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Basic Raytracing 



Central Projection 



Central Projection 



Ray Tracing 



Ray Tracing 

Primary Rays 

 Rays through each pixel 

 Details: Tutorial #6 



Local Illumination 

𝐧 
view ray 

light ray 

Primary Rays 

 Rays through each pixel 

 (Basic trigonometry) 



Shadows 

𝐧 
view ray 

light ray 

Shadow rays 

 Blocked by occluders (hard shadows) 



Reflection 

𝐧 

view rays 

Reflection 

 Reflect ray across normal at intersection point 

 (Basic linear algebra) 



Multiple Reflections: Recursion 

𝐧 
view rays 
(primary rays) 

𝐧 

secondary 
rays 

Multiple Reflections 

 Call algorithm recursively for secondary rays 

 (Terminate after n levels, for safety) 



view rays 
(primary rays) 

Refraction 

secondary 
rays 

Refraction 

 Same story 

 New rays: Snellius’ law 



Recursive Raytracing 

Worst-case complexity 

 𝒪(𝑛 ⋅ 𝑚 ⋅ 2𝑟) 

 n = Triangles, m = Pixels, r = maximum recursion depth 

reflection ray 

reflection rays 

Shadow rays 

Primary Rays 

refraction 
ray 

refraction 
ray 



Raytracing in a Nutshell 
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Intersection Tests 



Ray-Triangle Intersection 

Equations: 

𝜆1𝐭1 + 𝜆2𝐭2 − 𝜇 ⋅ 𝐭𝑟 = 𝐩𝑟 − 𝐩𝑡 

Linear system of equations: 

𝐌 ⋅ 𝐱 = 𝐛 

𝐌 =
| | |

𝐭1 𝐭2 −𝐭r

| | |
, 𝐛 = 𝐩𝑟 − 𝐩𝑡 , 𝐱 =

𝜆1

𝜆2

𝜇
 

→ Gaussian elimination, 
    Kramer’s rule 



Ray-Triangle Intersection 

Parametric plane equation: 
 

𝐱 𝜆1, 𝜆2 = 𝐩𝑡 + 𝜆1𝐭1 + 𝜆2𝐭2 

0 

t 
𝐩 

Parametric line equation: 
 

𝐱 𝜇 = 𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 

v 

0 

t1 

p 
t2 

0 ≤ 𝜆1 ≤ 1, 
0 ≤ 𝜆2 ≤ 1, 
𝜆1 + 𝜆2 ≤ 1 

𝜇 ≥ 0 

𝐱 𝜆1, 𝜆2 = 𝐱 𝜇  

⇔ 𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 = 𝐩𝑡 + 𝜆1𝐭1 + 𝜆2𝐭2 

 

⇔ 𝜆1𝐭1 + 𝜆2𝐭2 − 𝜇 ⋅ 𝐭𝑟 = 𝐩𝑟 − 𝐩𝑡 



Ray-Sphere Intersection 

0 

t 
𝐩 

Parametric line equation: 
 

𝐱 𝜇 = 𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 

𝜇 ≥ 0 

𝐱 𝜇 − 𝐜, 𝐱 𝜇 − 𝐜 − 𝑟2 = 0 

𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 − 𝐜, 𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 − 𝐜 − 𝑟2 = 0 

 

Sphere (Implicit!) 
 

𝐱 − 𝐜, 𝐱 − 𝐜 = 𝑟2 

x2 

y2 
r2 

𝐜 



Derivation 

Solving the equation: 

𝐱 𝜇 − 𝐜, 𝐱 𝜇 − 𝐜 − 𝑟2 = 0 

𝐱 𝜇 − 𝐜 2 − 𝑟2 = 0 

𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 − 𝐜 2 − 𝑟2 = 0 

𝜇 ⋅ 𝐭𝑟 + 𝐩𝑟 − 𝐜
2

− 𝑟2 = 0 

Result: 1D Quadratic equation in 𝜇 

𝜇2 ⋅ 𝐭𝑟
2 + 𝜇 ⋅ 2 𝐭𝑟 ⋅ 𝐩𝑟 − 𝐜 + 𝐩𝑟 − 𝐜 − 𝑟2 = 0 



advanced topics 

main ideas 

ADV 

Spatial Data Structures 
Range Queries, Collision Detection 



Spatial Data Structures 

Range Queries 

 Common problems 

 Raytracing 

 Select object by mouse click 

 Collision detection 

 This should work on large models 

 Scale to billions of primitives 

 Asymptotic complexity 



Spatial Data Structures 

Basic Idea: Hierarchical decomposition 

 If number objects too large: 

 Form spatially coherent groups 

 For each group: 

– Simple bounding volume 

– Apply recursively 

Result 

 We obtain a tree of  
bounding volumes 

 “Bounding volume hierarchy” 

 



Bounding Volumes 

Axis-Aligned Bounding Box 

 Store minimum x,y,z-coord 

                and 

 maximum x,y,z-coord 

Bounding Sphere 

 Store radius, center 

 Such that all geometry 
is contained 

axis-aligned 
bounding box 

bounding sphere 



Variants 
Variants: 

 Bounding volume hierarchy 

 General definition 

 Any bounding volumes 

 Image: spheres 

 

 BSP-tree 

 Split planes (half-spaces) 

 “Binary space partition tree” 

 Arbitrary planes 



Variants 
Variants 

 Axis aligned BSP tree / kD-tree 

 Axis-parallel splitting planes 

 Special case: kD-tree 

– Alternating splitting dimensions 

– Median cut: 
split at median coordinate 

 

 Quadtrees / Octrees 

 Divide into 4/8 cubes 

 Special case of the above 
(no binary tree though) 



Extended Objects 

Extended objects (other than points) 

 Extended objects: 

 Triangles 

 Polygons 

 etc... 

 Division of space might intersect with object 

 Three solutions 

 Split objects (expensive, uncommon) 

 Overlapping nodes (common) 

 Storage multiple times (also common) 



Splitting Objects 

First solution: splitting 

 Example: Triangles in BSP tree 

 Split at plane 

 Aim at few splits 

 (Rather) easy to see: 

 General BSP tree needs still 𝒪(𝑛2) fragments 
(worst case, n triangles; practice:   𝒪(𝑛 log 𝑛) ) 

 Lower bound for kD trees, octrees, etc... 

 Splitting usually too expensive 

 Used in early low-polygon 3D engines (BSP-visibility) 



Overlapping Regions 

Second Solution: overlap 

 Permit overlapping 
bounding volumes 

 E.g., second bounding box (octree) 

 Possible strategy: 

 Up to 10% oversize (in each direction) 

 No fit into leaf nodes: use an inner node 

 Overlap reduces efficiency 

 Multi-coverage of volume 

 10% in each direction means 1.23  1.7 

 Effect on algorithms might vary 



Overlapping Regions 

Third Solution: store multiple times 

 Store primitive multiple times 

 Disadvantages 

 Reduced efficiency 

 Additional memory 

 Advantages 

 Regular structures 

 No additional bounding boxes 

 Common for raytracing 
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Range Queries 



Range Query Algorithm 

Start at root node: Then, recursively 

 If range overlaps bounding box 

 Test node primitives 

– Report if within range 

 Call recursively for child nodes 

 If range does not overlap bounding box 

 End recursion 

Nodes overlapping 
the geometric range 

algorithm 
works for 
all hierarchy 
types 



Examples 

Range 
Range Range 

Nodes overlapping 
the geometric range 



Raytracing 

Raytracing: special case 

 Ray is the range 

 Early ray termination 

 Sorted recursion (child closer to the camera: first) 

 Stop after hit 

Range 



In Practice 

Significant Speedup 

 My own, simple implementation 

 Axis-aligned BSP tree 

 Single-core C++ 

 1.000.000 triangle scene 

 ~500.000 triangle-ray intersections per second 

 If you work harder... 

 Optimized software ~15M  

 GPU implementations up to 100M 

 Optimized versions: 
Performance also depends on ray coherence 


