
INFOGR – Computer Graphics
Jacco Bikker - April-July 2015 - Lecture 3: “Geometry”

Welcome!

Today’s Agenda:

 2D Primitives

 3D Primitives

 Textures

2D Primitives

INFOGR – Lecture 3 – “Geometry”

Recap

Last time: vectors and their properties:

 Magnitude, direction
 Scalar product
 Null vector, normal
 Parallel, linear (in)depence
 Commutative addition & subtraction
 Dot product, cross product

Concepts:

 ℝd spaces
 (orthonormal) 2D basis, Cartesian
 Left handed, right handed

4
1

1
2

5
3

2D Primitives

INFOGR – Lecture 3 – “Geometry”

Implicit representation

Implicit curve:

𝑓 𝑥, 𝑦 = 0

Function f maps two-dimensional
points to a real value, i.e.

𝑥, 𝑦 → 𝑓(𝑥, 𝑦)

The points for which this value is 0
are on the curve.

Example: circle

𝑥2 + 𝑦2 − 𝑟2 = 0

If 𝑝 = (x, y) is a point on
the circle, and
 𝑝 is a vector from the origin
to 𝑝, it’s length must be 𝑟,
so ⃦ 𝑝 ⃦ = 𝑟.

Example: circle with center c and radius r:

(x-c𝑥)2 + 𝑦 − 𝑐𝑦
2 − 𝑟2 = 0

c

 𝑝

 𝑝

2D Primitives

INFOGR – Lecture 3 – “Geometry”

Implicit representation

Implicit curve:

𝑓 𝑥, 𝑦 = 0

Function f maps two-dimensional
points to a real value, i.e.

𝑥, 𝑦 → 𝑓(𝑥, 𝑦)

The points for which this value is 0
are on the curve.

Example: line

Slope-intersect form:

𝑦 = 𝑎𝑥 + 𝑐

Implicit form:

−𝑎𝑥 + 𝑦 − 𝑐 = 0

In general:

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

𝑦 =
2

3
𝑥 + 1

𝑐

∆𝑥

∆𝑦

𝑎 =
∆y

∆x

2D Primitives

INFOGR – Lecture 3 – “Geometry”

Implicit line representation

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

In this case:

A = −
2

3
, B = 1 , C = −1

The vector (A,B) is a
normal of the line.

𝑐

∆𝑥

∆𝑦

Slope-intersect form:

𝑦 = 𝑎𝑥 + 𝑐

Implicit form:

−𝑎𝑥 + 𝑦 − 𝑐 = 0

General form:

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

𝑦 =
2

3
𝑥 + 1

 𝑝(𝑥, 𝑦)

 𝑝(−𝑥,−𝑦)

 𝑝(𝑦,−𝑥)

 𝑝(−𝑦, 𝑥)

2D Primitives

INFOGR – Lecture 3 – “Geometry”

Implicit line representation

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

In this case:

A = −
2

3
, B = 1 , C = −1

The vector (A,B) is a
normal of the line.

𝑐

∆𝑥

∆𝑦

We can use the normal to
calculate the distance of a point
to the line:

𝑑 = 𝑁 ∙ 𝑝 + 𝐶

For 𝑝 = 3,3 :

𝑑 = −
2

3
∗ 3 + 1 ∗ 3 − 1

= −2 + 3 − 1 = 0

For 𝑝 = 0,0 :

𝑑 = −
2

3
∗ 0 + 1 ∗ 0 − 1

= −1 (?)

𝑦 =
2

3
𝑥 + 1

2D Primitives

INFOGR – Lecture 3 – “Geometry”

Implicit line representation

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

Given point 𝑝1 and 𝑝2, we
determine A, B and C as follows:

 𝑙 = 𝑝2 − 𝑝1

𝑁 = −𝑙𝑦 , 𝑙𝑥

𝐴 = 𝑁𝑥 , 𝐵 = 𝑁𝑦 , 𝐶 = −(𝑁 · 𝑝1)

It is convenient to normalize the normal:

Only when ǁ𝑁ǁ = 1, |C| is the distance of the line to the origin.

p1

p2

Test with the line from the
previous slides:

𝑝1 = −3,−1
𝑝2 = 3,3

 𝑙 = 6,4

𝑁 = −4,6
𝐴 = −4, 𝐵 = 6
𝐶 = −(−4 ∗ −3 + 6 ∗ −1)

= −6

−4𝑥 + 6𝑦 − 6 = 0

−
2

3
𝑥 + 𝑦 − 1 = 0

|𝐶|
+

-

2D Primitives

INFOGR – Lecture 3 – “Geometry”

Parametric representation

Parametric curve:

𝑥
𝑦 =

𝑔(𝑡)
ℎ(𝑡)

Example: line

𝑝0 = 𝑥𝑝0, 𝑦𝑝0 , 𝑝1 = (𝑥𝑝1, 𝑦𝑝1)

𝑥
𝑦 =

𝑥𝑝0

𝑦𝑝0
+ 𝑡

𝑥𝑝1 − 𝑥𝑝0

𝑦𝑝1 − 𝑦𝑝0

Or

𝑝 𝑡 = 𝑝0 + 𝑡 𝑝1 − 𝑝0 , 𝑡 ∈ ℝ.

p0

p1

In this example:

𝑝1 is the support vector;
𝑝1 − 𝑝0 is the direction
vector.

2D Primitives

INFOGR – Lecture 3 – “Geometry”

Slope-intercept:

𝑦 = 𝑎𝑥 + 𝑐

Implicit representation:

−𝑎𝑥 + 𝑦 − 𝑐 = 0
𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

Parametric representation:

𝑝 𝑡 = 𝑝0 + 𝑡 𝑝1 − 𝑝0

p0

p1

∆𝑥

∆𝑦

2D Primitives

INFOGR – Lecture 3 – “Geometry”

Circle - parametric

𝑥
𝑦 =

𝑥𝑐 + 𝑟 cos𝜙
𝑦𝑐 + 𝑟 sin𝜙

𝜙

c

𝜙

𝑟

𝑥

𝑦

cos𝜙 =
𝑥

𝑟

𝑠𝑖𝑛 𝜙 =
𝑦

𝑟

𝑡𝑎𝑛 𝜙 =
𝑦

𝑥

adjacent

o
p

p
o

si
te

SOH CAH TOA

Today’s Agenda:

 2D Primitives

 3D Primitives

 Textures

3D Primitives

INFOGR – Lecture 3 – “Geometry”

Circle – sphere (implicit)

Recall: the implicit representation for a circle
with radius 𝑟 and center 𝑐 is:

𝑥 − 𝑥𝑐 2 + 𝑦 − 𝑦𝑐 2 − 𝑟2 = 0

or: ∥ p − c ∥ 2 − 𝑟2 = 0 ∥ 𝑝 − 𝑐 ∥ = 𝑟

In ℝ3, we get:

𝑥 − 𝑐𝑥
2 + 𝑦 − 𝑐𝑦

2 + 𝑧 − 𝑐𝑧 2 − 𝑟2 = 0

or: ∥ 𝑝 − 𝑐 ∥= 𝑟

c

 𝑝

3D Primitives

INFOGR – Lecture 3 – “Geometry”

Line – plane (implicit)

Recall: the implicit representation for a line is:

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

In ℝ3, we get a plane:

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0
p1

p2

3D Primitives

INFOGR – Lecture 3 – “Geometry”

Parametric surfaces

A parametric surface needs two parameters:

𝑥 = 𝑓(𝑢, 𝑣),
𝑦 = 𝑔(𝑢, 𝑣),
𝑧 = ℎ(𝑢, 𝑣).

For example, a sphere:

𝑥 = 𝑟 cos𝜙 sin 𝜃,
𝑦 = 𝑟 sin𝜙 sin 𝜃,
𝑧 = 𝑟 cos 𝜃.

Doesn’t look very convenient (compared to the
implicit form), but it will prove useful for texture
mapping.

�

𝜃

3D Primitives

INFOGR – Lecture 3 – “Geometry”

Parametric planes

Recall the parametric line definition:

𝑝 𝑡 = 𝑝0 + 𝑡 𝑝1 − 𝑝0

For a plane, we need to parameters:

𝑝 𝑠, 𝑡 = 𝑝0 + 𝑠 𝑝1 − 𝑝0 + 𝑡(𝑝2 − 𝑝0)

or:
𝑝 𝑠, 𝑡 = 𝑝0 + 𝑠 𝑣 + 𝑡𝑤

where:
 𝑝0 is a point on the plane;
 𝑣 and 𝑤 are two linearly independent

vectors on the plane;
 𝑠, 𝑡 ∈ ℝ.

y

z

x

𝑣

𝑤

𝑝0

Today’s Agenda:

 2D Primitives

 3D Primitives

 Textures

Textures

INFOGR – Lecture 3 – “Geometry”

Textures

INFOGR – Lecture 3 – “Geometry”

Back to the world of graphics…

Given a plane: 𝑦 = 0 (i.e., with a normal vector (0,1,0)).

Two vectors on the plane define a basis: 𝑢 = (1,0,0) and 𝑣 = (0,0,1).

Using these vectors, any point on the plane can be reached: 𝑃 = λ1𝑢 + λ2 𝑣.

We can now use λ1, λ2 to define a color at P: 𝐹(λ1, λ2) = ⋯ .

𝑢

 𝑣

Textures

INFOGR – Lecture 3 – “Geometry”

Example:

𝐹(λ1, λ2) = sin(λ1)

Another example:

𝐹(λ1, λ2) = (int (2 ∗ λ1) + (int)λ2) & 1

Textures

INFOGR – Lecture 3 – “Geometry”

Other examples (not explained here):

Perlin noise
Details: http://www.noisemachine.com/talk1

Voronoi / Worley noise
Details: “A cellular texture basis function”, S. Worley, 1996.

http://www.noisemachine.com/talk1

Textures

INFOGR – Lecture 3 – “Geometry”

Obviously, not all textures can be generated procedurally.

For the generic case, we lookup the color value in a pixel buffer.

𝑥
𝑦 = 𝑃 ∙ 𝑢

𝑃 ∙ 𝑣

Note that we find the pixel to read based on 𝑃; we don’t find a ‘𝑃’
for every pixel of the texture.

𝑢

 𝑣

P

∗
𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡

0 255
0

255

Textures

INFOGR – Lecture 3 – “Geometry”

Retrieving a pixel from a texture:

𝑥
𝑦 = 𝑃 ∙ 𝑢

𝑃 ∙ 𝑣
∗

𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡

We don’t want to read outside the texture. To prevent this, we have
two options:

1. Clamping

2. Tiling

Tiling is efficiently achieved using a bitmask. This requires texture
dimensions that are a power of 2.

0 255
0

255
𝑥
𝑦 =

𝑐𝑙𝑎𝑚𝑝(𝑃 ∙ 𝑢, 0, 1)

𝑐𝑙𝑎𝑚𝑝(𝑃 ∙ 𝑣, 0,1)
∗

𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡

𝑥
𝑦 =

𝑓𝑟𝑎𝑐(𝑃 ∙ 𝑢)

𝑓𝑟𝑎𝑐(𝑃 ∙ 𝑣)
∗

𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡

Textures

INFOGR – Lecture 3 – “Geometry”

Texture mapping: oversampling

Textures

INFOGR – Lecture 3 – “Geometry”

Texture mapping: undersampling

Textures

INFOGR – Lecture 3 – “Geometry”

Fixing oversampling

Oversampling: reading the same pixel from a texture multiple times.
Symptoms: blocky textures.

Remedy: bilinear interpolation:
Instead of clamping the pixel location to
the nearest pixel, we read from four pixels.

𝑤𝑝1 : (1 − 𝑓𝑟𝑎𝑐(𝑥)) ∗ (1 − 𝑓𝑟𝑎𝑐(𝑦))
𝑤𝑝2 : 𝑓𝑟𝑎𝑐 𝑥 ∗ (1 − 𝑓𝑟𝑎𝑐 𝑦)

𝑤𝑝3 : 1 − 𝑓𝑟𝑎𝑐 𝑥 ∗ 𝑓𝑟𝑎𝑐(𝑦)

𝑤𝑝4 : 1 − (𝑤𝑃1 +
𝑤𝑃2 +

𝑤𝑃3)

Textures

INFOGR – Lecture 3 – “Geometry”

Fixing oversampling

Textures

INFOGR – Lecture 3 – “Geometry”

Fixing undersampling

Undersampling: skipping pixels while reading from a texture.
Symptoms: Moiré, flickering, noise.

Remedy: MIP-mapping.

The texture is reduced to 25% by averaging
2x2 pixels. This is repeated until a 1x1 image
remains.

When undersampling occurs, we switch to
the next MIP level.

Textures

INFOGR – Lecture 3 – “Geometry”

Textures

INFOGR – Lecture 3 – “Geometry”

Textures

INFOGR – Lecture 3 – “Geometry”

Trilinear interpolation: blending between MIP levels.

Today’s Agenda:

 2D Primitives

 3D Primitives

 Textures

INFOGR – Computer Graphics
Jacco Bikker - April-July 2015 - Lecture 3: “Geometry”

END of “Geometry”
next lecture: “3D Engine Fundamentals”

