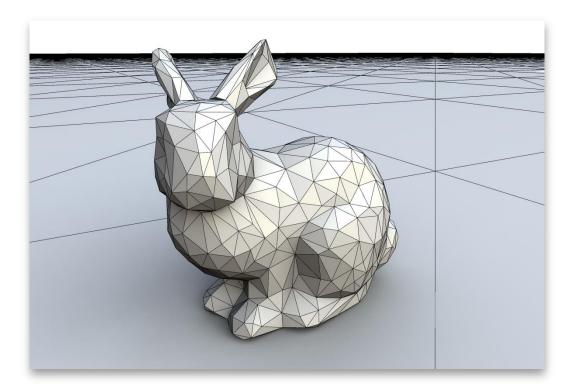
Graphics 2014



Global Illumination

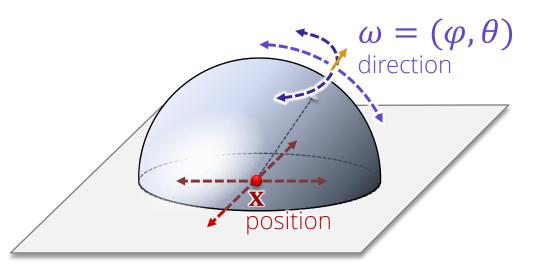
Introduction to the basic concepts

Universiteit Utrecht

[Faculty of Science] Information and Computing Sciences

Radiance & Light Fields

Ray Power Density: Radiance

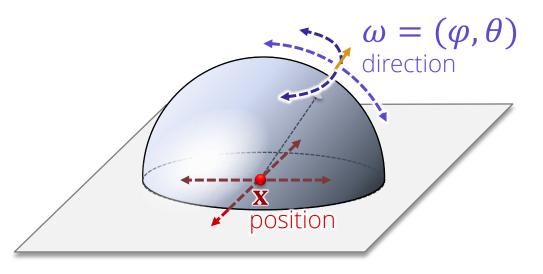


Radiance

Light (power) transmitted through a ray

- Formally: energy density w.r.t. area, solid angle, time
- For this lecture: think of
 - All rays in space
 - Each ray has an RGB values

Ray Power Density: Radiance



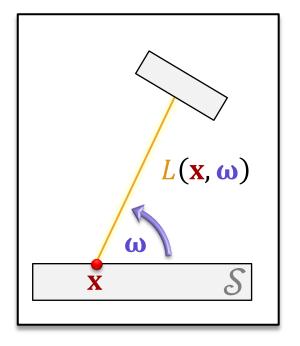
Radiance

- At each point $\mathbf{x} \in \mathbb{R}^3$: $L(\varphi, \theta) = L(\omega) \rightarrow \mathbb{R}^3 (RGB)^*$
- Light field: all rays in space

$$L(\mathbf{x},\boldsymbol{\omega}): \mathbb{R}^5 \to \mathbb{R}^3$$

*) slightly simplified, usually defined for continuous wavelength

Radiance

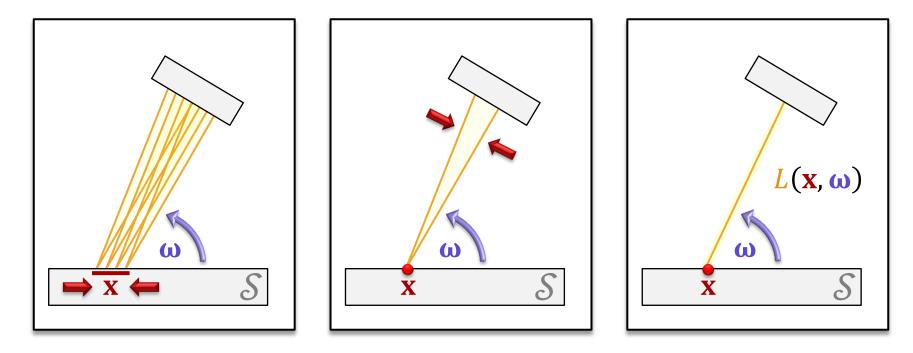


Radiance

• Function $L: (\mathcal{S}, \Omega) \to \mathbb{R}^{\geq 0}$

- Input variables: surface point \mathbf{x} , angle $\boldsymbol{\omega}$
- Output: power transported through ray

Radiance



Radiance

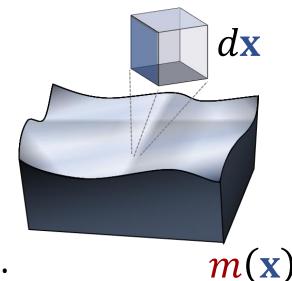
- Average over
 - Area
 - Angle
- Then: take the limit area \rightarrow 0, angle \rightarrow 0

Densities

Densities

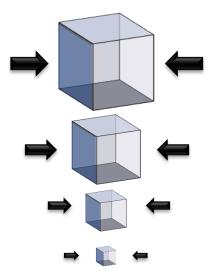
 Densities can be w.r.t. multidimensional quantities:

$$\rho(\mathbf{x}) = \frac{dm(\mathbf{x})}{d\mathbf{x}}$$



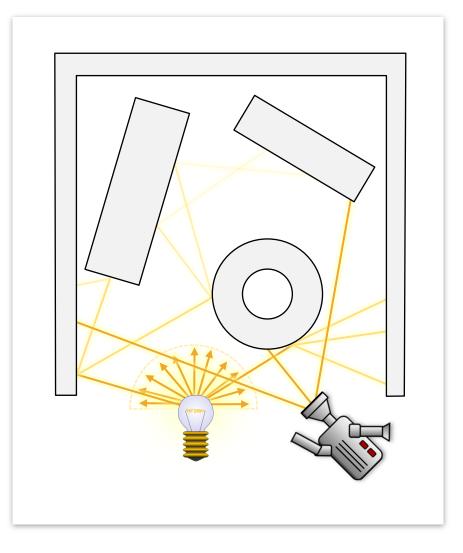
Integrate to get back actual mass:

$$\boldsymbol{m}_{\Omega} = \int_{\Omega} \rho(\mathbf{x}) d\mathbf{x}$$

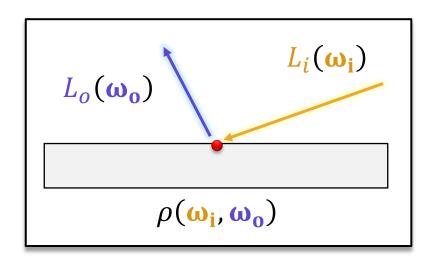


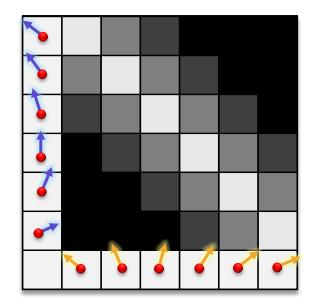
Radiance: Light Field

Rays fill up space



Interaction with Surfaces

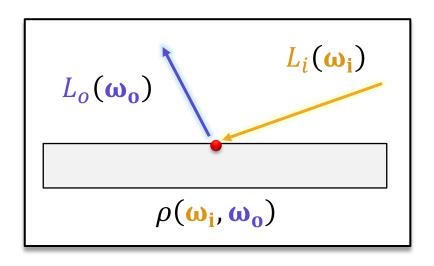


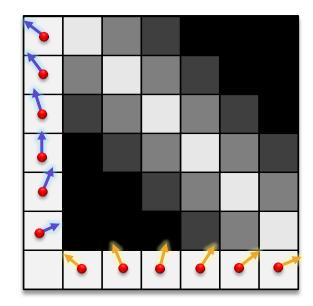


Bidirection Reflectance Distribution Function (BRDF)

- ρ(ω_i, ω_o)
- Input: radiance (2D), Output: radiance (2D)
 - Think of a matrix that reshuffles power between rays

Interaction with Surfaces

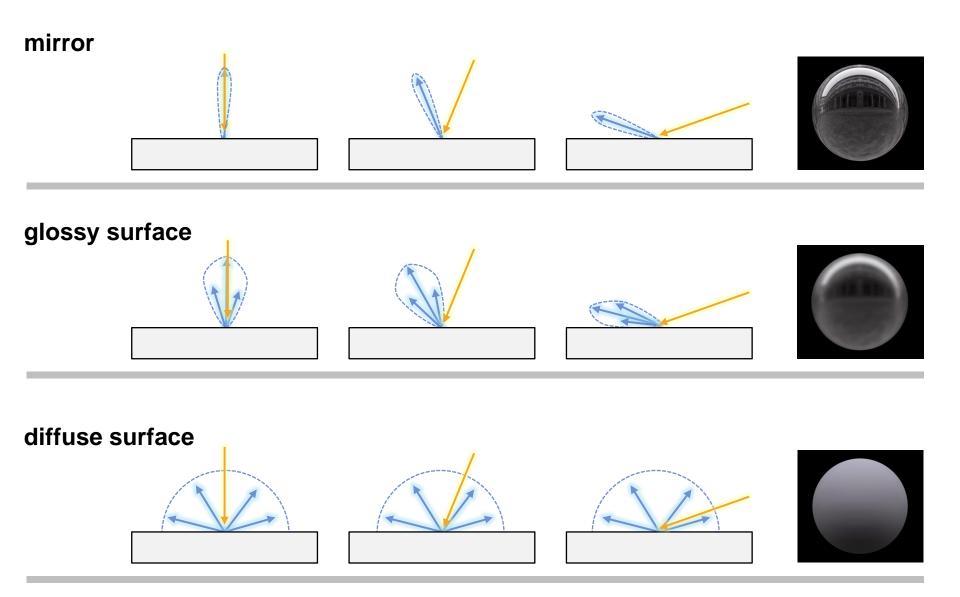




BRDF: Scale factor between input and output

- Light is linear: $2 \times \text{input} \rightarrow 2 \times \text{output}$
- BRDF describes how light is distributed for unit input strength
 - Multiply with actual radiance to scale

Bidirectional Reflectance Distribution Function (BRDF)



Definition

Technical Definition

$$\rho(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = \frac{d}{d\boldsymbol{\omega}_{i}} \frac{L_{o}(\boldsymbol{\omega}_{o})}{L_{o}(\boldsymbol{\omega}_{i}) \cdot \cos \theta_{i}}$$

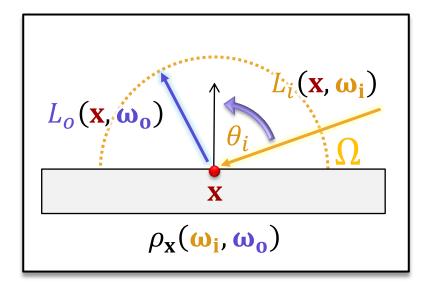
density quantity _______

$$L_{o}(\omega_{0}) \qquad \uparrow^{n} \qquad L_{i}(\omega_{i})$$

$$\theta_{i} \qquad \rho(\omega_{i}, \omega_{0})$$

- Cosine term in denominator
 - Not included in out direct shading computations!
 - Lambertian BRDF is constant (not $\equiv \cos \theta_i$)

Reflectance Equation



General Reflectance

$$L_o(\mathbf{x}, \boldsymbol{\omega}_{\mathbf{o}}) = \int_{\boldsymbol{\omega}_i \in \Omega} \left[L_i(\mathbf{x}, \boldsymbol{\omega}_i) \cdot \rho_{\mathbf{x}}(\boldsymbol{\omega}_i, \boldsymbol{\omega}_{\mathbf{o}}) \cdot \cos \theta_i \right] d\boldsymbol{\omega}_i$$

Properties of the BRDF

BRDF properties

Positivity:

 $\rho(\boldsymbol{\omega}_i, \boldsymbol{\omega}_0) \geq 0$

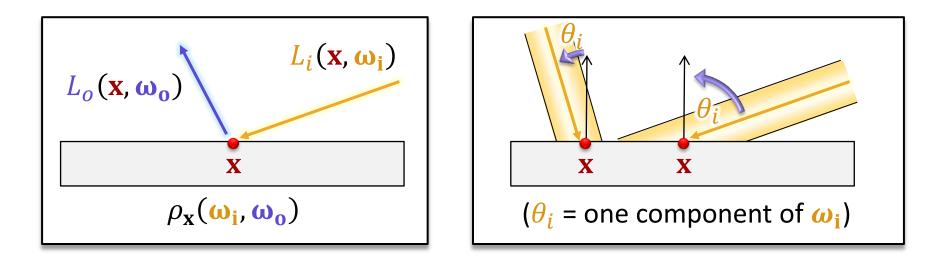
Helmholtz reciprocity:

$$\rho(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{0}) = \rho(\boldsymbol{\omega}_{0}, \boldsymbol{\omega}_{i})$$

Energy conservation:

$$\forall \boldsymbol{\omega}_{i} : \int_{\Omega} \rho(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) \cos \theta_{o} \, d\boldsymbol{\omega}_{o} \leq 1$$

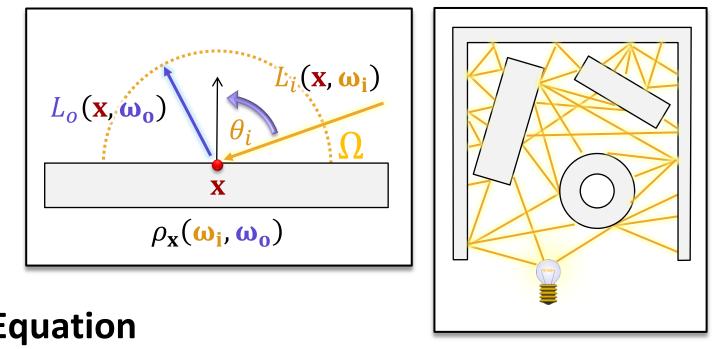
Surface Interaction



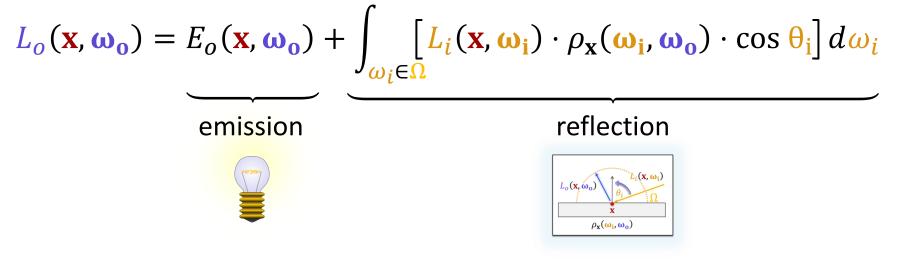
Coupling outgoing and incoming rays

- $L_o(\mathbf{x}, \boldsymbol{\omega}_{\mathbf{o}}) = L_i(\mathbf{x}, \boldsymbol{\omega}_{\mathbf{i}}) \cdot \rho_{\mathbf{x}}(\boldsymbol{\omega}_{\mathbf{i}}, \boldsymbol{\omega}_{\mathbf{o}}) \cdot \cos \theta_{\mathbf{i}}$
- Shallow angle: less power to pass on for each area element

Rendering Equation



Rendering Equation



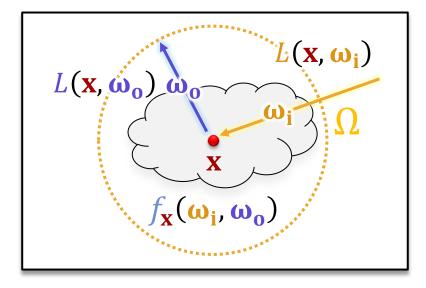
Structure

Rendering equation $L_{o}(\mathbf{x}, \boldsymbol{\omega}_{0}) = E_{o}(\mathbf{x}, \boldsymbol{\omega}_{0}) + \int_{\boldsymbol{\omega}_{i} \in \Omega} L_{i}(\mathbf{x}, \boldsymbol{\omega}_{i}) \cdot \rho_{\mathbf{x}}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{0}) \cdot \cos \theta_{i} d\boldsymbol{\omega}_{i}$

Abstract notation

- Unknown function *L* is related to linear operation on itself + emission function *E*
- Discrete:
 - Functions = vectors, linear operators = matrices
 - $L = E + \mathbf{K} \cdot L$
 - Linear system of equations
- Rendering: solving linear systems of equations

Volumetric Rendering Equation



Most general case: participating media

$$\frac{dL(\mathbf{x}, \boldsymbol{\omega}_{0})}{ds} = -\kappa_{a}L(\mathbf{x}, \boldsymbol{\omega}_{0}) + \kappa_{e} E(\mathbf{x}, \boldsymbol{\omega}_{0}) + \kappa_{e} E(\mathbf{x}, \boldsymbol{\omega}_{0}) + \kappa_{s} \int_{\boldsymbol{\omega}_{i} \in \Omega} L(\mathbf{x}, \boldsymbol{\omega}_{i}) \cdot f_{\mathbf{x}}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{0}) d\boldsymbol{\omega}_{i}$$

Impact

Short Version (Caveats Omitted)

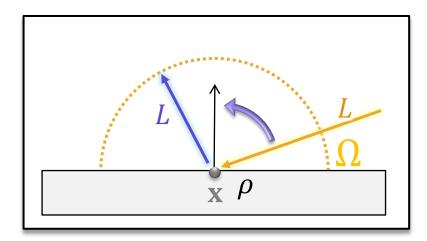
Simplified Story

- We are looking for <u>L</u>
- L is a function
 - (discretized: array of numbers)

Transport operator K

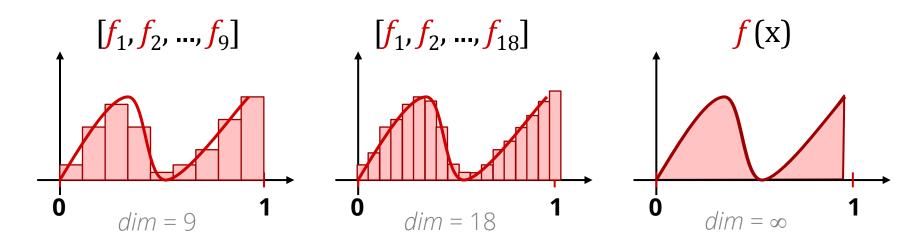
- Linear operator
- Read: a big matrix
- Emission term *E*
 - The part of *L* that glows on its own

L = E + KL $\Rightarrow L = (1 - K)^{-1}E$



Operator K: One light bounce

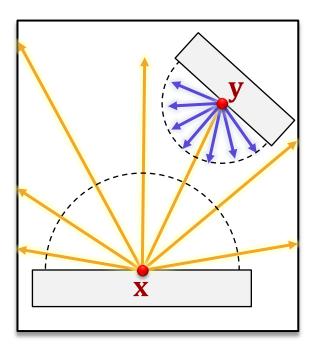
High Dimensional: Function Spaces

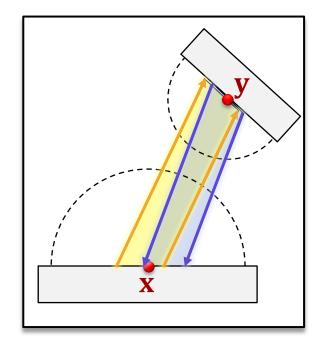


Application

- Approximate continuous functions
- Increase sampling density towards infinity

Consider Ray Bundles (Finite Elements)





Efficiency

List of Problems

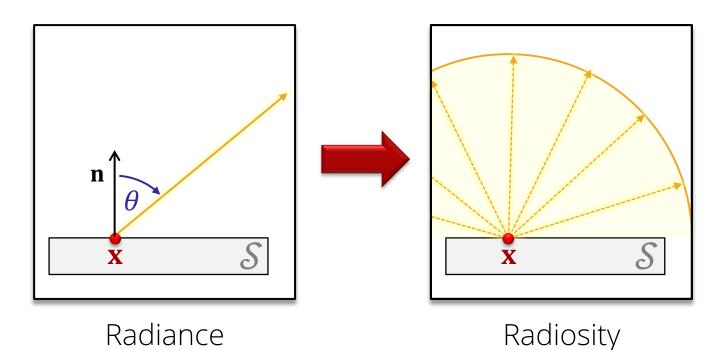
Problems

- 4-dimensional parameter domain ($O(n^4)$)
 - Dense matrix: $O((n^4)^2)$
- It's polynomial time!
 - But that is never going to run on any realistic scene...

Solutions

- Simplify: radiosity method
- Output-sensitive solution: stochastic raytracing

Radiosity



Radiosity

Overall power exiting a point x

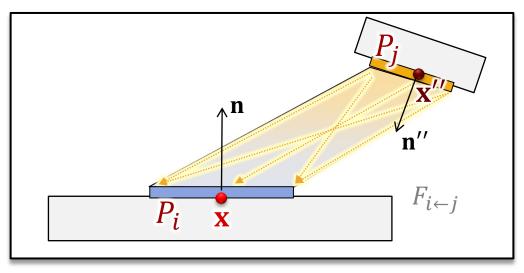
$$B(\mathbf{x}) = \int_{\Omega} L(\mathbf{x}, \boldsymbol{\omega}) \cdot \cos \theta \, d\boldsymbol{\omega}$$

Piecewise Constant Radiosity

Discretization: piecewise constant radiosity

- Patches P_i
- Scene $S = P_1 \dot{\cup} \dots \dot{\cup} P_k$
- Radiosity *B* is constant on each *P_i*

Piecewise Constant Radiosity



Form Factor:

$$F_{i \leftarrow j} = \int_{P_j} \int_{P_i} \underbrace{h(\mathbf{x}, \mathbf{x}'')}_{\text{visibility}} \cdot \frac{\cos \angle (\mathbf{x} - \mathbf{x}'', \mathbf{n}) \cdot \cos \angle (\mathbf{x} - \mathbf{x}'', \mathbf{n}'')}{\|\mathbf{x} - \mathbf{x}''\|^2} d\mathbf{x}'' d\mathbf{x}$$

Piecewise Constant Radiosity

Result: Linear System

$$B_i = E_i + \sum_{j=1}^k \rho_j \cdot F_{i \leftarrow j} B_j$$

Solving the linear system

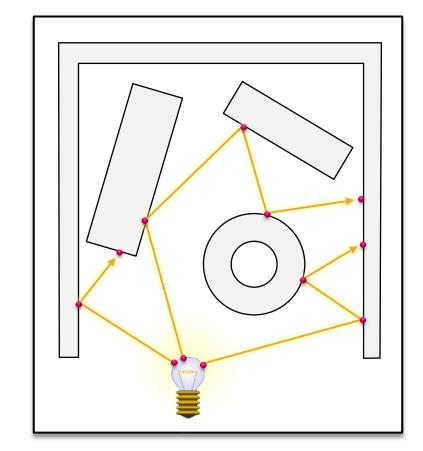
How to solve the linear system?

- Gaussian elimination?
 - No, not a good idea
 - Unstable & very slow $[\mathcal{O}(n^3)]$

Iterative solvers

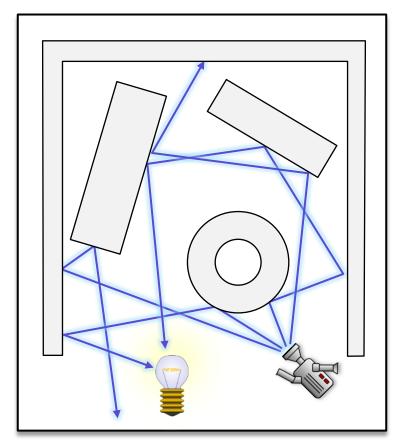
- Gauss-Seidel (slow) [$\sim O(n^2)$]
- Southwell-relaxation (GS with shooting)
 - Memory advantages
 - Used to be the standard solution
- Standard solvers: bi-CG, sparse Cholesky, ...

Photon Tracing

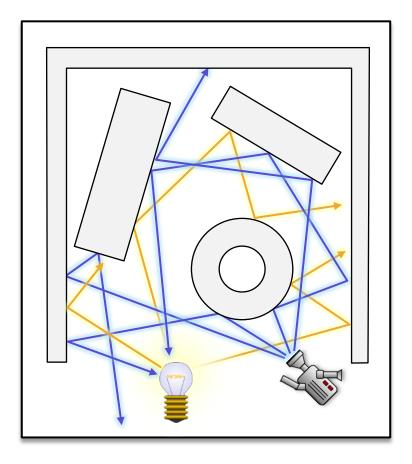


 $L = (1 - \mathbf{K})^{-1}E$ $= E + \mathbf{K}E + \mathbf{K}^{2}E + \mathbf{K}^{3}E + \cdots$

Path Tracing



Bidirectional Path Tracing



bidirectional path tracing