
Graphics 2014

Advanced
Rasterization

Announcements

Extra tutorials next week

 The usual times: Thu 15:15h – 17:00h

 Rooms: BBL 023, BBL 079, BBL 083 (not BBL 165)

Questions + Answers

 Please mail me your questions

 Will be passed on to tutors

 Best: mail before end of this week

 Preparation for final exam

Geometric Model

Perspective Visibility Local Illumination

Smooth Shading

3D Rendering Steps

Advanced Rasterization Global Illumination

Topics

Supplementary Details

 Projective geometry

 Rasterization and clipping

 Transformations & Normals

Texture Mapping

 Basic idea

 Perspective correction

Topics

Advanced Texture Mapping

 Aliasing, Filtering & Mipmapping (short)

 2D and 3D Textures

 Shadow maps

 Displacement maps

 Bump mapping / normal maps

 Environment Maps

 Image-based Lighting

Topics

Modern Rasterization Pipeline

 Vertex and Pixel Shaders

 Extensions

 Render targets

 Color buffers

 Float buffers

 Stencil buffer

 Textures

 2D & 3D textures

 Cube maps

advanced topics

main ideas

ADV

Addendum

Projective Geometry

Constructing Projective Spaces

Projective Space P𝑑:

 Euclidian (“affine”) space ℝ𝑑 embedded in ℝ𝑑+1

 At 𝑤 = 1

 Identify all points on lines through the origin

 Representing the same Euclidian point

ℝ1 P1

0

p ℝ1

p’ P1

ℝ2 P2

0

p’ P2

 p ℝ2

𝐩′ =
𝑤𝐩
𝑤

𝑤 ∈ ℝ≠0 𝐩′ =
𝑤𝐩
𝑤

𝑤 ∈ ℝ≠0

Constructing Projective Spaces

Translations:

 Sheering of the projective space
1 0 𝑡𝑥

0 1 𝑡𝑦

0 0 1

 Translation of the embedded affine space

ℝ1 P1

0

p ℝ1

p’ P1

𝑡𝑥

Normalization

Conversion between

 Cartesian coordinates (Euclidian space)

 Homogeneous coordinates (projective space)

Cartesian coordinates
(Euclidian space)

homogenous coordinates
(projective space)

𝐱 →
𝑤𝐱
𝑤

1

w
𝐱 ←

𝐱
𝑤

normalization*)

*) overloaded name
 do not confuse with 𝐱/ 𝐱

Mathematical Language

Form equivalence classes

 𝐱 ≡ 𝐲 ⇔ ∃𝜆 ∈ ℝ: (𝐱 = 𝜆𝐲)

 Think of overloading operator=()

Even more formally (math students)

 Consider group of uniform scalings

 𝐺 =
𝜆 0

⋱
0 𝜆

𝜆 ≠ 0

 Symmetry group of the representation:
P𝑑 = ℝ𝑑 mod 𝐺

 Ignore “irrelevant information”

Properties

Projective Maps

 Linear maps in the higher dimensional space

 Scale at any time:

 Why? Scaling yields the same point!

𝐲 = 𝐌 ⋅ 𝐱 ≡
𝐌 ⋅ 𝐱

𝐱. 𝑤
≡

𝐌 ⋅ 𝐱

𝐲. 𝑤
 (for 𝑤 ≠ 0)

Properties

Important:

 We have: 𝐱 ≡ 𝜆𝐱 for 𝜆 ≠ 0

 But in general: 𝐱 + 𝐲 ≡ 𝐱 + 𝜆𝐲

 For correct result:
Normalize first (same 𝑤)

Vectors & Points

Interpretation

 Points:

𝑥
𝑦
𝑧
𝑤

, 𝑤 ≠ 0

 Vectors:

𝑥
𝑦
𝑧
0

 – “pure directions”

Vectors & Points

Rules

 Substracting points
yields vectors

 Normalize first!

 Vectors can be
added to

 Other vectors

 Points
(normalize first!)

𝐯

𝐯𝟐

𝐯

𝐯2
𝐨𝐫𝐢𝐠𝐢𝐧

𝐯 − 𝐯2

core topics

important

CORE

Rasterization and Clipping

Rasterization

How to rasterize Primitives?

Two problems

 Rasterization

 Clipping

color depth

Rasterization

Assumption

 Triangles only

 Triangle not outside screen

 No clipping required

Triangle Rasterization

Several Algorithms...

Triangle Rasterization

Example: two slabs (tutorials)

Triangle Rasterization

Incremental rasterization

Δ𝑥 constant
precompute and
add in each step

Incremental Rasterization

Precompute steps in x, y-direction

 For boundary lines

 For linear interpolation within triangle

 Colors

 Texture coordinates (more later)

 Inner loop

 Only one addition (“DDA” algorithm)

 Floating point value

 Strategies

– Fixed-point arithmetics

– Bresenham / midpoint algorithm
(requires if; problematic on modern CPUs)

Rasterization

How to rasterize Primitives?

Two problems

 Rasterization

 Clipping

color depth

Why Clipping?

Crashes – write to off-screen memory!

Clipping Strategies

Pixel Rejection

 “if (x,y ∉ screen) continue;”

 Can be arbitrarily slow (large triangles)

 Nope. Not a good idea.

Screen space clipping

 Modify rasterizer to jump to visible pixels

 See tutorial 5

 Efficient

 Still problems with when crossing camera plane
(𝑤 = 0) ⇒ a semi-good idea

Smart Slab Renderer

Does not crash, optimal complexity

 𝑂(𝑘) for 𝑘 output fragments

Problem

Problem:

 Triangles crossing camera plane!

 Wrong results

 Need object space clipping

𝑓
𝑧1

𝑦′ = 𝑓
𝑦

𝑧

𝑧2

𝑦1

𝑦2

camera
plane

image
plane

View Frustum Clipping

near clipping
plane

far clipping
plane

four side
planes

six planes
clip triangles
against all
six planes

Incremental Algorithm

Incremental Algorithm

Incremental Algorithm

Output: Multiple Triangles

Further Optimization

View Frustum Culling

 Complex shapes (whole bunnies)

 Coarse bounding volume (superset)

 Cube, Sphere

 Often: Axis-aligned bounding box

 Reject all triangles inside if bounding volume
outside view frustrum

core topics

important

CORE

Transformations & Normals

Remark 1: Scene Graphs

Animation

Hierarchical Animation

 Rotate wheels

 Move car with rotating wheels

“Kinematic Chains”

 Body, upper arm, lower arm,
hand, fingers,...

 Relative transformations
handled correctly
automatically

Implementation

Data Structure

 Simplest version: Tree

 Instancing: Directed Acyclic Graph (DAG)

Algorithm

 Depth-first-traversal

 Multiply transformation nodes

 Use associativity to order

 Matrix stack to store intermediate results

 𝐌1 ⋅ 𝐌2 ⋯ 𝐌𝑛−1 ⋅ 𝐌𝑛

deepest (applied first)
topmost (visited first)

𝐌1

𝐌2

traversal

Remark 2: Transforming Normals

How to transform normals of a surface?

Three cases

 Translations

 Do not apply to normals!

 Orthogonal transformations

 Rotations, reflections

 Transform normals and points the same way

 General linear transformations

 Points: 𝐩′ = 𝐌𝐩

 Normals: 𝐧′ = 𝐌T −𝟏
𝐧

← nothing to
worry about

← be careful
in this case!

Explanation

Implicit plane equation
𝐧, 𝐩 = 𝐧T ⋅ 𝐩 = 𝑑

 𝐩 is a vector

 𝐧 is a co-vector

Change of coordinates:

 𝐩 → 𝐌 ⋅ 𝐩

 𝐧T → 𝐌−𝟏 ⋅ 𝐧
T

Result: same plane

𝐌−𝟏 ⋅ 𝐧
T

⋅ 𝐌 ⋅ 𝐩 = 𝐧T 𝐌−𝟏 ⋅ 𝐌 ⋅ 𝐩 = 𝐧T ⋅ 𝐩 = 𝑑

core topics

important

CORE

Texture Mapping

Texture Mapping

Idea:

 Map image to triangle

 Additional details

 Hard to model with geometry

 Much cheaper than fine geometric tessellation

Texture Coordinates

Define Mapping to Image

 Texture coordinates at vertices

 In between: linear interpolation

 Defines an affine map

2D texture
(image)

vertices
per-vertex texture
coordinates

2D Texture Mapping

Texture Coordinates

Define Mapping to Image

 Texture coordinates at vertices

 In between: affine (“linear”) interpolation

 Defines an affine map

2D texture
(image)

screen

per-vertex
texture

coordinates

screen
coordinates

texture
coord’s

technically, this is an affine map,
but people often call it
“linear interpolation”

Affine Map

Affine Map

 Map coordinate system 𝐩1
′ , 𝐭1

′ , 𝐭2
′ to 𝐩1, 𝒕1, 𝒕2

texture

 𝐭1
′ =

 𝐩2
′ − 𝐩1

′

 𝐭2
′ =

 𝐩3
′ − 𝐩1

′

𝐩3

𝐩1

𝐩2

𝐩3
′

𝐩1
′

𝐩2
′

𝐱 → 𝐩1 +
| |

𝒕1 𝒕2

| |
⋅

| |

𝐭1
′ 𝐭2

′

| |

−1

(𝐱 − 𝐩1
′)

𝐭2 = 𝐩3 − 𝐩1
𝐭1 = 𝐩2 − 𝐩1

Rasterization

2D texture
(image)

Rasterization

 Project vertices

 Keep texture coordinates as specified

 Create fragments

 Lookup texture color

Texture Lookup
lookup color

for each fragment

screen

Rasterization: Inverse Map

Affine Map

 Map coordinate system 𝐩1, 𝐭1
′ , 𝐭2

′ to 𝐩2, 𝒕1, 𝒕2

texture

texture

 𝐭1
′ =

 𝐩2
′ − 𝐩1

′

 𝐭2
′ =

 𝐩3
′ − 𝐩1

′

𝐩3

𝐩1

𝐩2

𝐩3
′

𝐩1
′

𝐩2
′

𝐱 → 𝐩1
′ +

| |

𝐭1
′ 𝐭2

′

| |
⋅

| |
𝒕1 𝒕2

| |

−1

(𝐱 − 𝐩1)

𝐭2 = 𝐩3 − 𝐩1
𝐭1 = 𝐩2 − 𝐩1

Texture Mapping

Texture space to screen space:

𝐱 → 𝐩1 +
| |

𝒕1 𝒕2

| |
⋅

| |

𝐭1
′ 𝐭2

′

| |

−1

(𝐱 − 𝐩1
′)

Screen space to world space:

𝐱 → 𝐩1
′ +

| |

𝐭1
′ 𝐭2

′

| |
⋅

| |
𝒕1 𝒕2

| |

−1

(𝐱 − 𝐩1)

*) Formally: this is a change of coordinate system

Barycentric Coordinates

Barycentric coordinates

 2D coordinate system (in plane)

 Triangle edge coordinates

 Same as ratio of area of opposing triangle to
overall triangle area

𝐩3 𝐩1

𝐩2

𝐭2 = 𝐩3 − 𝐩1

𝐭1 = 𝐩2 − 𝐩1
𝜏1

𝐩2

𝐩3
𝐩1

𝜏2

𝜏3

𝜆 =
𝜏3

𝜏1 + 𝜏2 + 𝜏3

𝜇 =
𝜏2

𝜏1 + 𝜏2 + 𝜏3

𝜇

𝜆

Barycentric Coordinates

Interpretation:

𝐱 → 𝐩1
′ +

| |

𝐭1
′ 𝐭2

′

| |
⋅

| |
𝒕1 𝒕2

| |

−1

(𝐱 − 𝐩1)

 Transform to barycentric coordinates,
then to texture coordinates

𝐩3 𝐩1

𝐩2

𝐭2 = 𝐩3 − 𝐩1

𝐭1 = 𝐩2 − 𝐩1

texture

 𝐭1
′ =

 𝐩2
′ − 𝐩1

′

𝐩3
′

𝐩1
′

𝐩2
′

 𝐭2
′ =

 𝐩3
′ − 𝐩1

′

3D Triangles

Non-uniform spacing!

 2D texture mapping will create artifacts!

Example

Example

2D Texture Mapping 3D Texture Mapping

Obviously, we want this!

A Related Problem

2D Texture Mapping

triangulation dependent

3D Texture Mapping

triangulation independent

two linear maps glued together nonlinear map (“homography”)

Perspective Correction

Incorrect results:

 Linear interpolation in screen space

Correct results

 Linear interpolation in object space

 Uneven steps in texture coordinates
between pixels

How to compute?

*) again, this is actually an affine map,
but the term “linear interpolation” is
almost exclusively used here

*)

*)

Correct Perspective Texturing

Two solutions

 Absolute computation
 Setup ray equation for each pixel

 Compute ray-triangle intersection

 Possible and correct, but slow

 Incremental interpolation

 Do not interpolate u,v but
𝑢

𝑧
,

𝑣

𝑧

– Gives correct results in screen space!

 Multiply by z in the end

– Interpolate
1

𝑧
 in screen space (z also non-linear!)

– Divide by
1

𝑧
 (approximation strategies for speed)

(Lazy “option” #3: use GPU/GfxLib and don’t worry :-))

3D Triangles

Non-uniform spacing!
depth values (z)

3D Triangles

proportional:

𝑧(𝑦) ~ 𝑣(𝑦)

1

𝑧
 ~ 𝑦 + 𝑐

𝑣(𝑦)

𝑦

𝑧(𝑦)

3D Triangles

𝑣(𝑦)

𝑦

𝑧(𝑦)

𝑣 𝑧 = 𝑚𝑣 ⋅ 𝑧 + 𝑣0

𝑟 𝑧 = 𝑚𝑟 ⋅ 𝑦 ⋅ 𝑧

𝑧 =
𝑣0

𝑚𝑟 ⋅ 𝑦 − 𝑚𝑣

𝑣 𝑦 =
𝑚𝑣 ⋅ 𝑣0

𝑚𝑟 ⋅ 𝑦 − 𝑚𝑣
+ 𝑣0

1

𝑧
𝑦 =

1

𝑣0
𝑚𝑟 ⋅ 𝑦 − 𝑚𝑣

𝑣

𝑧
𝑦 = 𝑚𝑟 ⋅ 𝑦

𝑚𝑣
1

𝑚𝑟

1

𝑣0

affine

linear

intersect
plane /
view ray

advanced topics

main ideas

ADV

Aliasing and Anti-Aliasing

Aliasing
simple

sampling

anti-
aliasing

(Gaussian)

Aliasing

Minification: Moiré
Sampling aliasing

Magnification: “Staircasing”
Reconstruction aliasing

Magnification

In hardware:

 Bi-linear interpolation

 Linear blend in u- and v-direction

pixel sampling Interpolation

*) same here, it is a (bi-) affine
map, but called “(bi-) linear” in
literature / APIs

*)

Magnification

In hardware:

 Bi-linear interpolation

 Linear blend in u- and v-direction

pixel sampling Interpolation

*) you know, linear ~ affine…

*)

Minification: Interfering Grids

Sampling Aliasing

 Sampling grid misses information, spacing too big

 Creates Moiré (or noise, if unstructured)

Texture

Samples

Solution

Texture

Result

Solution

 Average over neighborhood

 Heuristic: “leave no free space”

 Best: weighted filters with overlap (e.g. Gaussians)

Graphics Hardware

Two Steps

Moderate Minification

 Bilinear interpolation

Strong Minification

 Mip-mapping

 Average 2 × 2 pixels

 Store reduce size by 1/2

 Iterate

 Trilinear interpolation

*) same here

*)

Summary

Minification

 Average multiple texels

Magnification

 Average over multiple
pixels

Swap screen & texture

screen
(pixel)
grid!

texture
(texel)
grid!

The Full Story: Fourier Transforms

- more in “advanced graphics” -

Topics

Texture mapping variants

 3D Textures

 Shadow maps

 Ambient Occlusion

 Environment Maps

 Image-based Lighting

 Bump mapping / normal maps

 Displacement maps

3D Textures

3D Textures

 Use 3D array of “voxels”

 u,v,w-coordinates

 Texture space itself

Shadow Maps

Create shadow map

 Render scene from light source

 Store depth buffer

Render scene from camera

 Project fragment to
depth buffer/light source

 If occluder in front → dark

 Otherwise → bright

Example Result

Shadow Maps Pitfalls

Offset problem

 Camera pixels (slightly)
different from light pixels

 Need small offset
for depth comparison

Aliasing

 Visible staircasing

 Light projection ≠ screen pixels

Spot-lights only

 → Cubemaps (later)

Resolution

low resolution medium resolution

Resolution

high resolution very high resolution

Offset Problem

good offset bad offset

Ambient Occlusion

Average of 256 Images
light sources randomly

sampled on enclosing sphere

Average of 256 Images
light sources randomly

sampled on enclosing sphere

Ambient Occlusion

Average of 2560 Images
light sources randomly

sampled on enclosing sphere

Average of 2560 Images
light sources randomly

sampled on enclosing sphere

Environment Maps

Approximate Reflections

 Store panoramic image
(“360°”) of environment

 Use for reflection

Approximation

 Far away environment

 Single bounce

 No occlusion in path

 Refraction less accurate
(single bounce?)

Reflective Bunny
(Environment Mapping)

Implementation: Cube-Maps

Cube maps

 Cube with 6 textured faces

 “Infinite size”

Cube-map texture lookup

 Very easy!

 Arbitrary vector

 texcube
𝑥
𝑦
𝑧

 Select face: largest entry, sign

 2D coordinates: divide by maximum entry

texture (c) Paul Debevec, USC

1. arg max 𝑥 , 𝑦 , 𝑦

2. sign

3. divide by | ⋅ |

Cube Map Lookups

𝑥-axis

𝑦-axis

𝑥

𝑦

𝑥
𝑦

|𝑦| largest → horizontal
 𝑦 > 0 → right face

𝑥

𝑦
 → texture coordinate

𝑥

𝑦

Rendering with Natural Light

Traditional Cube Maps

 Created using rendering

 6 passes with different camera settings

 Latest hardware: “render to cubemap”

Rendering with Natural Light

 Use HDR photographs
for cube maps

 High-dynamic range
is important

 Diffuse, specular, glossy
⇒ filter (blur) cube map

diffuse specular

reflection Fresnell

diffuse composite

texture (c) Paul Debevec, USC

Title-Bunny

Ambient Occlusion with Natural Light

adaptive sampling
density ~ intensity

point 𝐱

𝐧 𝐱 ∈
ℝ3

tangent
space

𝒮
𝐭 × 𝐧

Bump-Maps / Normal Maps

Normal Maps

 Store normal in texture

 Map to tangent coordinate frame

 Need normals n
and tangent field t

 Then: coordinate transform
 𝐭 𝐱 ∈ ℝ3

Bump Maps

Bump Maps

 Same as normal maps

 But only height field given

 Need to precompute normals

Precompute Normals

 Discrete partial derivatives

Δ𝑥 ≔
𝑓 𝑥 + 1, 𝑦 − 𝑓 𝑥

ℎ

Δ𝑦 ≔
𝑓 𝑥, 𝑦 + 1 − 𝑓 𝑥

ℎ

𝑛 ≈
−Δ𝑥
−Δ𝑦

1

Displacement Maps

Simplest Method

 Start with Bump Map

 Create actual mesh by
displacement in normal
direction

Needs powerful hardware

 Fancy in the past few years
for real-time / games

 Offline rendering used this
ever since

core topics

important

CORE

Hardware Architecture

Simplified GPU Model

Execution
Unit

ALU /
FPU

ALU /
FPU

ALU /
FPU

ALU /
FPU

ALU /
FPU

void shade() {
 doThis();
 doThat();
}

program

...

Main Memory
(big, high latency, limited bandwidth)

Cache (small)

Stream buffer
(smaller, fast)

... frequent read/writes ...

few read/writes,
large chunks little bandwidth

...

Simplified GPU Model

A GPU is a vector processor

 SIMD – single instruction, multiple data

 “Branching” possible at costs

 Divergent instructions executed serially (write masks)

Specifically: Stream processor

 Memory interface main problem

 Idea: big on-chip buffer, work within buffer

 Write to/from memory more rarely

 Direct access still possible (“texture fetches”)

 Caching, hide latency using multi-threading

Advantages

High throughput

 Geforce GTX Titan Z: 8 TFlops (32-bit SP - 2 chips)

 Radeon R9 295x2: 11 TFlops (32-bit SP - 2 chips)

 Xeon Phi 7120: 2.5 TFlops (32-bit SP)

 Dual Xeon E5-2697: 500 GFlops (32-bit SP)

Not all workloads

 Parallel problems

 Not all problems are parallelizable!

 Instruction stream coherence

 Additional constraints over MIMD computers!

*) example numbers! architectures
 have different advantages

Hardware Architecture

Programmable Vertex Shaders

 Input: Vertex Buffer

 Multiple attributes

 Position, color, normals,
texture coordinates, etc...

 Execute program

 Texture reads possible

 Output: one vertex per vertex

 One-in-one-out

 Internal queue (efficiency)

Vertex
Shader

Rasterizer

Rasterizer

 Clipping of triangles

 Creation of fragments

 Interpolate attributes

 With perspective correction!

 Hard-wired for efficiency

 Output: Long sequence of fragments

Rasterizer

Pixel Shader
Pixel shader

 Input: Fragment
with interpolated attributes

 Perform computation

 Arithmetics

 Texture reads:
tex2D, tex3D, texCube,...

 Includes filtering (anti-aliasing)

 Output:

 Color (always)

 Alpha-value (optional)

 Depth (optional, reduces efficiency;
no early fragment rejection)

Pixel
Shader

Final Combiner

Write to frame-buffer

 Depth test and update

 Color update

 Overwrite,
additive, subtractive,
alpha-blending
(and a few more)

 (Usually) hardwired

Recent Extensions

Geometry shader

 Between vertex shader and rasterizer

 Convert single primitive into a small number of
additional ones

 Amount limited (e.g., 32 vertices output)

Hull shader / tessellation shader

 Better adaptive subdivision

 Spline surfaces

 Displacement mapping

