
Graphics 2014 

Raytracing 
Recursive Raytracing  Data Structures 

 



basic topics 

study completely 

BASIC 

Basic Raytracing 



Central Projection 



Central Projection 



Ray Tracing 



Ray Tracing 

Primary Rays 

 Rays through each pixel 

 Details: Tutorial #6 



Local Illumination 

𝐧 
view ray 

light ray 

Primary Rays 

 Rays through each pixel 

 (Basic trigonometry) 



Shadows 

𝐧 
view ray 

light ray 

Shadow rays 

 Blocked by occluders (hard shadows) 



Reflection 

𝐧 

view rays 

Reflection 

 Reflect ray across normal at intersection point 

 (Basic linear algebra) 



Multiple Reflections: Recursion 

𝐧 
view rays 
(primary rays) 

𝐧 

secondary 
rays 

Multiple Reflections 

 Call algorithm recursively for secondary rays 

 (Terminate after n levels, for safety) 



view rays 
(primary rays) 

Refraction 

secondary 
rays 

Refraction 

 Same story 

 New rays: Snellius’ law 



Recursive Raytracing 

Worst-case complexity 

 𝒪(𝑛 ⋅ 𝑚 ⋅ 2𝑟) 

 n = Triangles, m = Pixels, r = maximum recursion depth 

reflection ray 

reflection rays 

Shadow rays 

Primary Rays 

refraction 
ray 

refraction 
ray 



Raytracing in a Nutshell 



core topics 

important 

CORE 

Intersection Tests 



Ray-Triangle Intersection 

Equations: 

𝜆1𝐭1 + 𝜆2𝐭2 − 𝜇 ⋅ 𝐭𝑟 = 𝐩𝑟 − 𝐩𝑡 

Linear system of equations: 

𝐌 ⋅ 𝐱 = 𝐛 

𝐌 =
| | |

𝐭1 𝐭2 −𝐭r

| | |
, 𝐛 = 𝐩𝑟 − 𝐩𝑡 , 𝐱 =

𝜆1

𝜆2

𝜇
 

→ Gaussian elimination, 
    Kramer’s rule 



Ray-Triangle Intersection 

Parametric plane equation: 
 

𝐱 𝜆1, 𝜆2 = 𝐩𝑡 + 𝜆1𝐭1 + 𝜆2𝐭2 

0 

t 
𝐩 

Parametric line equation: 
 

𝐱 𝜇 = 𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 

v 

0 

t1 

p 
t2 

0 ≤ 𝜆1 ≤ 1, 
0 ≤ 𝜆2 ≤ 1, 
𝜆1 + 𝜆2 ≤ 1 

𝜇 ≥ 0 

𝐱 𝜆1, 𝜆2 = 𝐱 𝜇  

⇔ 𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 = 𝐩𝑡 + 𝜆1𝐭1 + 𝜆2𝐭2 

 

⇔ 𝜆1𝐭1 + 𝜆2𝐭2 − 𝜇 ⋅ 𝐭𝑟 = 𝐩𝑟 − 𝐩𝑡 



Ray-Sphere Intersection 

0 

t 
𝐩 

Parametric line equation: 
 

𝐱 𝜇 = 𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 

𝜇 ≥ 0 

𝐱 𝜇 − 𝐜, 𝐱 𝜇 − 𝐜 − 𝑟2 = 0 

𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 − 𝐜, 𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 − 𝐜 − 𝑟2 = 0 

 

Sphere (Implicit!) 
 

𝐱 − 𝐜, 𝐱 − 𝐜 = 𝑟2 

x2 

y2 
r2 

𝐜 



Derivation 

Solving the equation: 

𝐱 𝜇 − 𝐜, 𝐱 𝜇 − 𝐜 − 𝑟2 = 0 

𝐱 𝜇 − 𝐜 2 − 𝑟2 = 0 

𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 − 𝐜 2 − 𝑟2 = 0 

𝜇 ⋅ 𝐭𝑟 + 𝐩𝑟 − 𝐜
2

− 𝑟2 = 0 

Result: 1D Quadratic equation in 𝜇 

𝜇2 ⋅ 𝐭𝑟
2 + 𝜇 ⋅ 2 𝐭𝑟 ⋅ 𝐩𝑟 − 𝐜 + 𝐩𝑟 − 𝐜 − 𝑟2 = 0 



advanced topics 

main ideas 

ADV 

Spatial Data Structures 
Range Queries, Collision Detection 



Spatial Data Structures 

Range Queries 

 Common problems 

 Raytracing 

 Select object by mouse click 

 Collision detection 

 This should work on large models 

 Scale to billions of primitives 

 Asymptotic complexity 



Spatial Data Structures 

Basic Idea: Hierarchical decomposition 

 If number objects too large: 

 Form spatially coherent groups 

 For each group: 

– Simple bounding volume 

– Apply recursively 

Result 

 We obtain a tree of  
bounding volumes 

 “Bounding volume hierarchy” 

 



Bounding Volumes 

Axis-Aligned Bounding Box 

 Store minimum x,y,z-coord 

                and 

 maximum x,y,z-coord 

Bounding Sphere 

 Store radius, center 

 Such that all geometry 
is contained 

axis-aligned 
bounding box 

bounding sphere 



Variants 
Variants: 

 Bounding volume hierarchy 

 General definition 

 Any bounding volumes 

 Image: spheres 

 

 BSP-tree 

 Split planes (half-spaces) 

 “Binary space partition tree” 

 Arbitrary planes 



Variants 
Variants 

 Axis aligned BSP tree / kD-tree 

 Axis-parallel splitting planes 

 Special case: kD-tree 

– Alternating splitting dimensions 

– Median cut: 
split at median coordinate 

 

 Quadtrees / Octrees 

 Divide into 4/8 cubes 

 Special case of the above 
(no binary tree though) 



Extended Objects 

Extended objects (other than points) 

 Extended objects: 

 Triangles 

 Polygons 

 etc... 

 Division of space might intersect with object 

 Three solutions 

 Split objects (expensive, uncommon) 

 Overlapping nodes (common) 

 Storage multiple times (also common) 



Splitting Objects 

First solution: splitting 

 Example: Triangles in BSP tree 

 Split at plane 

 Aim at few splits 

 (Rather) easy to see: 

 General BSP tree needs still 𝒪(𝑛2) fragments 
(worst case, n triangles; practice:   𝒪(𝑛 log 𝑛) ) 

 Lower bound for kD trees, octrees, etc... 

 Splitting usually too expensive 

 Used in early low-polygon 3D engines (BSP-visibility) 



Overlapping Regions 

Second Solution: overlap 

 Permit overlapping 
bounding volumes 

 E.g., second bounding box (octree) 

 Possible strategy: 

 Up to 10% oversize (in each direction) 

 No fit into leaf nodes: use an inner node 

 Overlap reduces efficiency 

 Multi-coverage of volume 

 10% in each direction means 1.23  1.7 

 Effect on algorithms might vary 



Overlapping Regions 

Third Solution: store multiple times 

 Store primitive multiple times 

 Disadvantages 

 Reduced efficiency 

 Additional memory 

 Advantages 

 Regular structures 

 No additional bounding boxes 

 Common for raytracing 



advanced topics 

main ideas 

ADV 

Range Queries 



Range Query Algorithm 

Start at root node: Then, recursively 

 If range overlaps bounding box 

 Test node primitives 

– Report if within range 

 Call recursively for child nodes 

 If range does not overlap bounding box 

 End recursion 

Nodes overlapping 
the geometric range 

algorithm 
works for 
all hierarchy 
types 



Examples 

Range 
Range Range 

Nodes overlapping 
the geometric range 



Raytracing 

Raytracing: special case 

 Ray is the range 

 Early ray termination 

 Sorted recursion (child closer to the camera: first) 

 Stop after hit 

Range 



In Practice 

Significant Speedup 

 My own, simple implementation 

 Axis-aligned BSP tree 

 Single-core C++ 

 1.000.000 triangle scene 

 ~500.000 triangle-ray intersections per second 

 If you work harder... 

 Optimized software ~15M  

 GPU implementations up to 100M 

 Optimized versions: 
Performance also depends on ray coherence 


