Graphics 2014

Raytracing Recursive Raytracing · Data Structures

[Faculty of Science] Information and Computing Sciences

Universiteit Utrecht

Basic Raytracing

Central Projection

Central Projection

Ray Tracing

Ray Tracing

Primary Rays

- Rays through each pixel
- Details: Tutorial #6

Local Illumination

Primary Rays

- Rays through each pixel
- (Basic trigonometry)

Shadows

Shadow rays

Blocked by occluders (hard shadows)

Reflection

Reflection

- Reflect ray across normal at intersection point
- (Basic linear algebra)

Multiple Reflections: Recursion

Multiple Reflections

- Call algorithm recursively for secondary rays
- (Terminate after *n* levels, for safety)

Refraction

Refraction

- Same story
- New rays: Snellius' law

Recursive Raytracing

Worst-case complexity

- $\mathcal{O}(\mathbf{n} \cdot \mathbf{m} \cdot 2^r)$
- n = Triangles, m = Pixels, r = maximum recursion depth

Raytracing in a Nutshell

Intersection Tests

Ray-Triangle Intersection

Equations:

$$\lambda_1 \mathbf{t}_1 + \lambda_2 \mathbf{t}_2 - \boldsymbol{\mu} \cdot \mathbf{t}_r = \mathbf{p}_r - \mathbf{p}_t$$

Linear system of equations:

 $\mathbf{M} \cdot \mathbf{x} = \mathbf{b}$

$$\mathbf{M} = \begin{pmatrix} | & | & | \\ \mathbf{t}_1 & \mathbf{t}_2 & -\mathbf{t}_r \\ | & | & | \end{pmatrix}, \qquad \mathbf{b} = \mathbf{p}_r - \mathbf{p}_t, \qquad \mathbf{x} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \mu \end{pmatrix}$$

→ Gaussian elimination, Kramer's rule

Ray-Triangle Intersection

Parametric line equation:

$$\mathbf{x}(\mu) = \mathbf{p}_r + \mu \cdot \mathbf{t}_r$$
$$\mu \ge 0$$

$$\mathbf{x}(\lambda_1, \lambda_2) = \mathbf{x}(\mu)$$

$$\Leftrightarrow \mathbf{p}_r + \mu \cdot \mathbf{t}_r = \mathbf{p}_t + \lambda_1 \mathbf{t}_1 + \lambda_2 \mathbf{t}_2$$

 $\Leftrightarrow \lambda_1 \mathbf{t}_1 + \lambda_2 \mathbf{t}_2 - \mu \cdot \mathbf{t}_r = \mathbf{p}_r - \mathbf{p}_t$

Parametric plane equation:

$$\mathbf{x}(\lambda_1, \lambda_2) = \mathbf{p}_t + \lambda_1 \mathbf{t}_1 + \lambda_2 \mathbf{t}_2$$
$$0 \le \lambda_1 \le 1,$$
$$0 \le \lambda_2 \le 1,$$
$$\lambda_1 + \lambda_2 \le 1$$

Ray-Sphere Intersection

$r^2 y^2$ $r^2 y^2$

Parametric line equation:

$$\mathbf{x}(\mu) = \mathbf{p}_r + \mu \cdot \mathbf{t}_r$$
$$\mu \ge 0$$

Sphere (Implicit!)
$$\langle \mathbf{x} - \mathbf{c}, \mathbf{x} - \mathbf{c} \rangle = r^2$$

$$\langle \mathbf{x}(\mu) - \mathbf{c}, \mathbf{x}(\mu) - \mathbf{c} \rangle - r^2 = 0$$

$$\langle \mathbf{p}_r + \mu \cdot \mathbf{t}_r - \mathbf{c}, \mathbf{p}_r + \mu \cdot \mathbf{t}_r - \mathbf{c} \rangle - r^2 = 0$$

Derivation

Solving the equation:

$$\langle \mathbf{x}(\mu) - \mathbf{c}, \mathbf{x}(\mu) - \mathbf{c} \rangle - r^2 = 0$$
$$(\mathbf{x}(\mu) - \mathbf{c})^2 - r^2 = 0$$
$$(\mathbf{p}_r + \mu \cdot \mathbf{t}_r - \mathbf{c})^2 - r^2 = 0$$
$$(\mu \cdot \mathbf{t}_r + (\mathbf{p}_r - \mathbf{c}))^2 - r^2 = 0$$

Result: 1D Quadratic equation in μ $\mu^2 \cdot \mathbf{t}_r^2 + \mu \cdot 2(\mathbf{t}_r \cdot (\mathbf{p}_r - \mathbf{c})) + (\mathbf{p}_r - \mathbf{c}) - r^2 = 0$

Spatial Data Structures Range Queries, Collision Detection

Spatial Data Structures

Range Queries

- Common problems
 - Raytracing
 - Select object by mouse click
 - Collision detection
- This should work on large models
 - Scale to billions of primitives
 - Asymptotic complexity

Spatial Data Structures

Basic Idea: Hierarchical decomposition

If number objects too large:

- Form spatially coherent groups
- For each group:
 - Simple bounding volume
 - Apply recursively

Result

- We obtain a tree of bounding volumes
- "Bounding volume hierarchy"

Bounding Volumes

Axis-Aligned Bounding Box

- Store minimum x,y,z-coord and
- maximum x,y,z-coord

Bounding Sphere

- Store radius, center
- Such that all geometry is contained

axis-aligned bounding box

bounding sphere

Variants

Variants:

Bounding volume hierarchy

- General definition
- Any bounding volumes
- Image: spheres

BSP-tree

- Split planes (half-spaces)
- "Binary space partition tree"
- Arbitrary planes

Variants

Variants

Axis aligned BSP tree / kD-tree

- Axis-parallel splitting planes
- Special case: kD-tree
 - Alternating splitting dimensions
 - Median cut: split at median coordinate

- Divide into 4/8 cubes
- Special case of the above (no binary tree though)

Extended Objects

Extended objects (other than points)

- Extended objects:
 - Triangles
 - Polygons
 - etc...
- Division of space might intersect with object
- Three solutions
 - Split objects (expensive, uncommon)
 - Overlapping nodes (common)
 - Storage multiple times (also common)

Splitting Objects

First solution: splitting

- Example: Triangles in BSP tree
 - Split at plane
 - Aim at few splits
- (Rather) easy to see:
 - General BSP tree needs still $O(n^2)$ fragments (worst case, *n* triangles; practice: $\approx O(n \log n)$)
 - Lower bound for kD trees, octrees, etc...
- Splitting usually too expensive
 - Used in early low-polygon 3D engines (BSP-visibility)

Overlapping Regions

Second Solution: overlap

- Permit overlapping bounding volumes
- E.g., second bounding box (octree)
- Possible strategy:
 - Up to 10% oversize (in each direction)
 - No fit into leaf nodes: use an inner node
- Overlap reduces efficiency
 - Multi-coverage of volume
 - 10% in each direction means $1.2^3 \approx 1.7 \times$
 - Effect on algorithms might vary

Overlapping Regions

Third Solution: *store multiple times*

- Store primitive multiple times
- Disadvantages
 - Reduced efficiency
 - Additional memory
- Advantages
 - Regular structures
 - No additional bounding boxes
- Common for raytracing

Range Queries

Range Query Algorithm

Start at root node: Then, recursively

- If range overlaps bounding box
 - Test node primitives
 - Report if within range
 - Call recursively for child nodes
- If *range* does not overlap *bounding box*
 - End recursion

algorithm works for all hierarchy types

Examples

Raytracing

Raytracing: special case

- Ray is the range
- Early ray termination
 - Sorted recursion (child closer to the camera: first)
 - Stop after hit

In Practice

Significant Speedup

- My own, simple implementation
 - Axis-aligned BSP tree
 - Single-core C++
 - 1.000.000 triangle scene
 - ~500.000 triangle-ray intersections per second
- If you work harder...
 - Optimized software ~15M
 - GPU implementations up to 100M
 - Optimized versions:
 - Performance also depends on ray coherence