
Graphics 2014

Raytracing
Recursive Raytracing Data Structures

basic topics

study completely

BASIC

Basic Raytracing

Central Projection

Central Projection

Ray Tracing

Ray Tracing

Primary Rays

 Rays through each pixel

 Details: Tutorial #6

Local Illumination

𝐧
view ray

light ray

Primary Rays

 Rays through each pixel

 (Basic trigonometry)

Shadows

𝐧
view ray

light ray

Shadow rays

 Blocked by occluders (hard shadows)

Reflection

𝐧

view rays

Reflection

 Reflect ray across normal at intersection point

 (Basic linear algebra)

Multiple Reflections: Recursion

𝐧
view rays
(primary rays)

𝐧

secondary
rays

Multiple Reflections

 Call algorithm recursively for secondary rays

 (Terminate after n levels, for safety)

view rays
(primary rays)

Refraction

secondary
rays

Refraction

 Same story

 New rays: Snellius’ law

Recursive Raytracing

Worst-case complexity

 𝒪(𝑛 ⋅ 𝑚 ⋅ 2𝑟)

 n = Triangles, m = Pixels, r = maximum recursion depth

reflection ray

reflection rays

Shadow rays

Primary Rays

refraction
ray

refraction
ray

Raytracing in a Nutshell

core topics

important

CORE

Intersection Tests

Ray-Triangle Intersection

Equations:

𝜆1𝐭1 + 𝜆2𝐭2 − 𝜇 ⋅ 𝐭𝑟 = 𝐩𝑟 − 𝐩𝑡

Linear system of equations:

𝐌 ⋅ 𝐱 = 𝐛

𝐌 =
| | |

𝐭1 𝐭2 −𝐭r

| | |
, 𝐛 = 𝐩𝑟 − 𝐩𝑡 , 𝐱 =

𝜆1

𝜆2

𝜇

→ Gaussian elimination,
 Kramer’s rule

Ray-Triangle Intersection

Parametric plane equation:

𝐱 𝜆1, 𝜆2 = 𝐩𝑡 + 𝜆1𝐭1 + 𝜆2𝐭2

0

t
𝐩

Parametric line equation:

𝐱 𝜇 = 𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟

v

0

t1

p
t2

0 ≤ 𝜆1 ≤ 1,
0 ≤ 𝜆2 ≤ 1,
𝜆1 + 𝜆2 ≤ 1

𝜇 ≥ 0

𝐱 𝜆1, 𝜆2 = 𝐱 𝜇

⇔ 𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 = 𝐩𝑡 + 𝜆1𝐭1 + 𝜆2𝐭2

⇔ 𝜆1𝐭1 + 𝜆2𝐭2 − 𝜇 ⋅ 𝐭𝑟 = 𝐩𝑟 − 𝐩𝑡

Ray-Sphere Intersection

0

t
𝐩

Parametric line equation:

𝐱 𝜇 = 𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟

𝜇 ≥ 0

𝐱 𝜇 − 𝐜, 𝐱 𝜇 − 𝐜 − 𝑟2 = 0

𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 − 𝐜, 𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 − 𝐜 − 𝑟2 = 0

Sphere (Implicit!)

𝐱 − 𝐜, 𝐱 − 𝐜 = 𝑟2

x2

y2
r2

𝐜

Derivation

Solving the equation:

𝐱 𝜇 − 𝐜, 𝐱 𝜇 − 𝐜 − 𝑟2 = 0

𝐱 𝜇 − 𝐜 2 − 𝑟2 = 0

𝐩𝑟 + 𝜇 ⋅ 𝐭𝑟 − 𝐜 2 − 𝑟2 = 0

𝜇 ⋅ 𝐭𝑟 + 𝐩𝑟 − 𝐜
2

− 𝑟2 = 0

Result: 1D Quadratic equation in 𝜇

𝜇2 ⋅ 𝐭𝑟
2 + 𝜇 ⋅ 2 𝐭𝑟 ⋅ 𝐩𝑟 − 𝐜 + 𝐩𝑟 − 𝐜 − 𝑟2 = 0

advanced topics

main ideas

ADV

Spatial Data Structures
Range Queries, Collision Detection

Spatial Data Structures

Range Queries

 Common problems

 Raytracing

 Select object by mouse click

 Collision detection

 This should work on large models

 Scale to billions of primitives

 Asymptotic complexity

Spatial Data Structures

Basic Idea: Hierarchical decomposition

 If number objects too large:

 Form spatially coherent groups

 For each group:

– Simple bounding volume

– Apply recursively

Result

 We obtain a tree of
bounding volumes

 “Bounding volume hierarchy”

Bounding Volumes

Axis-Aligned Bounding Box

 Store minimum x,y,z-coord

 and

 maximum x,y,z-coord

Bounding Sphere

 Store radius, center

 Such that all geometry
is contained

axis-aligned
bounding box

bounding sphere

Variants
Variants:

 Bounding volume hierarchy

 General definition

 Any bounding volumes

 Image: spheres

 BSP-tree

 Split planes (half-spaces)

 “Binary space partition tree”

 Arbitrary planes

Variants
Variants

 Axis aligned BSP tree / kD-tree

 Axis-parallel splitting planes

 Special case: kD-tree

– Alternating splitting dimensions

– Median cut:
split at median coordinate

 Quadtrees / Octrees

 Divide into 4/8 cubes

 Special case of the above
(no binary tree though)

Extended Objects

Extended objects (other than points)

 Extended objects:

 Triangles

 Polygons

 etc...

 Division of space might intersect with object

 Three solutions

 Split objects (expensive, uncommon)

 Overlapping nodes (common)

 Storage multiple times (also common)

Splitting Objects

First solution: splitting

 Example: Triangles in BSP tree

 Split at plane

 Aim at few splits

 (Rather) easy to see:

 General BSP tree needs still 𝒪(𝑛2) fragments
(worst case, n triangles; practice: 𝒪(𝑛 log 𝑛))

 Lower bound for kD trees, octrees, etc...

 Splitting usually too expensive

 Used in early low-polygon 3D engines (BSP-visibility)

Overlapping Regions

Second Solution: overlap

 Permit overlapping
bounding volumes

 E.g., second bounding box (octree)

 Possible strategy:

 Up to 10% oversize (in each direction)

 No fit into leaf nodes: use an inner node

 Overlap reduces efficiency

 Multi-coverage of volume

 10% in each direction means 1.23 1.7

 Effect on algorithms might vary

Overlapping Regions

Third Solution: store multiple times

 Store primitive multiple times

 Disadvantages

 Reduced efficiency

 Additional memory

 Advantages

 Regular structures

 No additional bounding boxes

 Common for raytracing

advanced topics

main ideas

ADV

Range Queries

Range Query Algorithm

Start at root node: Then, recursively

 If range overlaps bounding box

 Test node primitives

– Report if within range

 Call recursively for child nodes

 If range does not overlap bounding box

 End recursion

Nodes overlapping
the geometric range

algorithm
works for
all hierarchy
types

Examples

Range
Range Range

Nodes overlapping
the geometric range

Raytracing

Raytracing: special case

 Ray is the range

 Early ray termination

 Sorted recursion (child closer to the camera: first)

 Stop after hit

Range

In Practice

Significant Speedup

 My own, simple implementation

 Axis-aligned BSP tree

 Single-core C++

 1.000.000 triangle scene

 ~500.000 triangle-ray intersections per second

 If you work harder...

 Optimized software ~15M

 GPU implementations up to 100M

 Optimized versions:
Performance also depends on ray coherence

