Graphics 2014

3D Modeling Addendum

[Faculty of Science] Information and Computing Sciences

Universiteit Utrecht

Motivation

Geometric Modeling

What do we want to do?

Fundamental Problem

The Problem:

infinite number of points

my computer: 16GB of memory

Encode a continuous model with finite amount of information

Modeling Zoo

Modeling Zoo

Space Discretization

Parametric Models

Implicit Models

Discrete Representations

You know this...

Fixed Grids

- 2D: Images
- 3D: "Voxels"

Voxel Grid

Voxels (Direct Volume Rendering)Input: CT-Scan

Parametric Models

 $\mathbf{x}(\lambda_1, \dots, \lambda_k) = f(\lambda_1, \dots, \lambda_k)$

Parametric Models

Parametric Models

- Function *f* maps from *parameter domain* to target surface
- Evaluation of *f* gives one point on the model

Affine Parametric Functions

Parametric line equation:

$$\mathbf{x}(\lambda) = \mathbf{p} + \lambda \cdot \mathbf{t}$$

Parametric plane equation:

$$\mathbf{x}(\lambda_1,\lambda_2) = \mathbf{p} + \lambda_1 \mathbf{t}_1 + \lambda_2 \mathbf{t}_2$$

Quadratic Parametric Functions

Non-linear curves & surfaces:

- Polynomial surfaces, splines
- More in "three-dimensional modeling" lecture

Primitive Meshes

Primitive Meshes

- Collection of geometric primitives
 - Triangles
 - Quadrilaterals
 - More general primitives (e.g. spline patches)
- Primitives are parametric surfaces
- We have used this already!

Implicit Models

$f(\mathbf{x}) = 0$

Implicit Modeling

Implicit formulation:

- Need to solve equation $S = \{x \mid f(x) = 0\}$
- $\mathbf{x} \in \mathbb{R}^2$ or \mathbb{R}^3
- *S* is usually *d* − 1 dimensional

Signed distance function

- Special case
- Function value
 distance to surface

Circle: $f(x,y) = x^{2} + y^{2} - r^{2} = 0$ SDF: $f(x,y) = \sqrt{x^{2} + y^{2}} - r$

Implicit Modeling

Example:

- Circle: $x^2 + y^2 = r^2$
- Implicit function: $f(x, y) = x^2 + y^2 - r^2$
- Sphere: $x^2 + y^2 + z^2 = r^2$

Special Case:

- Signed distance field
- Function value is signed distance to surface
- Negative means inside, positive means outside

Affine Implicit functions

Parametric line equation:

$$\langle \mathbf{x}, \mathbf{n} \rangle - \langle \mathbf{p}, \mathbf{n} \rangle = 0$$

 $\|\mathbf{n}\| = 1$

Parametric plane equation:

$$\langle \mathbf{x}, \mathbf{n} \rangle - \langle \mathbf{p}, \mathbf{n} \rangle = 0$$

 $\|\mathbf{n}\| = 1$

Quadratic Implicit Functions

Circle / Sphere:

$$\langle \mathbf{x} - \mathbf{c}, \mathbf{x} - \mathbf{c} \rangle = r^2$$

Ellipse / Ellipsoid

$$\langle \mathbf{T}\mathbf{x} - \mathbf{c}, \mathbf{T}\mathbf{x} - \mathbf{c} \rangle = r^2$$

T: new coordinate system

Implicit Modeling

Applications:

- Fluid simulation
- Surface fitting
- Free-form surfaces ("blobbies")

Regular Grids

Discretization:

- Regular grid of values
- Interpolate smoothly

RBF Methods

Radial Basis Functions:

 Particles with smooth radial basis functions

