Tutorial 3 - Matrices

Basics

Exercise 1.

Given: a 3×2 matrix $A = \begin{pmatrix} 1 & 3 \\ 2 & 2 \\ 3 & 1 \end{pmatrix}$.

- a) Calculate the sum of A with itself.
- b) Can you multiply A with itself? If so, do this; otherwise explain why not.
- c) Determine the transpose of A^T of A.
- d) Multiply A with A^T .

Exercise 2.

 $\text{Given: matrix } A = \begin{pmatrix} 3 & 1 \\ 1 & 6 \end{pmatrix} \ \text{ and } = \begin{pmatrix} 1 & 3 \\ 6 & 1 \end{pmatrix}.$

- a) Calculate the determinant of A.
- b) Calculate the determinant of B.
- c) What is the geometric interpretation of these two results?

$E_{\text{xercise }3}$.

Given: vector $\vec{a} = (1,5)$ and $\vec{b} = (7,-1)$.

Calculate the area of the parallelogram defined by the two vectors.

$E_{\text{xercise 4}}$.

Given: matrix $A = \begin{pmatrix} -2 & 2 & 3 \\ -1 & 1 & 3 \\ 2 & 0 & -1 \end{pmatrix}$.

- a) Calculate the determinant of A using Laplace's expansion.
- b) Verify your answer using the Rule of Sarrus.

Matrix characteristics

Exercise 5.

Given: matrix =
$$\begin{pmatrix} 1 & 4 & -2 \\ 3 & 2 & -6 \\ -2 & 5 & 4 \end{pmatrix}$$
.

- a) Calculate the determinant of matrix A using the Rule of Sarrus.
- b) Explain the result for a) geometrically.

Exercise 6.

Given:

- $n_A \times m_A$ matrix A;
- $m_A \times m_B$ matrix B;
- $m_A \times m_C$ matrix C.

Prove, that if AB = AC, it does not necessarily follow that B = C (even if A is not the null matrix).

Exercise 7.

A matrix is called orthogonal if all column vectors are mutually perpendicular. A matrix is called orthonormal if it is orthogonal and all column vectors have unit length. Show that the inverse of an $n \times n$ orthonormal matrix is its transpose. Hint: $A^{-1}A = I$, so you can solve this by proving that $A^{T}A = I$.

Matrix inversion

Exercise 8.

Given: matrix =
$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 3 & 4 \\ 0 & 2 & 5 \end{pmatrix}$$
.

- a) Calculate the cofactor matrix C.
- b) Calculate the adjoint matrix $\tilde{A} = C^{T}$.
- c) Calculate the determinant for A.
- d) Calculate the inverse A^{-1} for A using the results for a), b) and c).

Coordinate systems

Exercise 9.

- a) Write down a matrix that scales 2D vectors by a factor of 2.
- b) Determine the inverse of this matrix.
- c) Write down the matrix that projects 3D vectors on the x = 0 plane.
- d) If possible, determine the inverse of this matrix. Otherwise, explain why this is not possible.

Exercise 10.

Determine the matrix that rotates vectors along an ellipse centered around the origin, with a height of 4 and a width of 1.

Exercise 11.

Normals must be transformed using $(A^{-1})^T$.

- a) Explain why (the solution was given in the lecture, but try to do this yourself).
- b) Verify using the example of shearing and a few normals that the transform is correct.
- c) Will be proposed transform maintain the magnitude of normals after transformation?

Exercise 12.

Determine a matrix that translates points in \mathbb{R}^2 by x_t, y_t .

The End

(for now)