
Graphics 2014

Advanced
Rasterization

Announcements

Extra tutorials next week

 The usual times: Thu 15:15h – 17:00h

 Rooms: BBL 023, BBL 079, BBL 083 (not BBL 165)

Questions + Answers

 Please mail me your questions

 Will be passed on to tutors

 Best: mail before end of this week

 Preparation for final exam

Geometric Model

Perspective Visibility Local Illumination

Smooth Shading

3D Rendering Steps

Advanced Rasterization Global Illumination

Topics

Supplementary Details

 Projective geometry

 Rasterization and clipping

 Transformations & Normals

Texture Mapping

 Basic idea

 Perspective correction

Topics

Advanced Texture Mapping

 Aliasing, Filtering & Mipmapping (short)

 2D and 3D Textures

 Shadow maps

 Displacement maps

 Bump mapping / normal maps

 Environment Maps

 Image-based Lighting

Topics

Modern Rasterization Pipeline

 Vertex and Pixel Shaders

 Extensions

 Render targets

 Color buffers

 Float buffers

 Stencil buffer

 Textures

 2D & 3D textures

 Cube maps

advanced topics

main ideas

ADV

Addendum

Projective Geometry

Constructing Projective Spaces

Projective Space P𝑑:

 Euclidian (“affine”) space ℝ𝑑 embedded in ℝ𝑑+1

 At 𝑤 = 1

 Identify all points on lines through the origin

 Representing the same Euclidian point

ℝ1 P1

0

p  ℝ1

p’  P1

ℝ2 P2

0

p’  P2

 p  ℝ2

𝐩′ =
𝑤𝐩
𝑤

𝑤 ∈ ℝ≠0 𝐩′ =
𝑤𝐩
𝑤

𝑤 ∈ ℝ≠0

Constructing Projective Spaces

Translations:

 Sheering of the projective space
1 0 𝑡𝑥

0 1 𝑡𝑦

0 0 1

 Translation of the embedded affine space

ℝ1 P1

0

p  ℝ1

p’  P1

𝑡𝑥

Normalization

Conversion between

 Cartesian coordinates (Euclidian space)

 Homogeneous coordinates (projective space)

Cartesian coordinates
(Euclidian space)

homogenous coordinates
(projective space)

𝐱 →
𝑤𝐱
𝑤

1

w
𝐱 ←

𝐱
𝑤

normalization*)

*) overloaded name
 do not confuse with 𝐱/ 𝐱

Mathematical Language

Form equivalence classes

 𝐱 ≡ 𝐲 ⇔ ∃𝜆 ∈ ℝ: (𝐱 = 𝜆𝐲)

 Think of overloading operator=()

Even more formally (math students)

 Consider group of uniform scalings

 𝐺 =
𝜆 0

⋱
0 𝜆

𝜆 ≠ 0

 Symmetry group of the representation:
P𝑑 = ℝ𝑑 mod 𝐺

 Ignore “irrelevant information”

Properties

Projective Maps

 Linear maps in the higher dimensional space

 Scale at any time:

 Why? Scaling yields the same point!

𝐲 = 𝐌 ⋅ 𝐱 ≡
𝐌 ⋅ 𝐱

𝐱. 𝑤
≡

𝐌 ⋅ 𝐱

𝐲. 𝑤
 (for 𝑤 ≠ 0)

Properties

Important:

 We have: 𝐱 ≡ 𝜆𝐱 for 𝜆 ≠ 0

 But in general: 𝐱 + 𝐲 ≡ 𝐱 + 𝜆𝐲

 For correct result:
Normalize first (same 𝑤)

Vectors & Points

Interpretation

 Points:

𝑥
𝑦
𝑧
𝑤

, 𝑤 ≠ 0

 Vectors:

𝑥
𝑦
𝑧
0

 – “pure directions”

Vectors & Points

Rules

 Substracting points
yields vectors

 Normalize first!

 Vectors can be
added to

 Other vectors

 Points
(normalize first!)

𝐯

𝐯𝟐

𝐯

𝐯2
𝐨𝐫𝐢𝐠𝐢𝐧

𝐯 − 𝐯2

core topics

important

CORE

Rasterization and Clipping

Rasterization

How to rasterize Primitives?

Two problems

 Rasterization

 Clipping

color depth

Rasterization

Assumption

 Triangles only

 Triangle not outside screen

 No clipping required

Triangle Rasterization

Several Algorithms...

Triangle Rasterization

Example: two slabs (tutorials)

Triangle Rasterization

Incremental rasterization

Δ𝑥 constant
precompute and
add in each step

Incremental Rasterization

Precompute steps in x, y-direction

 For boundary lines

 For linear interpolation within triangle

 Colors

 Texture coordinates (more later)

 Inner loop

 Only one addition (“DDA” algorithm)

 Floating point value

 Strategies

– Fixed-point arithmetics

– Bresenham / midpoint algorithm
(requires if; problematic on modern CPUs)

Rasterization

How to rasterize Primitives?

Two problems

 Rasterization

 Clipping

color depth

Why Clipping?

Crashes – write to off-screen memory!

Clipping Strategies

Pixel Rejection

 “if (x,y ∉ screen) continue;”

 Can be arbitrarily slow (large triangles)

 Nope. Not a good idea.

Screen space clipping

 Modify rasterizer to jump to visible pixels

 See tutorial 5

 Efficient

 Still problems with when crossing camera plane
(𝑤 = 0) ⇒ a semi-good idea

Smart Slab Renderer

Does not crash, optimal complexity

 𝑂(𝑘) for 𝑘 output fragments

Problem

Problem:

 Triangles crossing camera plane!

 Wrong results

 Need object space clipping

𝑓
𝑧1

𝑦′ = 𝑓
𝑦

𝑧

𝑧2

𝑦1

𝑦2

camera
plane

image
plane

View Frustum Clipping

near clipping
plane

far clipping
plane

four side
planes

six planes
clip triangles
against all
six planes

Incremental Algorithm

Incremental Algorithm

Incremental Algorithm

Output: Multiple Triangles

Further Optimization

View Frustum Culling

 Complex shapes (whole bunnies)

 Coarse bounding volume (superset)

 Cube, Sphere

 Often: Axis-aligned bounding box

 Reject all triangles inside if bounding volume
outside view frustrum

core topics

important

CORE

Transformations & Normals

Remark 1: Scene Graphs

Animation

Hierarchical Animation

 Rotate wheels

 Move car with rotating wheels

“Kinematic Chains”

 Body, upper arm, lower arm,
hand, fingers,...

 Relative transformations
handled correctly
automatically

Implementation

Data Structure

 Simplest version: Tree

 Instancing: Directed Acyclic Graph (DAG)

Algorithm

 Depth-first-traversal

 Multiply transformation nodes

 Use associativity to order

 Matrix stack to store intermediate results

 𝐌1 ⋅ 𝐌2 ⋯ 𝐌𝑛−1 ⋅ 𝐌𝑛

deepest (applied first)
topmost (visited first)

𝐌1

𝐌2

traversal

Remark 2: Transforming Normals

How to transform normals of a surface?

Three cases

 Translations

 Do not apply to normals!

 Orthogonal transformations

 Rotations, reflections

 Transform normals and points the same way

 General linear transformations

 Points: 𝐩′ = 𝐌𝐩

 Normals: 𝐧′ = 𝐌T −𝟏
𝐧

← nothing to
worry about

← be careful
in this case!

Explanation

Implicit plane equation
𝐧, 𝐩 = 𝐧T ⋅ 𝐩 = 𝑑

 𝐩 is a vector

 𝐧 is a co-vector

Change of coordinates:

 𝐩 → 𝐌 ⋅ 𝐩

 𝐧T → 𝐌−𝟏 ⋅ 𝐧
T

Result: same plane

𝐌−𝟏 ⋅ 𝐧
T

⋅ 𝐌 ⋅ 𝐩 = 𝐧T 𝐌−𝟏 ⋅ 𝐌 ⋅ 𝐩 = 𝐧T ⋅ 𝐩 = 𝑑

core topics

important

CORE

Texture Mapping

Texture Mapping

Idea:

 Map image to triangle

 Additional details

 Hard to model with geometry

 Much cheaper than fine geometric tessellation

Texture Coordinates

Define Mapping to Image

 Texture coordinates at vertices

 In between: linear interpolation

 Defines an affine map

2D texture
(image)

vertices
per-vertex texture
coordinates

2D Texture Mapping

Texture Coordinates

Define Mapping to Image

 Texture coordinates at vertices

 In between: affine (“linear”) interpolation

 Defines an affine map

2D texture
(image)

screen

per-vertex
texture

coordinates

screen
coordinates

texture
coord’s

technically, this is an affine map,
but people often call it
“linear interpolation”

Affine Map

Affine Map

 Map coordinate system 𝐩1
′ , 𝐭1

′ , 𝐭2
′ to 𝐩1, 𝒕1, 𝒕2

texture

 𝐭1
′ =

 𝐩2
′ − 𝐩1

′

 𝐭2
′ =

 𝐩3
′ − 𝐩1

′

𝐩3

𝐩1

𝐩2

𝐩3
′

𝐩1
′

𝐩2
′

𝐱 → 𝐩1 +
| |

𝒕1 𝒕2

| |
⋅

| |

𝐭1
′ 𝐭2

′

| |

−1

(𝐱 − 𝐩1
′)

𝐭2 = 𝐩3 − 𝐩1
𝐭1 = 𝐩2 − 𝐩1

Rasterization

2D texture
(image)

Rasterization

 Project vertices

 Keep texture coordinates as specified

 Create fragments

 Lookup texture color

Texture Lookup
lookup color

for each fragment

screen

Rasterization: Inverse Map

Affine Map

 Map coordinate system 𝐩1, 𝐭1
′ , 𝐭2

′ to 𝐩2, 𝒕1, 𝒕2

texture

texture

 𝐭1
′ =

 𝐩2
′ − 𝐩1

′

 𝐭2
′ =

 𝐩3
′ − 𝐩1

′

𝐩3

𝐩1

𝐩2

𝐩3
′

𝐩1
′

𝐩2
′

𝐱 → 𝐩1
′ +

| |

𝐭1
′ 𝐭2

′

| |
⋅

| |
𝒕1 𝒕2

| |

−1

(𝐱 − 𝐩1)

𝐭2 = 𝐩3 − 𝐩1
𝐭1 = 𝐩2 − 𝐩1

Texture Mapping

Texture space to screen space:

𝐱 → 𝐩1 +
| |

𝒕1 𝒕2

| |
⋅

| |

𝐭1
′ 𝐭2

′

| |

−1

(𝐱 − 𝐩1
′)

Screen space to world space:

𝐱 → 𝐩1
′ +

| |

𝐭1
′ 𝐭2

′

| |
⋅

| |
𝒕1 𝒕2

| |

−1

(𝐱 − 𝐩1)

*) Formally: this is a change of coordinate system

Barycentric Coordinates

Barycentric coordinates

 2D coordinate system (in plane)

 Triangle edge coordinates

 Same as ratio of area of opposing triangle to
overall triangle area

𝐩3 𝐩1

𝐩2

𝐭2 = 𝐩3 − 𝐩1

𝐭1 = 𝐩2 − 𝐩1
𝜏1

𝐩2

𝐩3
𝐩1

𝜏2

𝜏3

𝜆 =
𝜏3

𝜏1 + 𝜏2 + 𝜏3

𝜇 =
𝜏2

𝜏1 + 𝜏2 + 𝜏3

𝜇

𝜆

Barycentric Coordinates

Interpretation:

𝐱 → 𝐩1
′ +

| |

𝐭1
′ 𝐭2

′

| |
⋅

| |
𝒕1 𝒕2

| |

−1

(𝐱 − 𝐩1)

 Transform to barycentric coordinates,
then to texture coordinates

𝐩3 𝐩1

𝐩2

𝐭2 = 𝐩3 − 𝐩1

𝐭1 = 𝐩2 − 𝐩1

texture

 𝐭1
′ =

 𝐩2
′ − 𝐩1

′

𝐩3
′

𝐩1
′

𝐩2
′

 𝐭2
′ =

 𝐩3
′ − 𝐩1

′

3D Triangles

Non-uniform spacing!

 2D texture mapping will create artifacts!

Example

Example

2D Texture Mapping 3D Texture Mapping

Obviously, we want this!

A Related Problem

2D Texture Mapping

triangulation dependent

3D Texture Mapping

triangulation independent

two linear maps glued together nonlinear map (“homography”)

Perspective Correction

Incorrect results:

 Linear interpolation in screen space

Correct results

 Linear interpolation in object space

 Uneven steps in texture coordinates
between pixels

How to compute?

*) again, this is actually an affine map,
but the term “linear interpolation” is
almost exclusively used here

*)

*)

Correct Perspective Texturing

Two solutions

 Absolute computation
 Setup ray equation for each pixel

 Compute ray-triangle intersection

 Possible and correct, but slow

 Incremental interpolation

 Do not interpolate u,v but
𝑢

𝑧
,

𝑣

𝑧

– Gives correct results in screen space!

 Multiply by z in the end

– Interpolate
1

𝑧
 in screen space (z also non-linear!)

– Divide by
1

𝑧
 (approximation strategies for speed)

(Lazy “option” #3: use GPU/GfxLib and don’t worry :-))

3D Triangles

Non-uniform spacing!
depth values (z)

3D Triangles

proportional:

𝑧(𝑦) ~ 𝑣(𝑦)

1

𝑧
 ~ 𝑦 + 𝑐

𝑣(𝑦)

𝑦

𝑧(𝑦)

3D Triangles

𝑣(𝑦)

𝑦

𝑧(𝑦)

𝑣 𝑧 = 𝑚𝑣 ⋅ 𝑧 + 𝑣0

𝑟 𝑧 = 𝑚𝑟 ⋅ 𝑦 ⋅ 𝑧

𝑧 =
𝑣0

𝑚𝑟 ⋅ 𝑦 − 𝑚𝑣

𝑣 𝑦 =
𝑚𝑣 ⋅ 𝑣0

𝑚𝑟 ⋅ 𝑦 − 𝑚𝑣
+ 𝑣0

1

𝑧
𝑦 =

1

𝑣0
𝑚𝑟 ⋅ 𝑦 − 𝑚𝑣

𝑣

𝑧
𝑦 = 𝑚𝑟 ⋅ 𝑦

𝑚𝑣
1

𝑚𝑟

1

𝑣0

affine

linear

intersect
plane /
view ray

advanced topics

main ideas

ADV

Aliasing and Anti-Aliasing

Aliasing
simple

sampling

anti-
aliasing

(Gaussian)

Aliasing

Minification: Moiré
Sampling aliasing

Magnification: “Staircasing”
Reconstruction aliasing

Magnification

In hardware:

 Bi-linear interpolation

 Linear blend in u- and v-direction

pixel sampling Interpolation

*) same here, it is a (bi-) affine
map, but called “(bi-) linear” in
literature / APIs

*)

Magnification

In hardware:

 Bi-linear interpolation

 Linear blend in u- and v-direction

pixel sampling Interpolation

*) you know, linear ~ affine…

*)

Minification: Interfering Grids

Sampling Aliasing

 Sampling grid misses information, spacing too big

 Creates Moiré (or noise, if unstructured)

Texture

Samples

Solution

Texture

Result

Solution

 Average over neighborhood

 Heuristic: “leave no free space”

 Best: weighted filters with overlap (e.g. Gaussians)

Graphics Hardware

Two Steps

Moderate Minification

 Bilinear interpolation

Strong Minification

 Mip-mapping

 Average 2 × 2 pixels

 Store reduce size by 1/2

 Iterate

 Trilinear interpolation

*) same here

*)

Summary

Minification

 Average multiple texels

Magnification

 Average over multiple
pixels

Swap screen & texture

screen
(pixel)
grid!

texture
(texel)
grid!

The Full Story: Fourier Transforms

- more in “advanced graphics” -

Topics

Texture mapping variants

 3D Textures

 Shadow maps

 Ambient Occlusion

 Environment Maps

 Image-based Lighting

 Bump mapping / normal maps

 Displacement maps

3D Textures

3D Textures

 Use 3D array of “voxels”

 u,v,w-coordinates

 Texture space itself

Shadow Maps

Create shadow map

 Render scene from light source

 Store depth buffer

Render scene from camera

 Project fragment to
depth buffer/light source

 If occluder in front → dark

 Otherwise → bright

Example Result

Shadow Maps Pitfalls

Offset problem

 Camera pixels (slightly)
different from light pixels

 Need small offset
for depth comparison

Aliasing

 Visible staircasing

 Light projection ≠ screen pixels

Spot-lights only

 → Cubemaps (later)

Resolution

low resolution medium resolution

Resolution

high resolution very high resolution

Offset Problem

good offset bad offset

Ambient Occlusion

Average of 256 Images
light sources randomly

sampled on enclosing sphere

Average of 256 Images
light sources randomly

sampled on enclosing sphere

Ambient Occlusion

Average of 2560 Images
light sources randomly

sampled on enclosing sphere

Average of 2560 Images
light sources randomly

sampled on enclosing sphere

Environment Maps

Approximate Reflections

 Store panoramic image
(“360°”) of environment

 Use for reflection

Approximation

 Far away environment

 Single bounce

 No occlusion in path

 Refraction less accurate
(single bounce?)

Reflective Bunny
(Environment Mapping)

Implementation: Cube-Maps

Cube maps

 Cube with 6 textured faces

 “Infinite size”

Cube-map texture lookup

 Very easy!

 Arbitrary vector

 texcube
𝑥
𝑦
𝑧

 Select face: largest entry, sign

 2D coordinates: divide by maximum entry

texture (c) Paul Debevec, USC

1. arg max 𝑥 , 𝑦 , 𝑦

2. sign

3. divide by | ⋅ |

Cube Map Lookups

𝑥-axis

𝑦-axis

𝑥

𝑦

𝑥
𝑦

|𝑦| largest → horizontal
 𝑦 > 0 → right face

𝑥

𝑦
 → texture coordinate

𝑥

𝑦

Rendering with Natural Light

Traditional Cube Maps

 Created using rendering

 6 passes with different camera settings

 Latest hardware: “render to cubemap”

Rendering with Natural Light

 Use HDR photographs
for cube maps

 High-dynamic range
is important

 Diffuse, specular, glossy
⇒ filter (blur) cube map

diffuse specular

reflection Fresnell

diffuse composite

texture (c) Paul Debevec, USC

Title-Bunny

Ambient Occlusion with Natural Light

adaptive sampling
density ~ intensity

point 𝐱

𝐧 𝐱 ∈
ℝ3

tangent
space

𝒮
𝐭 × 𝐧

Bump-Maps / Normal Maps

Normal Maps

 Store normal in texture

 Map to tangent coordinate frame

 Need normals n
and tangent field t

 Then: coordinate transform
 𝐭 𝐱 ∈ ℝ3

Bump Maps

Bump Maps

 Same as normal maps

 But only height field given

 Need to precompute normals

Precompute Normals

 Discrete partial derivatives

Δ𝑥 ≔
𝑓 𝑥 + 1, 𝑦 − 𝑓 𝑥

ℎ

Δ𝑦 ≔
𝑓 𝑥, 𝑦 + 1 − 𝑓 𝑥

ℎ

𝑛 ≈
−Δ𝑥
−Δ𝑦

1

Displacement Maps

Simplest Method

 Start with Bump Map

 Create actual mesh by
displacement in normal
direction

Needs powerful hardware

 Fancy in the past few years
for real-time / games

 Offline rendering used this
ever since

core topics

important

CORE

Hardware Architecture

Simplified GPU Model

Execution
Unit

ALU /
FPU

ALU /
FPU

ALU /
FPU

ALU /
FPU

ALU /
FPU

void shade() {
 doThis();
 doThat();
}

program

...

Main Memory
(big, high latency, limited bandwidth)

Cache (small)

Stream buffer
(smaller, fast)

... frequent read/writes ...

few read/writes,
large chunks little bandwidth

...

Simplified GPU Model

A GPU is a vector processor

 SIMD – single instruction, multiple data

 “Branching” possible at costs

 Divergent instructions executed serially (write masks)

Specifically: Stream processor

 Memory interface main problem

 Idea: big on-chip buffer, work within buffer

 Write to/from memory more rarely

 Direct access still possible (“texture fetches”)

 Caching, hide latency using multi-threading

Advantages

High throughput

 Geforce GTX Titan Z: 8 TFlops (32-bit SP - 2 chips)

 Radeon R9 295x2: 11 TFlops (32-bit SP - 2 chips)

 Xeon Phi 7120: 2.5 TFlops (32-bit SP)

 Dual Xeon E5-2697: 500 GFlops (32-bit SP)

Not all workloads

 Parallel problems

 Not all problems are parallelizable!

 Instruction stream coherence

 Additional constraints over MIMD computers!

*) example numbers! architectures
 have different advantages

Hardware Architecture

Programmable Vertex Shaders

 Input: Vertex Buffer

 Multiple attributes

 Position, color, normals,
texture coordinates, etc...

 Execute program

 Texture reads possible

 Output: one vertex per vertex

 One-in-one-out

 Internal queue (efficiency)

Vertex
Shader

Rasterizer

Rasterizer

 Clipping of triangles

 Creation of fragments

 Interpolate attributes

 With perspective correction!

 Hard-wired for efficiency

 Output: Long sequence of fragments

Rasterizer

Pixel Shader
Pixel shader

 Input: Fragment
with interpolated attributes

 Perform computation

 Arithmetics

 Texture reads:
tex2D, tex3D, texCube,...

 Includes filtering (anti-aliasing)

 Output:

 Color (always)

 Alpha-value (optional)

 Depth (optional, reduces efficiency;
no early fragment rejection)

Pixel
Shader

Final Combiner

Write to frame-buffer

 Depth test and update

 Color update

 Overwrite,
additive, subtractive,
alpha-blending
(and a few more)

 (Usually) hardwired

Recent Extensions

Geometry shader

 Between vertex shader and rasterizer

 Convert single primitive into a small number of
additional ones

 Amount limited (e.g., 32 vertices output)

Hull shader / tessellation shader

 Better adaptive subdivision

 Spline surfaces

 Displacement mapping

