Grapnhics 2014

Raytracing
Recursive Raytracing - Data Structures

[Faculty of Science]
Information and Universiteit Utrecht
Computing Sciences

3asic Raytracing

BASIC)

basic topics
study completely

Central Projection

Central Projection

Ray Tracing

Ray Tracing

Pty | e ———— [
- ‘?E::" =g = pm————
3555::: e —————————d
Vg S ma === e
] S ~ T —t—— —————p
NS ~~o -

Primary Rays
= Rays through each pixel
= Details: Tutorial #6

Local lllumination

i light ray /
] : n //[I
view ray T
1T

Primary Rays
= Rays through each pixel
= (Basic trigonometry)

Shadows

e - 7 light ray
__________________________ i n
view ray T\

Shadow rays
= Blocked by occluders (hard shadows)

Reflection

Reflection
= Reflect ray across normal at intersection point
= (Basic linear algebra)

Multiple Reflections: Recursion

secondary
rays

\.
i \

1 \.
n

i \
! \

\
N
4

|
=]

|H

view rays [
(primary rays) 1T

Multiple Reflections
= Call algorithm recursively for secondary rays
= (Terminate after n levels, for safety)

Refraction

N E—— o secondary
| r—fl rays
view rays N B R
(orimary rays) T e

Refraction
= Same story
= New rays: Snellius' law

Recursive Raytracing

- refraction
Shadow rays ray
refraction

anaryﬁays reflection rays

reflection ray

Worst-case complexity
= O(n-m-2")
= n =Triangles, m = Pixels, r = maximum recursion depth

Raytracing in a Nutshell

INntersection Tests

core topics
important

Ray-Triangle Intersection

Equations:
1t + /A — -G =P — Py

Linear system of equations:
M-x=Db

Il
=
[y
=t
[\
I
=t
=

’ b:pr_pt' — 2

— Gaussian elimination,
Kramer's rule

Ray-Triangle Intersection

p p
\"%
0 0
Parametric line equation: Parametric plane equation:
x(1) =p,+ -t X(11,42) = pr + A1ty + A5t
>0 0< 4 <1,
0</1,<1,
1+, <1
X(11,12) = x(11)

Sprt+u-t=p+ 440 + A58

S Mt F At — -t =Py — Py

Ray-Sphere Intersection

0

Parametric line equation:

X(W) =pr+u-t; Sphere (Implicit!)

=
=0 (Xx—c,x—c)=r?

(x(1) —e,x(u)—cy—r*=0
(p,+u-t,.—cp,+u-t.—c)—1r?2=0

Derivation

Solving the equation:
(x(1) —e,x(1) —c) =% =0
x() —c)? =712 =0
(pr+p-t—0—7r2=0

(-tr+(pr—c))2—r2=0

Result: 1D Quadratic equation in
2't72‘+ 'Z(tr'(pr_c))+(pr_c)_r2 =0

Spatial

Range Quer!

Data St

es, Collisi

"uctures

on Detection

ADY,

advanced topics
main ideas

Spatial Data Structures

Range Queries

= Common problems
= Raytracing
= Select object by mouse click
= Collision detection

= This should work on large models
= Scale to billions of primitives
= Asymptotic complexity

Spatial Data Structures

Basic Idea: Hierarchical decomposition

= |f number objects too large:
= Form spatially coherent groups
= For each group:
- Simple bounding volume
— Apply recursively

Result

= We obtain a tree of
bounding volumes

= “Bounding volume hierarchy”

Bounding Volumes

Axis-Aligned Bounding Box
= Store minimum X,y,z-coord

and
= maximum X,y,z-coord
axis—alligned
Bou nding Sphere bounding box

= Store radius, center

= Such that all geometry
IS contained

bounding sphere

Variants

Variants:

= Bounding volume hierarchy
= General definition
= Any bounding volumes
= Image: spheres

= BSP-tree
= Split planes (half-spaces)
= “Binary space partition tree”
= Arbitrary planes

Variants

Variants

= Axis aligned BSP tree / kD-tree
= Axis-parallel splitting planes
= Special case: kD-tree
— Alternating splitting dimensions

- Median cut:
split at median coordinate

= Quadtrees / Octrees
= Divide into 4/8 cubes

= Special case of the above
(no binary tree though)

Extended Objects

Extended objects (other than points)

= Extended objects:
Triangles
Polygons
etc...

= Division of space might intersect with object

= Three solutions
Split objects (expensive, uncommon)
Overlapping nodes (common)
Storage multiple times (also common)

Splitting Objects

First solution: sp/itting

= Example: Triangles in BSP tree
= Split at plane
= Aim at few splits

= (Rather) easy to see:

= General BSP tree needs still 0(n?) fragments
(worst case, n triangles; practice: ~ O(nlogn))

= Lower bound for kD trees, octrees, etc...

= Splitting usually too expensive
= Used in early low-polygon 3D engines (BSP-visibility)

Overlapping Regions

Second Solution:

= Permit overlapping iV <
bounding volumes g

= E.g., second bounding box (octree) %5@‘
= Possible strategy:

Up to 10% oversize (in each direction)
No fit into leaf nodes; use an inner node

= Overlap reduces efficiency
Multi-coverage of volume
10% in each direction means 1.23 = 1.7x
Effect on algorithms might vary

Overlapping Regions

Third Solution: .
= Store primitive multiple times EVA

= Disadvantages ~ |——
Reduced efficiency =

Additional memory

= Advantages
Regular structures
No additional bounding boxes

= Common for raytracing

Range Queries

ADY,

advanced topics
main ideas

Range Query Algorithm

S 3 Nodes overlapping
' the geometric range

Start at root node: Then, recursively
= If range overlaps

Test node primitives slgorithm
Report if within range _ works for
Call ively f hild nod all hierarchy
all recursively for child nodes types

= If range does not overlap
End recursion -

Examples

Range Range

——— -
-

% Nodes overlapping
' the geometric range

Raytracing
/

v)|V

AL/

/4 | 4

Range

Raytracing: special case
= Ray is the range

= Early ray termination
Sorted recursion (child closer to the camera: first)
Stop after hit

N Practice

Significant Speedup
= My own, simple implementation
= Axis-aligned BSP tree
= Single-core C++
= 1.000.000 triangle scene
= ~500.000 triangle-ray intersections per second

= |f you work harder...
= Optimized software ~15M

= GPU implementations up to 100M

= Optimized versions:
Performance also depends on ray coherence

