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Radiance & Light Fields 

*) 



Ray Power Density: Radiance 

Radiance 

 Light (power) transmitted through a ray 

 Formally: energy density w.r.t. area, solid angle, time 

 For this lecture: think of 

– All rays in space 

– Each ray has an RGB values 

𝜔 = (𝜑, 𝜃) 

direction 

𝐱 
position 



Ray Power Density: Radiance 

Radiance 

 At each point 𝐱 ∈ ℝ3: 
𝐿 𝜑, 𝜃 = 𝐿 𝛚 → ℝ3 (𝑅𝐺𝐵) 

 Light field: all rays in space 
𝐿 𝐱,𝛚 :ℝ5 → ℝ3 

𝜔 = (𝜑, 𝜃) 

direction 

𝐱 
position 

*) 

*) slightly simplified, 
usually defined for 
continuous wavelength 



Radiance 

Radiance 

 Function 𝐿: (𝒮, Ω) → ℝ≥0 
 Input variables: surface point x, angle 𝜔 

 Output: power transported through ray 

𝒮 
𝛚 

𝐱 

𝐿 𝐱,𝛚  



Radiance 

Radiance 

 Average over 
 Area 

 Angle 

 Then: take the limit area → 0, angle → 0 

𝒮 𝒮 𝒮 

𝐿 𝐱,𝛚  

𝛚 

𝐱 𝐱 𝐱 

𝛚 𝛚 



Densities 
Densities 

 Densities can be w.r.t. multi-
dimensional quantities: 
 

𝜌 𝐱 =
𝑑𝑚 𝐱

𝑑𝐱
 

  

 Integrate to get back actual mass: 

𝑚Ω =  𝜌 𝐱 𝑑𝐱
Ω

 

𝑑𝐱 

𝑚 𝐱  



Radiance: Light Field 

Rays fill up space 
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BRDFs 



Interaction with Surfaces 

Bidirection Reflectance Distribution Function 
(BRDF) 

 𝜌 𝛚𝐢, 𝛚𝐨  

 Input: radiance (2D), Output: radiance (2D) 

 Think of a matrix that reshuffles power between rays 

𝜌 𝛚𝐢, 𝛚𝐨  

𝐿𝑜 𝛚𝐨  
𝐿𝑖 𝛚𝐢  



Interaction with Surfaces 

BRDF: Scale factor between input and output 

 Light is linear: 2× input → 2× output 

 BRDF describes how light is distributed  
for unit input strength 

 Multiply with actual radiance to scale 

𝜌 𝛚𝐢, 𝛚𝐨  

𝐿𝑜 𝛚𝐨  
𝐿𝑖 𝛚𝐢  



mirror 

diffuse surface 

Bidirectional Reflectance Distribution Function (BRDF) 

glossy surface 



Technical Definition 

 

 

 Cosine term in denominator 

 Not included in out direct 
shading computations! 

 Lambertian BRDF is constant 
(not ≡ cos 𝜃𝑖) 

Definition 

𝜌 𝛚𝑖 , 𝛚𝐨 =
𝑑

𝑑𝛚𝑖

𝐿𝑜 𝛚𝐨

𝐿𝑜 𝛚𝐢 ⋅ cos 𝜃𝑖
 

𝜌 𝛚𝐢, 𝛚𝐨  

𝐿𝑜 𝛚𝐨  
𝐿𝑖 𝛚𝐢  

𝜃𝑖 

𝐧 

density quantity 



Reflectance Equation 

General Reflectance 

𝐿𝑜 𝐱,𝛚𝐨 =  𝐿𝑖 𝐱,𝛚𝐢 ⋅ 𝜌𝐱 𝛚𝐢, 𝛚𝐨 ⋅ cos θi  𝑑𝜔𝑖
𝜔𝑖∈Ω

 

𝐱 

𝜌𝐱 𝛚𝐢, 𝛚𝐨  

𝐿𝑜 𝐱,𝛚𝐨  
𝐿𝑖 𝐱,𝛚𝐢  

𝜃𝑖 Ω 



Properties of the BRDF 

BRDF properties 

 Positivity:  

𝜌 𝛚𝑖 , 𝛚𝐨 ≥ 0 

 Helmholtz reciprocity:  

𝜌 𝛚𝑖 , 𝛚𝐨 = 𝜌 𝛚𝐨, 𝛚𝑖  

 Energy conservation:  

∀𝛚𝑖:  𝜌 𝛚𝑖 , 𝛚𝐨
Ω

cos 𝜃𝑜 𝑑𝛚𝐨 ≤ 1 



Surface Interaction 

Coupling outgoing and incoming rays 

 𝐿𝑜 𝐱,𝛚𝐨 = 𝐿𝑖 𝐱,𝛚𝐢 ⋅ 𝜌𝐱 𝛚𝐢, 𝛚𝐨 ⋅ cos θi 

 Shallow angle: less power to pass on for each  
area element 

𝐱 

𝜌𝐱 𝛚𝐢, 𝛚𝐨  

𝐿𝑜 𝐱,𝛚𝐨  
𝐿𝑖 𝐱,𝛚𝐢  

𝐱 

𝜃𝑖 

𝜃𝑖 

𝐱 

(𝜃𝑖 = one component of 𝝎𝐢) 



Rendering Equation 

Rendering Equation 

𝐿𝑜 𝐱,𝛚𝐨 = 𝐸𝑜 𝐱,𝛚𝐨 + 𝐿𝑖 𝐱,𝛚𝐢 ⋅ 𝜌𝐱 𝛚𝐢, 𝛚𝐨 ⋅ cos θi  𝑑𝜔𝑖
𝜔𝑖∈Ω

 

𝐱 

𝜌𝐱 𝛚𝐢, 𝛚𝐨  

𝐿𝑜 𝐱,𝛚𝐨  
𝐿𝑖 𝐱,𝛚𝐢  

𝜃𝑖 Ω 

                                                                                                 

emission reflection 



Structure 

Rendering equation 

𝐿𝑜 𝐱,𝛚𝐨 = 𝐸𝑜 𝐱,𝛚𝐨 + 𝐿𝑖 𝐱,𝛚𝐢 ⋅ 𝜌𝐱 𝛚𝐢, 𝛚𝐨 ⋅ cos θi  𝑑𝜔𝑖
𝜔𝑖∈Ω

 

Abstract notation 

 Unknown function L is related to linear operation 
on itself + emission function E 

 Discrete: 

 Functions = vectors, linear operators = matrices 

 𝐿 = 𝐸 + 𝐊 ⋅ 𝐿 

 Linear system of equations 

 Rendering: solving linear systems of equations 



Volumetric Rendering Equation 

Most general case: participating media  

𝐱 

𝑓𝐱 𝛚𝐢, 𝛚𝐨  

𝛚𝐢 Ω 

+ 𝜅𝑒 𝐸 𝐱,𝛚𝐨  
  

+ 𝜅𝑠 𝐿 𝐱,𝛚𝐢 ⋅ 𝑓𝐱 𝛚𝐢, 𝛚𝐨 𝑑𝜔𝑖
𝜔𝑖∈Ω

 

𝑑𝐿 𝐱,𝛚𝐨

𝑑𝑠
= − 𝜅𝑎𝐿 𝐱,𝛚𝐨  

𝐬 = tangent 
vector at 𝐱  
in direction 𝛚𝐨 

phase function 𝑓 

𝐿 𝐱,𝛚𝐢  
𝐿 𝐱,𝛚𝐨  𝛚𝐨 
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Short Version (Caveats Omitted) 

Simplified Story 

 We are looking for 𝐿 

 𝐿 is a function 
 (discretized: array of numbers) 

 Transport operator 𝐊 

 Linear operator 

 Read: a big matrix 

 Emission term 𝐸 

 The part of 𝐿 that glows on its own 
 

𝐿 = 𝐸 + 𝐊𝐿 
⇒   𝐿 = 1 − 𝐊 −1𝐸 

 

𝐱 𝜌 

𝐿 𝐿 

Ω 

Operator 𝐊: 
One light bounce 



High Dimensional: Function Spaces 

Application 

 Approximate continuous functions 

 Increase sampling density towards infinity 

0 1 0 1 0 1 
dim = 9 dim = 18 dim =  

 [f1, f2, ..., f9] [f1, f2, ..., f18] f (x) 



Consider Ray Bundles 
(Finite Elements) 

𝐱 

𝐲 

𝐱 

𝐲 
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Efficiency 



List of Problems 

Problems 

 4-dimensional parameter domain (𝒪(𝑛4)) 

 Dense matrix: 𝒪 𝑛4 2  

 It’s polynomial time! 

 But that is never going to run on any realistic scene… 

Solutions 

 Simplify: radiosity method 

 Output-sensitive solution: stochastic raytracing 



Radiosity 

Radiosity 

 Overall power exiting a point 𝐱 

𝐵 𝐱 =  𝐿 𝐱,𝛚 ⋅ cos 𝜃 𝑑𝛚
Ω

 

𝒮 𝐱 𝒮 𝐱 

Radiance Radiosity 

𝜃 
𝐧 



Piecewise Constant Radiosity 

Discretization: piecewise constant radiosity 

 Patches 𝑃𝑖 

 Scene 𝒮 = 𝑃1 ∪ …∪ 𝑃𝑘 

 Radiosity 𝐵 is constant on each 𝑃𝑖 



Piecewise Constant Radiosity 

Form Factor: 

𝐹𝑖←𝑗 

𝐧′′ 

𝐱′′ 

𝐱 

𝐧 

𝐹𝑖←𝑗 =   ℎ 𝐱, 𝐱′′

visibility

⋅
cos ∠ 𝐱 − 𝐱′′, 𝐧 ⋅ cos ∠ 𝐱 − 𝐱′′, 𝐧′′

‖𝐱 − 𝐱′′‖2
𝑑𝐱′′𝑑𝐱

𝑃𝑖𝑃𝑗

 

𝑃𝑖 

𝑃𝑗 



Piecewise Constant Radiosity 

Result: Linear System 
 

𝐵𝑖 = 𝐸𝑖 + 𝜌𝑗 ⋅ 𝐹𝑖←𝑗𝐵𝑗

𝑘

𝑗=1

 

 



Solving the linear system 

How to solve the linear system? 

 Gaussian elimination? 

 No, not a good idea 

 Unstable & very slow 𝒪 𝑛3  

 Iterative solvers 

 Gauss-Seidel (slow) ~𝒪 𝑛2  

 Southwell-relaxation (GS with shooting) 

– Memory advantages 

– Used to be the standard solution 

 Standard solvers: bi-CG, sparse Cholesky, … 



Photon Tracing 

𝐿 = 1 − 𝐊 −1𝐸 
  

= 𝐸 + 𝐊𝐸 + 𝐊2𝐸 + 𝐊3𝐸 +⋯ 

 



Path Tracing 



Bidirectional Path Tracing 

bidirectional path tracing 


