLib and don’t worry :-) ) 



3D Triangles 

Non-uniform spacing! 
depth values (z) 



3D Triangles 

proportional: 
 

𝑧(𝑦) ~ 𝑣(𝑦) 
 

1

𝑧
 ~ 𝑦 + 𝑐 

 

𝑣(𝑦) 

𝑦 

𝑧(𝑦) 



3D Triangles 

𝑣(𝑦) 

𝑦 

𝑧(𝑦) 

𝑣 𝑧 = 𝑚𝑣 ⋅ 𝑧 + 𝑣0 
  

𝑟 𝑧 = 𝑚𝑟 ⋅ 𝑦 ⋅ 𝑧  

𝑧 =
𝑣0

𝑚𝑟 ⋅ 𝑦 − 𝑚𝑣
 

 

𝑣 𝑦 =
𝑚𝑣 ⋅ 𝑣0

𝑚𝑟 ⋅ 𝑦 − 𝑚𝑣
+ 𝑣0 

 
1

𝑧
𝑦 =

1

𝑣0
𝑚𝑟 ⋅ 𝑦 − 𝑚𝑣  

 
𝑣

𝑧
𝑦 = 𝑚𝑟 ⋅ 𝑦 

𝑚𝑣 
1 

𝑚𝑟 

1 

𝑣0 

affine 

linear 

intersect 
plane / 
view ray 



advanced topics 

main ideas 

ADV 

Aliasing and Anti-Aliasing 



Aliasing 
simple 

sampling 

anti- 
aliasing 

(Gaussian) 



Aliasing 

Minification: Moiré 
Sampling aliasing 

Magnification: “Staircasing” 
Reconstruction aliasing 



Magnification 

In hardware: 

 Bi-linear   interpolation 

 Linear blend in u- and v-direction 

pixel sampling Interpolation 

*)  same here, it is a (bi-) affine 
map, but called “(bi-) linear” in 
literature / APIs 

*) 



Magnification 

In hardware: 

 Bi-linear    interpolation 

 Linear blend in u- and v-direction 

pixel sampling Interpolation 

*)  you know, linear ~ affine… 

*) 



Minification: Interfering Grids 

Sampling Aliasing 

 Sampling grid misses information, spacing too big 

 Creates Moiré (or noise, if unstructured) 

Texture 

Samples 



Solution 

Texture 

Result 

Solution 

 Average over neighborhood 

 Heuristic: “leave no free space” 

 Best: weighted filters with overlap (e.g. Gaussians) 



Graphics Hardware 

Two Steps 

Moderate Minification 

 Bilinear   interpolation 

Strong Minification 

 Mip-mapping 

 Average 2 × 2 pixels 

 Store reduce size by 1/2 

 Iterate 

 Trilinear interpolation 

*)  same here 

*) 



Summary 

Minification 

 Average multiple texels 

 

 

 

Magnification 

 Average over multiple 
pixels 

Swap screen & texture 

screen 
(pixel) 
grid! 

texture 
(texel) 
grid! 



The Full Story: Fourier Transforms 

- more in “advanced graphics” - 



Topics 

Texture mapping variants 

 3D Textures 

 Shadow maps 

 Ambient Occlusion 

 Environment Maps 

 Image-based Lighting 

 Bump mapping / normal maps 

 Displacement maps 



3D Textures 

3D Textures 

 Use 3D array of “voxels” 

 u,v,w-coordinates 

 Texture space itself 



Shadow Maps 

Create shadow map 

 Render scene from light source 

 Store depth buffer 

Render scene from camera 

 Project fragment to  
depth buffer/light source 

 If occluder in front → dark 

 Otherwise → bright 

 



Example Result 



Shadow Maps Pitfalls 

Offset problem 

 Camera pixels (slightly) 
different from light pixels 

 Need small offset  
for depth comparison 

Aliasing 

 Visible staircasing 

 Light projection ≠ screen pixels 

Spot-lights only 

 → Cubemaps (later) 



Resolution 

low resolution medium resolution 



Resolution 

high resolution very high resolution 



Offset Problem 

good offset bad offset 



Ambient Occlusion 

Average of 256 Images 
light sources randomly  

sampled on enclosing sphere 

Average of 256 Images 
light sources randomly  

sampled on enclosing sphere 



Ambient Occlusion 

Average of 2560 Images 
light sources randomly  

sampled on enclosing sphere 

Average of 2560 Images 
light sources randomly  

sampled on enclosing sphere 



Environment Maps 

Approximate Reflections  

 Store panoramic image 
(“360°”) of environment 

 Use for reflection 

Approximation 

 Far away environment 

 Single bounce 

 No occlusion in path 

 Refraction less accurate 
(single bounce?) 

Reflective Bunny 
(Environment Mapping) 



Implementation: Cube-Maps 

Cube maps 

 Cube with 6 textured faces 

 “Infinite size” 

Cube-map texture lookup 

 Very easy! 

 Arbitrary vector 

 texcube 
𝑥
𝑦
𝑧

 

 Select face: largest entry, sign 

 2D coordinates: divide by maximum entry 

texture (c) Paul Debevec, USC 

1. arg max 𝑥 , 𝑦 , 𝑦   

2. sign  

3. divide by | ⋅ |  



Cube Map Lookups 

𝑥-axis 

𝑦-axis 

𝑥 

𝑦 

𝑥
𝑦  

|𝑦| largest → horizontal 
      𝑦 >  0 → right face 

                           
𝑥

𝑦
  → texture coordinate 

𝑥

𝑦
  



Rendering with Natural Light 

Traditional Cube Maps 

 Created using rendering 

 6 passes with different camera settings 

 Latest hardware: “render to cubemap” 

Rendering with Natural Light 

 Use HDR photographs 
for cube maps 

 High-dynamic range 
is important 

 Diffuse, specular, glossy 
⇒ filter (blur) cube map 

 

diffuse specular 



reflection Fresnell 

diffuse composite 



texture (c) Paul Debevec, USC 

Title-Bunny 
 

Ambient Occlusion with Natural Light 

adaptive sampling 
density ~ intensity 



point 𝐱 

 
𝐧 𝐱 ∈
ℝ3

 

tangent 
space 

𝒮 
𝐭 × 𝐧 

Bump-Maps / Normal Maps 

Normal Maps 

 Store normal in texture 

 Map to tangent coordinate frame 

 Need normals n 
and tangent field t 

 Then: coordinate transform 
 𝐭 𝐱 ∈ ℝ3

 



Bump Maps 

Bump Maps 

 Same as normal maps 

 But only height field given 

 Need to precompute normals 

Precompute Normals 

 Discrete partial derivatives 

Δ𝑥 ≔
𝑓 𝑥 + 1, 𝑦 − 𝑓 𝑥

ℎ
 

  

Δ𝑦 ≔
𝑓 𝑥, 𝑦 + 1 − 𝑓 𝑥

ℎ
 

  

𝑛 ≈
−Δ𝑥
−Δ𝑦

1
 

 

 



Displacement Maps 

Simplest Method 

 Start with Bump Map 

 Create actual mesh by 
displacement in normal 
direction 

Needs powerful hardware 

 Fancy in the past few years 
for real-time / games 

 Offline rendering used this 
ever since 



core topics 

important 

CORE 

Hardware Architecture 



Simplified GPU Model 

Execution 
Unit 

ALU / 
FPU 

ALU / 
FPU 

ALU / 
FPU 

ALU / 
FPU 

ALU / 
FPU 

void shade() { 
    doThis(); 
    doThat(); 
} 

program 

... 

Main Memory 
(big, high latency, limited bandwidth) 

Cache (small) 

Stream buffer 
(smaller, fast) 

... frequent read/writes ... 

few read/writes, 
large chunks little bandwidth 

... 



Simplified GPU Model 

A GPU is a vector processor 

 SIMD – single instruction, multiple data 

 “Branching” possible at costs 

 Divergent instructions executed serially (write masks) 

Specifically: Stream processor 

 Memory interface main problem 

 Idea: big on-chip buffer, work within buffer 

 Write to/from memory more rarely 

 Direct access still possible (“texture fetches”) 

 Caching, hide latency using multi-threading 



Advantages 

High throughput 

 Geforce GTX Titan Z:   8 TFlops (32-bit SP - 2 chips) 

 Radeon  R9 295x2: 11 TFlops (32-bit SP - 2 chips) 

 Xeon Phi 7120: 2.5 TFlops (32-bit SP) 

 Dual Xeon E5-2697:  500 GFlops (32-bit SP) 

Not all workloads 

 Parallel problems 

 Not all problems are parallelizable! 

 Instruction stream coherence 

 Additional constraints over MIMD computers! 

*) example numbers! architectures  
    have different advantages 



Hardware Architecture 

Programmable Vertex Shaders 

 Input: Vertex Buffer 

 Multiple attributes 

 Position, color, normals, 
texture coordinates, etc... 

 Execute program 

 Texture reads possible 

 Output: one vertex per vertex 

 One-in-one-out 

 Internal queue (efficiency) 

Vertex 
Shader 



Rasterizer 

Rasterizer 

 Clipping of triangles 

 Creation of fragments 

 Interpolate attributes 

 With perspective correction! 

 Hard-wired for efficiency 

 Output: Long sequence of fragments 

Rasterizer 



Pixel Shader 
Pixel shader 

 Input: Fragment 
with interpolated attributes 

 Perform computation 

 Arithmetics 

 Texture reads: 
tex2D, tex3D, texCube,...  

 Includes filtering (anti-aliasing) 

 Output: 

 Color (always) 

 Alpha-value (optional) 

 Depth (optional, reduces efficiency;  
no early fragment rejection) 

Pixel 
Shader 



Final Combiner 

Write to frame-buffer 

 Depth test and update 

 Color update 

 Overwrite,  
additive, subtractive, 
alpha-blending 
(and a few more) 

 (Usually) hardwired 



Recent Extensions 

Geometry shader 

 Between vertex shader and rasterizer  

 Convert single primitive into a small number of 
additional ones 

 Amount limited (e.g., 32 vertices output) 

Hull shader / tessellation shader 

 Better adaptive subdivision 

 Spline surfaces 

 Displacement mapping 


