
Graphics 2014 

Advanced 
Rasterization 



Announcements 

Extra tutorials next week 

 The usual times: Thu 15:15h – 17:00h 

 Rooms: BBL 023, BBL 079, BBL 083 (not BBL 165) 

Questions + Answers 

 Please mail me your questions 

 Will be passed on to tutors 

 Best: mail before end of this week 

 Preparation for final exam 



Geometric Model 

Perspective Visibility Local Illumination 

Smooth Shading 

3D Rendering Steps 

Advanced Rasterization Global Illumination 



Topics 

Supplementary Details 

 Projective geometry 

 Rasterization and clipping 

 Transformations & Normals 

Texture Mapping 

 Basic idea 

 Perspective correction 

 



Topics 

Advanced Texture Mapping 

 Aliasing, Filtering & Mipmapping (short) 

 2D and 3D Textures 

 Shadow maps 

 Displacement maps 

 Bump mapping / normal maps 

 Environment Maps 

 Image-based Lighting 



Topics 

Modern Rasterization Pipeline 

 Vertex and Pixel Shaders 

 Extensions 

 Render targets 

 Color buffers 

 Float buffers 

 Stencil buffer 

 Textures 

 2D & 3D textures 

 Cube maps 



advanced topics 

main ideas 

ADV 

Addendum 

Projective Geometry 



Constructing Projective Spaces 

Projective Space P𝑑: 

 Euclidian (“affine”) space ℝ𝑑 embedded in ℝ𝑑+1 

 At 𝑤 =  1 

 Identify all points on lines through the origin 

 Representing the same Euclidian point 

ℝ1 P1 

0 

p  ℝ1 

 

p’  P1 

 

ℝ2 P2 

0 

p’  P2 

 p  ℝ2 

 

𝐩′ =
𝑤𝐩
𝑤

𝑤 ∈ ℝ≠0  𝐩′ =
𝑤𝐩
𝑤

𝑤 ∈ ℝ≠0  



Constructing Projective Spaces 

Translations: 

 Sheering of the projective space 
1 0 𝑡𝑥

0 1 𝑡𝑦

0 0 1

 

 Translation of the embedded affine space 

ℝ1 P1 

0 

p  ℝ1 

 

p’  P1 

 

𝑡𝑥 



Normalization 

Conversion between 

 Cartesian coordinates (Euclidian space) 

 Homogeneous coordinates (projective space) 

 

Cartesian coordinates 
(Euclidian space) 

homogenous coordinates 
(projective space) 

𝐱 →
𝑤𝐱
𝑤

 

1

w
𝐱 ←

𝐱
𝑤

 

normalization*) 

*) overloaded name 
   do not confuse with 𝐱/ 𝐱  



Mathematical Language 

Form equivalence classes 

 𝐱 ≡ 𝐲 ⇔ ∃𝜆 ∈ ℝ: (𝐱 = 𝜆𝐲) 

 Think of overloading operator=() 

Even more formally (math students) 

 Consider group of uniform scalings 

 𝐺 =
𝜆 0

⋱
0 𝜆

𝜆 ≠ 0  

 Symmetry group of the representation: 
P𝑑 = ℝ𝑑 mod 𝐺 

 Ignore “irrelevant information” 



Properties 

Projective Maps 

 Linear maps in the higher dimensional space 

 Scale at any time: 

 

 Why? Scaling yields the same point! 

𝐲 = 𝐌 ⋅ 𝐱 ≡
𝐌 ⋅ 𝐱

𝐱. 𝑤
≡

𝐌 ⋅ 𝐱

𝐲. 𝑤
  (for 𝑤 ≠ 0) 



Properties 

Important: 

 We have: 𝐱 ≡ 𝜆𝐱 for 𝜆 ≠ 0  

 But in general: 𝐱 + 𝐲 ≡ 𝐱 + 𝜆𝐲 

 For correct result: 
Normalize first (same 𝑤) 



Vectors & Points 

Interpretation 

 Points: 

𝑥
𝑦
𝑧
𝑤

, 𝑤 ≠ 0 

 Vectors: 

𝑥
𝑦
𝑧
0

 – “pure directions” 

 



Vectors & Points 

Rules 

 Substracting points 
yields vectors 

 Normalize first! 

 Vectors can be 
added to  

 Other vectors 

 Points 
(normalize first!) 

𝐯 

𝐯𝟐 

𝐯 

𝐯2 
𝐨𝐫𝐢𝐠𝐢𝐧 

𝐯 − 𝐯2 



core topics 

important 

CORE 

Rasterization and Clipping 



Rasterization 

How to rasterize Primitives? 

Two problems 

 Rasterization 

 Clipping 

color depth 



Rasterization 

Assumption 

 Triangles only 

 Triangle not outside screen 

 No clipping required 

 



Triangle Rasterization 

Several Algorithms... 



Triangle Rasterization 

Example: two slabs (tutorials) 



Triangle Rasterization 

Incremental rasterization 

Δ𝑥 constant 
precompute and 
add in each step 



Incremental Rasterization 

Precompute steps in x, y-direction 

 For boundary lines 

 For linear interpolation within triangle 

 Colors 

 Texture coordinates (more later) 

 Inner loop 

 Only one addition (“DDA” algorithm) 

 Floating point value 

 Strategies 

– Fixed-point arithmetics 

– Bresenham / midpoint algorithm 
(requires if; problematic on modern CPUs) 



Rasterization 

How to rasterize Primitives? 

Two problems 

 Rasterization 

 Clipping 

color depth 



Why Clipping? 

Crashes – write to off-screen memory! 



Clipping Strategies 

Pixel Rejection 

 “if (x,y ∉ screen) continue;” 

 Can be arbitrarily slow (large triangles) 

 Nope. Not a good idea. 

Screen space clipping 

 Modify rasterizer to jump to visible pixels 

 See tutorial 5 

 Efficient 

 Still problems with when crossing camera plane 
(𝑤 = 0) ⇒ a semi-good idea 



Smart Slab Renderer 

Does not crash, optimal complexity  

 𝑂(𝑘) for 𝑘 output fragments 



Problem 

Problem: 

 Triangles crossing camera plane! 

 Wrong results 

 Need object space clipping 

𝑓 
𝑧1 

𝑦′ = 𝑓
𝑦

𝑧
 

𝑧2 

𝑦1 

𝑦2 

camera 
plane 

image 
plane 



View Frustum Clipping 

near clipping 
plane 

far clipping 
plane 

four side   
planes 

six planes 
clip triangles 
against all  
six planes 



Incremental Algorithm 



Incremental Algorithm 



Incremental Algorithm 

Output: Multiple Triangles 



Further Optimization 

View Frustum Culling 

 Complex shapes (whole bunnies) 

 Coarse bounding volume (superset) 

 Cube, Sphere 

 Often: Axis-aligned bounding box 

 Reject all triangles inside if bounding volume 
outside view frustrum 



core topics 

important 

CORE 

Transformations & Normals 



Remark 1: Scene Graphs 



Animation 

Hierarchical Animation 

 Rotate wheels 

 Move car with rotating wheels 

“Kinematic Chains” 

 Body, upper arm, lower arm, 
hand, fingers,... 

 Relative transformations 
handled correctly  
automatically 



Implementation 

Data Structure 

 Simplest version: Tree 

 Instancing: Directed Acyclic Graph (DAG) 

Algorithm 

 Depth-first-traversal 

 Multiply transformation nodes 

 Use associativity to order 

 Matrix stack to store intermediate results 

 𝐌1 ⋅ 𝐌2 ⋯ 𝐌𝑛−1 ⋅ 𝐌𝑛  

deepest (applied first) 
topmost (visited first) 

𝐌1 

𝐌2 

traversal 



Remark 2: Transforming Normals 

How to transform normals of a surface? 

Three cases 

 Translations 

 Do not apply to normals! 

 Orthogonal transformations 

 Rotations, reflections 

 Transform normals and points the same way 

 General linear transformations 

 Points: 𝐩′ = 𝐌𝐩 

 Normals: 𝐧′ = 𝐌T −𝟏
𝐧 

← nothing to 
worry about 

← be careful 
in this case! 



Explanation 

Implicit plane equation 
𝐧, 𝐩 = 𝐧T ⋅ 𝐩 = 𝑑 

 𝐩 is a vector 

 𝐧 is a co-vector 

Change of coordinates: 

 𝐩 → 𝐌 ⋅ 𝐩 

 𝐧T → 𝐌−𝟏 ⋅ 𝐧
T

 

Result: same plane 

𝐌−𝟏 ⋅ 𝐧
T

⋅ 𝐌 ⋅ 𝐩 = 𝐧T 𝐌−𝟏 ⋅ 𝐌 ⋅ 𝐩 = 𝐧T ⋅ 𝐩 = 𝑑 

 



core topics 

important 

CORE 

Texture Mapping 



Texture Mapping 

Idea: 

 Map image to triangle 

 Additional details 

 Hard to model with geometry 

 Much cheaper than fine geometric tessellation 



Texture Coordinates 

Define Mapping to Image 

 Texture coordinates at vertices 

 In between: linear interpolation 

 Defines an affine map 

2D texture 
(image) 

vertices 
per-vertex texture 
coordinates 



2D Texture Mapping 



Texture Coordinates 

Define Mapping to Image 

 Texture coordinates at vertices 

 In between: affine (“linear”) interpolation 

 Defines an affine map 

2D texture 
(image) 

screen 

per-vertex 
texture 

coordinates 

screen 
coordinates 

texture 
coord’s 

technically, this is an affine map, 
but people often call it 
“linear interpolation” 



Affine Map 

Affine Map 

 Map coordinate system 𝐩1
′ , 𝐭1

′ , 𝐭2
′  to 𝐩1, 𝒕1, 𝒕2  

texture 

  𝐭1
′ =  

   𝐩2
′ − 𝐩1

′  

  𝐭2
′ =  

   𝐩3
′ − 𝐩1

′  

𝐩3 

𝐩1 

𝐩2 

𝐩3
′  

𝐩1
′  

𝐩2
′  

𝐱 → 𝐩1 +
| |

𝒕1 𝒕2

| |
⋅

| |

𝐭1
′ 𝐭2

′

| |

−1

(𝐱 − 𝐩1
′ ) 

𝐭2 = 𝐩3 − 𝐩1 
𝐭1 = 𝐩2 − 𝐩1 



Rasterization 

2D texture 
(image) 

Rasterization 

 Project vertices 

 Keep texture coordinates as specified 

 Create fragments 

 Lookup texture color 

Texture Lookup 
lookup color 

for each fragment 

screen 



Rasterization: Inverse Map 

Affine Map 

 Map coordinate system 𝐩1, 𝐭1
′ , 𝐭2

′  to 𝐩2, 𝒕1, 𝒕2  

texture 

texture 

  𝐭1
′ =  

   𝐩2
′ − 𝐩1

′  

  𝐭2
′ =  

   𝐩3
′ − 𝐩1

′  

𝐩3 

𝐩1 

𝐩2 

𝐩3
′  

𝐩1
′  

𝐩2
′  

𝐱 → 𝐩1
′ +

| |

𝐭1
′ 𝐭2

′

| |
⋅

| |
𝒕1 𝒕2

| |

−1

(𝐱 − 𝐩1) 

𝐭2 = 𝐩3 − 𝐩1 
𝐭1 = 𝐩2 − 𝐩1 



Texture Mapping 

Texture space to screen space: 

𝐱 → 𝐩1 +
| |

𝒕1 𝒕2

| |
⋅

| |

𝐭1
′ 𝐭2

′

| |

−1

(𝐱 − 𝐩1
′ ) 

Screen space to world space: 

𝐱 → 𝐩1
′ +

| |

𝐭1
′ 𝐭2

′

| |
⋅

| |
𝒕1 𝒕2

| |

−1

(𝐱 − 𝐩1) 

*) Formally: this is a change of coordinate system 



Barycentric Coordinates 

Barycentric coordinates 

 2D coordinate system (in plane) 

 Triangle edge coordinates 

 Same as ratio of area of opposing triangle to 
overall triangle area 

𝐩3 𝐩1 

𝐩2 

𝐭2 = 𝐩3 − 𝐩1 

𝐭1 = 𝐩2 − 𝐩1 
𝜏1 

𝐩2 

𝐩3 
𝐩1 

𝜏2 

𝜏3 

𝜆 =
𝜏3

𝜏1 + 𝜏2 + 𝜏3
 

  

𝜇 =
𝜏2

𝜏1 + 𝜏2 + 𝜏3
 

𝜇 

𝜆 



Barycentric Coordinates 

Interpretation: 

𝐱 → 𝐩1
′ +

| |

𝐭1
′ 𝐭2

′

| |
⋅

| |
𝒕1 𝒕2

| |

−1

(𝐱 − 𝐩1) 

 Transform to barycentric coordinates, 
then to texture coordinates 

𝐩3 𝐩1 

𝐩2 

𝐭2 = 𝐩3 − 𝐩1 

𝐭1 = 𝐩2 − 𝐩1 

texture 

  𝐭1
′ =  

   𝐩2
′ − 𝐩1

′  

𝐩3
′  

𝐩1
′  

𝐩2
′  

  𝐭2
′ =  

   𝐩3
′ − 𝐩1

′  



3D Triangles 

Non-uniform spacing! 

 2D texture mapping will create artifacts! 



Example 



Example 

2D Texture Mapping 3D Texture Mapping 

Obviously, we want this! 



A Related Problem 

2D Texture Mapping 

triangulation dependent 

3D Texture Mapping 

triangulation independent 

two linear maps glued together nonlinear map (“homography”) 



Perspective Correction 

Incorrect results: 

 Linear   interpolation in screen space 

Correct results 

 Linear   interpolation in object space 

 Uneven steps in texture coordinates 
between pixels 

How to compute? 

*)  again, this is actually an affine map, 
but the term “linear interpolation” is 
almost exclusively used here 

*) 

*) 



Correct Perspective Texturing 

Two solutions 

 Absolute computation 
 Setup ray equation for each pixel 

 Compute ray-triangle intersection 

 Possible and correct, but slow 

 Incremental interpolation 

 Do not interpolate u,v but 
𝑢

𝑧
,

𝑣

𝑧
 

– Gives correct results in screen space! 

 Multiply by z in the end 

– Interpolate 
1

𝑧
 in screen space (z also non-linear!) 

– Divide by 
1

𝑧
 (approximation strategies for speed) 

(Lazy “option” #3: use GPU/GfxLib and don’t worry :-) ) 



3D Triangles 

Non-uniform spacing! 
depth values (z) 



3D Triangles 

proportional: 
 

𝑧(𝑦) ~ 𝑣(𝑦) 
 

1

𝑧
 ~ 𝑦 + 𝑐 

 

𝑣(𝑦) 

𝑦 

𝑧(𝑦) 



3D Triangles 

𝑣(𝑦) 

𝑦 

𝑧(𝑦) 

𝑣 𝑧 = 𝑚𝑣 ⋅ 𝑧 + 𝑣0 
  

𝑟 𝑧 = 𝑚𝑟 ⋅ 𝑦 ⋅ 𝑧  

𝑧 =
𝑣0

𝑚𝑟 ⋅ 𝑦 − 𝑚𝑣
 

 

𝑣 𝑦 =
𝑚𝑣 ⋅ 𝑣0

𝑚𝑟 ⋅ 𝑦 − 𝑚𝑣
+ 𝑣0 

 
1

𝑧
𝑦 =

1

𝑣0
𝑚𝑟 ⋅ 𝑦 − 𝑚𝑣  

 
𝑣

𝑧
𝑦 = 𝑚𝑟 ⋅ 𝑦 

𝑚𝑣 
1 

𝑚𝑟 

1 

𝑣0 

affine 

linear 

intersect 
plane / 
view ray 



advanced topics 

main ideas 

ADV 

Aliasing and Anti-Aliasing 



Aliasing 
simple 

sampling 

anti- 
aliasing 

(Gaussian) 



Aliasing 

Minification: Moiré 
Sampling aliasing 

Magnification: “Staircasing” 
Reconstruction aliasing 



Magnification 

In hardware: 

 Bi-linear   interpolation 

 Linear blend in u- and v-direction 

pixel sampling Interpolation 

*)  same here, it is a (bi-) affine 
map, but called “(bi-) linear” in 
literature / APIs 

*) 



Magnification 

In hardware: 

 Bi-linear    interpolation 

 Linear blend in u- and v-direction 

pixel sampling Interpolation 

*)  you know, linear ~ affine… 

*) 



Minification: Interfering Grids 

Sampling Aliasing 

 Sampling grid misses information, spacing too big 

 Creates Moiré (or noise, if unstructured) 

Texture 

Samples 



Solution 

Texture 

Result 

Solution 

 Average over neighborhood 

 Heuristic: “leave no free space” 

 Best: weighted filters with overlap (e.g. Gaussians) 



Graphics Hardware 

Two Steps 

Moderate Minification 

 Bilinear   interpolation 

Strong Minification 

 Mip-mapping 

 Average 2 × 2 pixels 

 Store reduce size by 1/2 

 Iterate 

 Trilinear interpolation 

*)  same here 

*) 



Summary 

Minification 

 Average multiple texels 

 

 

 

Magnification 

 Average over multiple 
pixels 

Swap screen & texture 

screen 
(pixel) 
grid! 

texture 
(texel) 
grid! 



The Full Story: Fourier Transforms 

- more in “advanced graphics” - 



Topics 

Texture mapping variants 

 3D Textures 

 Shadow maps 

 Ambient Occlusion 

 Environment Maps 

 Image-based Lighting 

 Bump mapping / normal maps 

 Displacement maps 



3D Textures 

3D Textures 

 Use 3D array of “voxels” 

 u,v,w-coordinates 

 Texture space itself 



Shadow Maps 

Create shadow map 

 Render scene from light source 

 Store depth buffer 

Render scene from camera 

 Project fragment to  
depth buffer/light source 

 If occluder in front → dark 

 Otherwise → bright 

 



Example Result 



Shadow Maps Pitfalls 

Offset problem 

 Camera pixels (slightly) 
different from light pixels 

 Need small offset  
for depth comparison 

Aliasing 

 Visible staircasing 

 Light projection ≠ screen pixels 

Spot-lights only 

 → Cubemaps (later) 



Resolution 

low resolution medium resolution 



Resolution 

high resolution very high resolution 



Offset Problem 

good offset bad offset 



Ambient Occlusion 

Average of 256 Images 
light sources randomly  

sampled on enclosing sphere 

Average of 256 Images 
light sources randomly  

sampled on enclosing sphere 



Ambient Occlusion 

Average of 2560 Images 
light sources randomly  

sampled on enclosing sphere 

Average of 2560 Images 
light sources randomly  

sampled on enclosing sphere 



Environment Maps 

Approximate Reflections  

 Store panoramic image 
(“360°”) of environment 

 Use for reflection 

Approximation 

 Far away environment 

 Single bounce 

 No occlusion in path 

 Refraction less accurate 
(single bounce?) 

Reflective Bunny 
(Environment Mapping) 



Implementation: Cube-Maps 

Cube maps 

 Cube with 6 textured faces 

 “Infinite size” 

Cube-map texture lookup 

 Very easy! 

 Arbitrary vector 

 texcube 
𝑥
𝑦
𝑧

 

 Select face: largest entry, sign 

 2D coordinates: divide by maximum entry 

texture (c) Paul Debevec, USC 

1. arg max 𝑥 , 𝑦 , 𝑦   

2. sign  

3. divide by | ⋅ |  



Cube Map Lookups 

𝑥-axis 

𝑦-axis 

𝑥 

𝑦 

𝑥
𝑦  

|𝑦| largest → horizontal 
      𝑦 >  0 → right face 

                           
𝑥

𝑦
  → texture coordinate 

𝑥

𝑦
  



Rendering with Natural Light 

Traditional Cube Maps 

 Created using rendering 

 6 passes with different camera settings 

 Latest hardware: “render to cubemap” 

Rendering with Natural Light 

 Use HDR photographs 
for cube maps 

 High-dynamic range 
is important 

 Diffuse, specular, glossy 
⇒ filter (blur) cube map 

 

diffuse specular 



reflection Fresnell 

diffuse composite 



texture (c) Paul Debevec, USC 

Title-Bunny 
 

Ambient Occlusion with Natural Light 

adaptive sampling 
density ~ intensity 



point 𝐱 

 
𝐧 𝐱 ∈
ℝ3

 

tangent 
space 

𝒮 
𝐭 × 𝐧 

Bump-Maps / Normal Maps 

Normal Maps 

 Store normal in texture 

 Map to tangent coordinate frame 

 Need normals n 
and tangent field t 

 Then: coordinate transform 
 𝐭 𝐱 ∈ ℝ3

 



Bump Maps 

Bump Maps 

 Same as normal maps 

 But only height field given 

 Need to precompute normals 

Precompute Normals 

 Discrete partial derivatives 

Δ𝑥 ≔
𝑓 𝑥 + 1, 𝑦 − 𝑓 𝑥

ℎ
 

  

Δ𝑦 ≔
𝑓 𝑥, 𝑦 + 1 − 𝑓 𝑥

ℎ
 

  

𝑛 ≈
−Δ𝑥
−Δ𝑦

1
 

 

 



Displacement Maps 

Simplest Method 

 Start with Bump Map 

 Create actual mesh by 
displacement in normal 
direction 

Needs powerful hardware 

 Fancy in the past few years 
for real-time / games 

 Offline rendering used this 
ever since 



core topics 

important 

CORE 

Hardware Architecture 



Simplified GPU Model 

Execution 
Unit 

ALU / 
FPU 

ALU / 
FPU 

ALU / 
FPU 

ALU / 
FPU 

ALU / 
FPU 

void shade() { 
    doThis(); 
    doThat(); 
} 

program 

... 

Main Memory 
(big, high latency, limited bandwidth) 

Cache (small) 

Stream buffer 
(smaller, fast) 

... frequent read/writes ... 

few read/writes, 
large chunks little bandwidth 

... 



Simplified GPU Model 

A GPU is a vector processor 

 SIMD – single instruction, multiple data 

 “Branching” possible at costs 

 Divergent instructions executed serially (write masks) 

Specifically: Stream processor 

 Memory interface main problem 

 Idea: big on-chip buffer, work within buffer 

 Write to/from memory more rarely 

 Direct access still possible (“texture fetches”) 

 Caching, hide latency using multi-threading 



Advantages 

High throughput 

 Geforce GTX Titan Z:   8 TFlops (32-bit SP - 2 chips) 

 Radeon  R9 295x2: 11 TFlops (32-bit SP - 2 chips) 

 Xeon Phi 7120: 2.5 TFlops (32-bit SP) 

 Dual Xeon E5-2697:  500 GFlops (32-bit SP) 

Not all workloads 

 Parallel problems 

 Not all problems are parallelizable! 

 Instruction stream coherence 

 Additional constraints over MIMD computers! 

*) example numbers! architectures  
    have different advantages 



Hardware Architecture 

Programmable Vertex Shaders 

 Input: Vertex Buffer 

 Multiple attributes 

 Position, color, normals, 
texture coordinates, etc... 

 Execute program 

 Texture reads possible 

 Output: one vertex per vertex 

 One-in-one-out 

 Internal queue (efficiency) 

Vertex 
Shader 



Rasterizer 

Rasterizer 

 Clipping of triangles 

 Creation of fragments 

 Interpolate attributes 

 With perspective correction! 

 Hard-wired for efficiency 

 Output: Long sequence of fragments 

Rasterizer 



Pixel Shader 
Pixel shader 

 Input: Fragment 
with interpolated attributes 

 Perform computation 

 Arithmetics 

 Texture reads: 
tex2D, tex3D, texCube,...  

 Includes filtering (anti-aliasing) 

 Output: 

 Color (always) 

 Alpha-value (optional) 

 Depth (optional, reduces efficiency;  
no early fragment rejection) 

Pixel 
Shader 



Final Combiner 

Write to frame-buffer 

 Depth test and update 

 Color update 

 Overwrite,  
additive, subtractive, 
alpha-blending 
(and a few more) 

 (Usually) hardwired 



Recent Extensions 

Geometry shader 

 Between vertex shader and rasterizer  

 Convert single primitive into a small number of 
additional ones 

 Amount limited (e.g., 32 vertices output) 

Hull shader / tessellation shader 

 Better adaptive subdivision 

 Spline surfaces 

 Displacement mapping 


