
INFOGR – Computer Graphics
J. Bikker - April-July 2015 - Lecture 11: “Accelerate”

Welcome!

Today’s Agenda:

 High-speed Ray Tracing

 Acceleration Structures

 The Bounding Volume Hierarchy

 BVH Construction

 BVH Traversal

 Optimizing Construction

 High-speed Traversal

High-speed Ray Tracing

INFOGR – Lecture 11 – “Acceleration” 4

Ray Tracing – Needful things

Whitted-style ray tracing:

1 primary ray per pixel
1 shadow ray per pixel per light
Optional: rays for reflections & refraction

Estimate:
 10 rays per pixel
 1M pixels (~1280x800)
 30 fps

 300Mrays/s

How does one intersect 300Mrays/s on a 3Ghz CPU?
Easy: use no more than 10 cycles per ray.

High-speed Ray Tracing

INFOGR – Lecture 11 – “Acceleration” 5

Actually…

 We have 8 cores (so 80 cycles)
 Executing AVX code (so 640 cycles)
 Plus 20% gains from hyperthreading (768 cycles).

But really…

Assuming we get a linear increase in performance for the
number of cores and AVX, how do we intersect thousands
of triangles in 768 cycles?

High-speed Ray Tracing

INFOGR – Lecture 11 – “Acceleration” 6

Optimization

1. Measure: performance & scalability
2. High level optimizations: improve algorithmic

complexity
3. Low level optimization: instruction level & thread-

level parallelism, caching
4. GPGPU

More in the master course Optimization & Vectorization.

Today’s Agenda:

 High-speed Ray Tracing

 Acceleration Structures

 The Bounding Volume Hierarchy

 BVH Construction

 BVH Traversal

 Optimizing Construction

 High-speed Traversal

High-speed Ray Tracing

INFOGR – Lecture 11 – “Acceleration” 8

Optimization: reduce algorithmic complexity

Complexity:

number of ray/primitive intersections

= pixels * paths per pixel * average path length * primitives

= 1M * 1 * 2 * 1M

Acceleration Structures

INFOGR – Lecture 11 – “Acceleration” 9

Option 1:

Use a grid.

 Each grid cell has a list of primitives that
overlap it.

 The ray traverses the grid, and intersects only
primitives in the grid cells it visits.

Problems:

 Many primitives will be checked more than once.
 It costs to traverse the grid.
 How do we chose grid resolution?
 What if scene detail is not uniform?

Acceleration Structures

INFOGR – Lecture 11 – “Acceleration” 10

Option 2:

Use a nested grid.

 We use fewer cells. Each grid cell that overlaps
multiple primitives has a smaller grid in it.

 The ray rapidly traverses empty space, and
checks the nested grids when needed.

Problems:

 How do we chose grid resolutions?
 Is this the optimal way to traverse space?

Acceleration Structures

INFOGR – Lecture 11 – “Acceleration” 11

Option 3:

Use an octree.

 We start with a bounding box of the scene;
 The box is recursively subdivided in 8 equal

boxes as long as it contains more than X
primitives.

Problems:

 What if all the detail is exactly in the centre of
the scene?

 Splitting in 8 boxes: is that the optimal
subdivision?

Acceleration Structures

INFOGR – Lecture 11 – “Acceleration” 12

Option 4:

Use an kD-tree.

 We start with a bounding box of the scene;
 Using arbitrary axis-aligned planes, we

recursively cut it in two halves as long as it
contains more than X primitives.

Problems:

 Primitives may end up in multiple leaf nodes.
 How hard is it to build such a tree?

Today’s Agenda:

 High-speed Ray Tracing

 Acceleration Structures

 The Bounding Volume Hierarchy

 BVH Construction

 BVH Traversal

 Optimizing Construction

 High-speed Traversal

BVH

INFOGR – Lecture 11 – “Acceleration” 15

Option 5:

Use a bounding volume hierarchy.

root

left right

top bottom top bottom

BVH

INFOGR – Lecture 11 – “Acceleration” 16

The Bounding Volume Hierarchy

BSPs, grids, octrees and kD-trees are examples of spatial subdivisions.

The BVH is of a different category: it is an object partitioning scheme:

Rather than recursively splitting space, it splits collections of objects.

primitive array

primitives in ‘left’ child primitives in ‘right’ child

+ splitplane =

BVH

INFOGR – Lecture 11 – “Acceleration” 17

The Bounding Volume Hierarchy

Sorting an array of elements based on a value:
BVH is very similar to QuickSort.

In the BVH construction algorithm, the split plane position is the pivot.

primitive array

primitives in ‘left’ child primitives in ‘right’ child

+ splitplane =

Bounding Volume Hierarchy: data structure

struct BVHNode
{

BVHNode* left;
BVHNode* right;
aabb bounds;
bool isLeaf;
vector<Primitive*> primitives;

};

// 4 or 8 bytes
// 4 or 8 bytes
// 2 * 3 * 4 = 24 bytes
// ?
// ?

BVH

INFOGR – Lecture 11 – “Acceleration” 17

Bounding Volume Hierarchy: construction

void ConstructBVH(Primitive* primitives)
{

BVHNode* root = new BVHNode();
root->primitives = primitives;
root->bounds = CalculateBounds(primitives);
root->isLeaf = true;
root->Subdivide();

}

void BVHNode::Subdivide()
{

if (primitives.size() < 3) return;
this.left = new BVHNode(), this.right = new BVHNode();
…split ‘bounds’ in two halves, assign primitives to each half…
this.left->Subdivide();
this.right->Subdivide();
this.isLeaf = false;

}

BVH

INFOGR – Lecture 11 – “Acceleration” 17

Bounding Volume Hierarchy: construction

primitive array

primitive index array0 1 2 … … N-3 N-2 N-1

indices of primitives in ‘left’ child indices of primitives in ‘right’ child

first count first count

Construction consequences:

 Construction happens in place:
primitive array is constant,
index array is changed

 Very similar to Quicksort
(split plane = pivot)

Data consequences:

 ‘Primitive list’ for node becomes
offset + count

 No pointers!
 No pointers?

(what about left / right?)

BVH

INFOGR – Lecture 11 – “Acceleration” 17

Bounding Volume Hierarchy: data structure

struct BVHNode
{

BVHNode* left;
BVHNode* right;
aabb bounds;
bool isLeaf;
vector<Primitive*> primitives;

};

BVH node pool0 1 2 …

struct BVHNode
{

uint left; // 4 bytes
uint right; // 4 bytes
aabb bounds; // 24 bytes
bool isLeaf; // 4 bytes
uint first; // 4 bytes
uint count; // 4 bytes

}; // --------
// 44 bytes

BVH

INFOGR – Lecture 11 – “Acceleration” 17

Bounding Volume Hierarchy: data structure

struct BVHNode
{

uint left; // 4 bytes
uint right; // 4 bytes
aabb bounds; // 24 bytes
bool isLeaf; // 4 bytes
uint first; // 4 bytes
uint count; // 4 bytes

}; // --------
// 44 bytes

struct BVHNode
{

union // 4 bytes
{

uint left;
uint first;

};
aabb bounds; // 24 bytes
uint count; // 4 bytes

}; // --------
// 32 bytes

BVH

INFOGR – Lecture 11 – “Acceleration” 17

Bounding Volume Hierarchy: data structure

struct BVHNode
{

float3 bmin; // bounds: minima
uint leftFirst; // or a union
float3 bmax; // bounds: maxima
uint count; // leaf if 0

}; // --------
// 32 bytes

BVH

INFOGR – Lecture 11 – “Acceleration” 17

Today’s Agenda:

 High-speed Ray Tracing

 Acceleration Structures

 The Bounding Volume Hierarchy

 BVH Construction

 BVH Traversal

 Optimizing Construction

 High-speed Traversal

BVH Traversal

INFOGR – Lecture 11 – “Acceleration” 25

BVH Traversal Algorithm:

Starting with the root:

If the node is a leaf node:
Intersect triangles.

Else:
If the ray intersects the left child AABB:

Traverse left child
If the ray intersects the right child AABB:

Traverse right child

How efficient is this?

In this case: we check every AABB, but we
only try to intersect one red sphere.
(total: 8 tests)

BVH Traversal

INFOGR – Lecture 11 – “Acceleration” 26

BVH Efficiency

The number of nodes in a BVH is at most 2𝑁 − 1.
Example:

16
8 + 8

(4 + 4) + (4 + 4)
((2+2) + (2+2))+((2+2) + (2+2))

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

 In this case, we get from the root to a leaf in 5
steps, or: log2𝑁 + 1.

 For 1024 primitives, we get to a leaf in 11 steps.
 For 1M primitives, we get to a leaf in 21 steps.

1
2
4
8

16

31

Today’s Agenda:

 High-speed Ray Tracing

 Acceleration Structures

 The Bounding Volume Hierarchy

 BVH Construction

 BVH Traversal

 Optimizing Construction

 High-speed Traversal

Optimizing Construction

INFOGR – Lecture 11 – “Acceleration” 28

How do we construct a
‘good’ BVH?

What is a good BVH?

 One that minimizes the
number of ray/primitive
intersections, and the
number of ray/AABB
intersections.

Optimizing Construction

INFOGR – Lecture 11 – “Acceleration” 29

BVH Quality

A good BVH minimizes the number of intersections.

Concrete:

𝑄𝑏𝑣ℎ =

1

𝑁

𝑃𝐴𝐴𝐵𝐵(𝐶𝐴𝐴𝐵𝐵 + 𝑁𝑡𝑟𝑖𝐶𝑡𝑟𝑖)

Where:

𝑁 is the number of BVH nodes;
𝑃𝐴𝐴𝐵𝐵 is the probability of a ray hitting the AABB;
𝐶𝐴𝐴𝐵𝐵 is the cost of a ray intersecting the AABB;
𝑁𝑡𝑟𝑖 is the number of triangles in the node;
𝐶𝑡𝑟𝑖 is the cost of intersecting a triangle.

Probability of hitting an AABB
with an arbitrary ray:

Proportional to the surface
area of the AABB.

Ray Tracing for Games

Binned BVH Construction

Surface Area Heuristic (Or: what is the best way to slice a bunny?)

Ray Tracing for Games

Binned BVH Construction

Cost:

Nleft * Aleft + Nright * Aright

Select the split with the
lowest cost.

Optimizing Construction

INFOGR – Lecture 11 – “Acceleration” 32

Surface Area Heuristic

We construct a BVH by minimizing the cost after each split,
i.e. we use the split plane position and orientation that minimizes the
cost function:

𝐶𝑠𝑝𝑙𝑖𝑡 = 𝑁𝑙𝑒𝑓𝑡 𝐴𝑙𝑒𝑓𝑡 + 𝑁𝑟𝑖𝑔ℎ𝑡 𝐴𝑟𝑖𝑔ℎ𝑡

The split is not made at all if the best option is more expensive than
not splitting, i.e.

𝐶𝑛𝑜𝑠𝑝𝑙𝑖𝑡 = 𝑁 𝐴

This provides a natural termination criterion for BVH construction.

Optimizing Construction

INFOGR – Lecture 11 – “Acceleration” 33

Efficiency of the Surface Area Heuristic

A BVH constructed with the Surface Area Heuristic is typically twice
as efficient as a tree constructed with naïve midpoint subdivision.

Today’s Agenda:

 High-speed Ray Tracing

 Acceleration Structures

 The Bounding Volume Hierarchy

 BVH Construction

 BVH Traversal

 Optimizing Construction

 High-speed Traversal

Fast Traversal

INFOGR – Lecture 11 – “Acceleration” 35

root

left right

left right left right

rightleft

left right

INFOGR – Lecture 11 – “Acceleration” 36

Ray Packet Traversal

Primary rays for a small square of pixels tend to travel the same BVH
nodes.

We can exploit this by explicitly traversing ray packets.

Fast Traversal

INFOGR – Lecture 11 – “Acceleration” 37

Packet Traversal Algorithm:

Starting with the root:

If the node is a leaf node:
Intersect triangles.

Else:
If any ray intersects the left child AABB:

Traverse left child
If any ray intersects the right child AABB:

Traverse right child

Fast Traversal

INFOGR – Lecture 11 – “Acceleration” 38

Ray Packet Traversal

Quickly determining if any ray intersects a node:

 Test the first one.

If it intersects, we’re done. Else:

 Test if the AABB is outside the frustum encapsulating the packet.

If it misses, we’re done. Else:

 Brute force test all rays. The first one that hits the AABB will be the
ray we check first while processing the child nodes.

Fast Traversal

INFOGR – Lecture 11 – “Acceleration” 39

Ray Packet Traversal Efficiency

Using the packet traversal approach, we can very efficiently traverse
large packets of rays that travel roughly in the same direction. For
primary rays, this can be 32x faster than single ray traversal.

Note that this requires the rays in the packet to traverse a similar set
of BVH nodes. The ray packet must be coherent (as opposed to
divergent). Ray coherence can be expressed as the extend to which
rays in a packet travel the same nodes, or:

𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 =
#𝑟𝑎𝑦𝑠 𝑖𝑛 𝑝𝑎𝑐𝑘𝑒𝑡

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 #𝑟𝑎𝑦𝑠 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔 𝑎 𝑛𝑜𝑑𝑒

Combined with an efficient BVH, we now have the performance
needed for real-time ray tracing.

Fast Traversal

Today’s Agenda:

 High-speed Ray Tracing

 Acceleration Structures

 The Bounding Volume Hierarchy

 BVH Construction

 BVH Traversal

 Optimizing Construction

 High-speed Traversal

INFOGR – Computer Graphics
J. Bikker - April-July 2015 - Lecture 11: “Accelerate”

END of “Accelerate”
next lecture: “Shading Models”

