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Central Projection
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Ray Tracing




Ray Tracing
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Primary Rays
= Rays through each pixel
= Details: Tutorial #6




Local lllumination
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Primary Rays
= Rays through each pixel
= (Basic trigonometry)



Shadows
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Shadow rays
= Blocked by occluders (hard shadows)



Reflection

Reflection
= Reflect ray across normal at intersection point
= (Basic linear algebra)



Multiple Reflections: Recursion
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Multiple Reflections
= Call algorithm recursively for secondary rays
= (Terminate after n levels, for safety)



Refraction
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Refraction
= Same story
= New rays: Snellius' law



Recursive Raytracing

- refraction
Shadow rays ray
refraction

anaryﬁays reflection rays

reflection ray

Worst-case complexity
= O(n-m-2")
= n =Triangles, m = Pixels, r = maximum recursion depth



Raytracing in a Nutshell
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Ray-Triangle Intersection

Equations:
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Linear system of equations:
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— Gaussian elimination,
Kramer's rule



Ray-Triangle Intersection
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Ray-Sphere Intersection

0

Parametric line equation:

X(W) =pr+u-t; Sphere (Implicit!)
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(x(1) —e,x(u)—cy—r*=0
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Derivation

Solving the equation:
(x(1) —e,x(1) —c) =% =0
x() —c)? =712 =0
(pr+p-t—0—7r2=0

( -tr+(pr—c))2—r2=0

Result: 1D Quadratic equation in
2't72‘+ 'Z(tr'(pr_c))+(pr_c)_r2 =0



Spatial
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Spatial Data Structures

Range Queries

= Common problems
= Raytracing
= Select object by mouse click
= Collision detection

= This should work on large models
= Scale to billions of primitives
= Asymptotic complexity



Spatial Data Structures

Basic Idea: Hierarchical decomposition

= |f number objects too large:
= Form spatially coherent groups
= For each group:
- Simple bounding volume
— Apply recursively

Result

= We obtain a tree of
bounding volumes

= “Bounding volume hierarchy”



Bounding Volumes

Axis-Aligned Bounding Box
= Store minimum X,y,z-coord

and
= maximum X,y,z-coord
axis—alligned
Bou nding Sphere bounding box

= Store radius, center

= Such that all geometry
IS contained

bounding sphere



Variants

Variants:

= Bounding volume hierarchy
= General definition
= Any bounding volumes
= Image: spheres

= BSP-tree
= Split planes (half-spaces)
= “Binary space partition tree”
= Arbitrary planes




Variants

Variants

= Axis aligned BSP tree / kD-tree
= Axis-parallel splitting planes
= Special case: kD-tree
— Alternating splitting dimensions

- Median cut:
split at median coordinate

= Quadtrees / Octrees
= Divide into 4/8 cubes

= Special case of the above
(no binary tree though)




Extended Objects

Extended objects (other than points)

= Extended objects:
Triangles
Polygons
etc...

= Division of space might intersect with object

= Three solutions
Split objects (expensive, uncommon)
Overlapping nodes (common)
Storage multiple times (also common)



Splitting Objects

First solution: sp/itting

= Example: Triangles in BSP tree
= Split at plane
= Aim at few splits

= (Rather) easy to see:

= General BSP tree needs still 0(n?) fragments
(worst case, n triangles; practice: ~ O(nlogn) )

= Lower bound for kD trees, octrees, etc...

= Splitting usually too expensive
= Used in early low-polygon 3D engines (BSP-visibility)



Overlapping Regions

Second Solution:

= Permit overlapping iV <
bounding volumes g

= E.g., second bounding box (octree) %5@‘
= Possible strategy:

Up to 10% oversize (in each direction)
No fit into leaf nodes; use an inner node

= Overlap reduces efficiency
Multi-coverage of volume
10% in each direction means 1.23 = 1.7x
Effect on algorithms might vary




Overlapping Regions

Third Solution: .
= Store primitive multiple times EVA

= Disadvantages ~ |——
Reduced efficiency =

Additional memory

= Advantages
Regular structures
No additional bounding boxes

= Common for raytracing



Range Queries
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Range Query Algorithm

S 3 Nodes overlapping
' the geometric range

Start at root node: Then, recursively
= If range overlaps

Test node primitives slgorithm
Report if within range _ works for
Call ively f hild nod all hierarchy
all recursively for child nodes types

= If range does not overlap
End recursion -



Examples
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Raytracing
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Range

Raytracing: special case
= Ray is the range

= Early ray termination
Sorted recursion (child closer to the camera: first)
Stop after hit



N Practice

Significant Speedup
= My own, simple implementation
= Axis-aligned BSP tree
= Single-core C++
= 1.000.000 triangle scene
= ~500.000 triangle-ray intersections per second

= |f you work harder...
= Optimized software ~15M

= GPU implementations up to 100M

= Optimized versions:
Performance also depends on ray coherence



