
Shader Programming
BY TIGRAN GASPARIAN



Who am I?
Name: Tigran Gasparian 

Age: 22

Master student Game and Media Technology

Working on a game for almost two years already
◦ The Flock – multiplayer horror game

◦ Like us on Facebook!

◦ Doing a lot of graphics programming in Unity







Table of contents
Introduction and motivation

Graphics pipeline

Vertex shader intro

Pixel shader intro

Writing shaders in XNA

Tips & Tricks



What are shaders?
Programs that run on the graphics card

◦ Somewhat limited compared to languages like C#

◦ Because of these limitations, very good at certain tasks

◦ Perform some of the computations necessary for graphics

We’ll cover pixel and vertex shaders
◦ Geometry, Tessellation and Compute shaders not covered here.

Written in some shading language
◦ HLSL, GLSL, CG, PSSL, MSL, etc.

◦ We’re going to use HLSL – High Level Shading Language

Node-based editor



What are shaders?



Why learn to write shaders?
Game engines come with lots of built-in shaders



Why learn to write shaders?
Create a unique look and feel for your game

◦ Want something never done before? Do it yourself!

Implement state of the art techniques
◦ The latest and greatest techniques don’t have standard implementations yet.

Unlock the infinite powers of the GPU!
◦ Well, not infinite, but it’s certainly powerful.

◦ 14x speedup according to Intel

◦ 300x speedup according to NVIDIA

◦ Depends on the application.



Why learn to write shaders?
It helps you pass the second practicum.



The Graphics Pipeline
What is the graphics pipeline?

◦ A sequence of actions that is performed to render a 2D image 
from a 3D scene

We’ll cover the following stages:
◦ Vertex Shader

◦ Rasterizer
◦ Can’t be programmed, but it’s an important stage

◦ Pixel Shader

Will be covered in-depth in the next lecture.



The Graphics Pipeline
Vertex data + resources + graphics card = image!

What is vertex data?
◦ Mostly triangles

What kind of resources?
◦ Textures

◦ Global variables
◦ Like the light color

◦ Lots of other stuff we won’t cover.

We first set the resources, then we push the vertices to the 
graphics card



The Vertex Shader
Perform some computations per vertex.

◦ Can move the positions of vertices.

◦ Usually transforms vertices
◦ Using the World, View and Projection matrices



The Vertex Shader
Perform some computations per vertex.

◦ Can move the positions of vertices.

◦ Usually transforms vertices
◦ Using the World, View and Projection matrices

◦ Other deformations



The Rasterizer
Turns triangles into pixels!

Interpolates vertex data
◦ More about this later



The Pixel Shader
Perform computations per pixel

◦ More accurate than per-vertex computations

◦ Can’t change the shape of the geometry
◦ Vertex shaders can!

Common uses
◦ Texture mapping

◦ We need to sample the texture for every pixel

◦ Per pixel lighting



The Vertex Shader – In-Depth
What’s a vertex shader?

◦ Just a function called for every vertex

Input: Vertex data
◦ A struct containing vertex information

◦ Let’s call it: VertexShaderInput

Output: A struct
◦ Can contain anything

◦ Let’s call it: VertexShaderOutput

Observation: Vertex shader doesn’t know about triangles



The Vertex Shader – VertexShaderInput

The data sent from the CPU to the GPU

HLSL code

Looks like C
◦ New data types

◦ Input semantics

struct VertexShaderInput
{

float4 Position : POSITION0;
float4 Color : COLOR0;
float2 TextureCoordinate : TEXCOORD0;
float SomeCustomData : TEXCOORD1;

};



The Vertex Shader – VertexShaderOutput

Must have member with POSITION0 semantic
◦ Contains vertex position transformed to normalized device coordinates

struct VertexShaderOutput
{

float4 Position : POSITION0;
float4 Color : COLOR0;
float3 VertexPosition : TEXCOORD0;

};



Sidetrack #1 - Input semantics
Required for interaction with C# code

◦ More on this later

Lots of remnants from the fixed function pipeline era.

Lots of semantics
◦ POSITION[n]

◦ TEXCOORD[n] (e.g. TEXCOORD0, TEXCOORD1, etc..)
◦ Use this for all custom data

◦ COLOR[n]
◦ Clamped between 0 and 1

◦ NORMAL[n]

◦ Many more…



Sidetrack #2 - HLSL Data types
HLSL has some specialized data types

◦ float – nothing special

◦ float2 – 2D vector

◦ float3 – 3D vector

◦ float4 – 4D vector

◦ float4x4 – 4x4 float matrix

◦ float2x3 – 2x3 float matrix

◦ Same thing with
◦ half – 16 bit floats

◦ fixed – 8 bit floats

◦ int – 32 bit integer

◦ etc.



Sidetrack #3 - HLSL Data types

Works mostly like you’d expect it to.

We’ll cover more HLSL later on

float3 position = float3(0, 0, 0);
float3 direction = float3(1, 2, 1.2f);

float someValue = 5;

position += direction * someValue;

float yDirection = direction.y;
float2 xyDirection = direction.xy;



The Graphics Pipeline
We just covered the Vertex Shader

Output:

struct VertexShaderOutput
{

float4 Position : POSITION0;
float4 Color : COLOR0;
float3 VertexPosition : TEXCOORD0;

};



The Graphics Pipeline
We just covered the Vertex Shader

Output:

Input for Rasterizer

struct VertexShaderOutput
{

float4 Position : POSITION0;
float4 Color : COLOR0;
float3 VertexPosition : TEXCOORD0;

};



The Rasterizer
Converts triangles into pixels

◦ Or: Rasterizes triangles



The Rasterizer
Converts triangles into pixels

◦ Or: Rasterizes triangles

Interpolates values between vertices
◦ For example the colors

struct VertexShaderOutput
{

float4 Position : POSITION0;
float4 Color : COLOR0;
float3 VertexPosition : TEXCOORD0;

};



The Rasterizer – Linear Interpolation
Values in the vertex structures are linearly interpolated

Weighted average

Can also be done with vectors and colors
◦ Interpolating vectors does not preserve length

◦ Renormalize your normals after interpolation!

float LinearInterpolate(float a, float b, float t)
{

return (1 - t)*a + t*b;
}



The Rasterizer – Interpolating vectors
Can also be done with vectors and colors

◦ Interpolating vectors does not preserve length
◦ Renormalize your normals after interpolation!

Notice what happens when we interpolate between the blue and red vectors



The Graphics Pipeline
After the rasterizer stage, we end up with pixels.

struct VertexShaderOutput
{

float4 Position : POSITION0;
float4 Color : COLOR0;
float3 VertexPosition : TEXCOORD0;

};



The Graphics Pipeline
After the rasterizer stage, we end up with pixels.

For every pixel, we get a VertexShaderOutput struct
◦ With POSITION0 field removed

struct VertexShaderOutput
{

float4 Position : POSITION0;
float4 Color : COLOR0;
float3 VertexPosition : TEXCOORD0;

};



The Pixel Shader – In-Depth
What’s a pixel shader?

◦ Just a function called for every pixel

Input: Interpolated Vertex Shader Output
◦ We reuse the struct VertexShaderOutput

◦ POSITION0 field “eaten” by the rasterizer

Output: One or more colors (or depth)
◦ We can put this in a struct

◦ Or just output a float4



The Pixel Shader – PixelShaderOutput

COLOR0 semantic is mandatory

And that’s it!

struct PixelShaderOutput
{

float4 color : COLOR0;
};



Simple example – Vertex Color shader
Walkthrough for a simple shader

Vertex shader:
◦ Transform cube with World, View and Projection matrix

◦ Pass vertex colors to rasterizer

Pixel shader
◦ Output interpolated vertex colors



Simple example – Vertex Color shader
struct VertexShaderInput
{

float4 Position : POSITION0;
float4 Color : COLOR0;

};

struct VertexShaderOutput
{

float4 Position : POSITION0;
float4 Color : COLOR0;

};

float4x4 World;
float4x4 View;
float4x4 Projection;



Simple example – Vertex Color shader
VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{

VertexShaderOutput output;

float4 worldPosition = mul(input.Position, World);
float4 viewPosition = mul(worldPosition, View);

output.Position = mul(viewPosition, Projection);
output.Color = input.Color;

return output;
}



Simple example – Vertex Color shader

PixelShaderOutput PixelShaderFunction(VertexShaderOutput input)
{

PixelShaderOutput output;
output.color = input.Color;
return output;

}

struct PixelShaderOutput
{

float4 color : COLOR0;
};



Simple example – Vertex Color shader

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{

return input.Color;
}



Simple example – Vertex Color shader
Tell the compiler which functions are the vertex shader and the pixel shader

Technique
◦ A shader file consists of one or more techniques (e.g. effect)

Pass
◦ Every technique consists of one or more passes

◦ Every pass consists of a vertex shader and a pixel shader



Simple example – Vertex Color shader

We choose a vertex shader and pixel shader profile
◦ Lower profile – 2_0 – less capabilities, supports older graphics cards

◦ Higher profile – 3_0 – more capabilities, only supports more recent graphics cards

technique VertexColorsTechnique
{

pass FirstPass
{

VertexShader = compile vs_2_0 VertexShaderFunction();
PixelShader = compile ps_2_0 PixelShaderFunction();

}
}



Simple example – Vertex Color shader
That’s it!

◦ Not that much code!



Simple example – Vertex Color shader
VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
{

VertexShaderOutput output;

float4 worldPosition = mul(input.Position, World);
float4 viewPosition = mul(worldPosition, View);
output.Position = mul(viewPosition, Projection);
output.Color = input.Color;

return output;
}

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{

return input.Color;
}

technique VertexColorsTechnique
{

pass FirstPass
{

VertexShader = compile vs_2_0 VertexShaderFunction();
PixelShader = compile ps_2_0 PixelShaderFunction();

}
}

float4x4 World;
float4x4 View;
float4x4 Projection;

struct VertexShaderInput
{

float4 Position : POSITION0;
float4 Color : COLOR0;

};

struct VertexShaderOutput
{

float4 Position : POSITION0;
float4 Color : COLOR0;

};



Using shaders in XNA
Vertex declarations

Loading shaders

Setting global variables

Rendering



Vertex Declarations
You’ve probably used this in P1

Later in P1, you define your own vertex types (see Section 7.2 of P1)

private VertexPositionColor[] vertices;

private VertexPositionColorNormal[] vertices;



Vertex Declarations
In the vertex declaration, we see this:

Relates to the following shader code:

public static VertexElement[] VertexElements =
{

new VertexElement(0, VertexElementFormat.Vector3, VertexElementUsage.Position, 0),
new VertexElement(sizeof (float)*3, VertexElementFormat.Color, VertexElementUsage.Color, 0),
new VertexElement(sizeof (float)*3 + 4, VertexElementFormat.Vector3, VertexElementUsage.Normal, 0),

};

struct VertexShaderInput
{

float3 Position : POSITION0;
float4 Color : COLOR0;
float3 Normal : NORMAL0;

};



Vertex Declarations
In the vertex declaration, we see this:

Relates to the following shader code:

public static VertexElement[] VertexElements =
{

new VertexElement(0, VertexElementFormat.Vector3, VertexElementUsage.Position, 0),
new VertexElement(sizeof (float)*3, VertexElementFormat.Color, VertexElementUsage.Color, 0),
new VertexElement(sizeof (float)*3 + 4, VertexElementFormat.Vector3, VertexElementUsage.Normal, 0),

};

struct VertexShaderInput
{

float3 Position : POSITION0;
float4 Color : COLOR0;
float3 Normal : NORMAL0;

};



Vertex Declarations
In the vertex declaration, we see this:

Relates to the following shader code:

public static VertexElement[] VertexElements =
{

new VertexElement(0, VertexElementFormat.Vector3, VertexElementUsage.Position, 0),
new VertexElement(sizeof (float)*3, VertexElementFormat.Color, VertexElementUsage.Color, 0),
new VertexElement(sizeof (float)*3 + 4, VertexElementFormat.Vector3, VertexElementUsage.Normal, 0),

};

struct VertexShaderInput
{

float3 Position : POSITION0;
float4 Color : COLOR0;
float3 Normal : NORMAL0;

};



Vertex Declarations
In the vertex declaration, we see this:

Relates to the following shader code:

public static VertexElement[] VertexElements =
{

new VertexElement(0, VertexElementFormat.Vector3, VertexElementUsage.Position, 0),
new VertexElement(sizeof (float)*3, VertexElementFormat.Color, VertexElementUsage.Color, 0),
new VertexElement(sizeof (float)*3 + 4, VertexElementFormat.Vector3, VertexElementUsage.Normal, 0),

};

struct VertexShaderInput
{

float3 Position : POSITION0;
float4 Color : COLOR0;
float3 Normal : NORMAL0;

};



Vertex Declarations
In the vertex declaration, we see this:

Relates to the following shader code:

public static VertexElement[] VertexElements =
{

new VertexElement(0, VertexElementFormat.Vector3, VertexElementUsage.Position, 0),
new VertexElement(sizeof (float)*3, VertexElementFormat.Color, VertexElementUsage.Color, 0),
new VertexElement(sizeof (float)*3 + 4, VertexElementFormat.Vector3, VertexElementUsage.Normal, 0),

};

struct VertexShaderInput
{

float3 Position : POSITION0;
float4 Color : COLOR0;
float3 Normal : NORMAL0;

};



Creating shader file
Right click on Content Project

◦ Add -> New Item



Creating shader file
Right click on Content Project

◦ Add -> New Item

◦ Visual C# -> Effect File



Setting up the shader

Effect effect = Content.Load<Effect>("ExampleShader");

Load the shader like any other resource

Set the active technique

Set shader global variables

effect.CurrentTechnique = effect.Techniques["VertexColorsTechnique"];

effect.Parameters["World"].SetValue(Matrix.Identity);
effect.Parameters["View"].SetValue(Matrix.CreateLookAt(...));
effect.Parameters["Projection"].SetValue(Matrix.CreatePerspectiveFieldOfView(...));



Rendering using the shader
foreach (EffectPass pass in effect.CurrentTechnique.Passes)
{

pass.Apply();
// Rendering code here

}



Rendering using the shader
foreach (EffectPass pass in effect.CurrentTechnique.Passes)
{

pass.Apply();

// Rendering code here
GraphicsDevice.DrawUserIndexedPrimitives(PrimitiveType.TriangleList,

vertices, 0, vertices.Length, indices, 0, indices.Length/3);
}



In the draw function

foreach (EffectPass pass in effect.CurrentTechnique.Passes)
{

pass.Apply();

// Rendering code here
GraphicsDevice.DrawUserIndexedPrimitives(PrimitiveType.TriangleList,

vertices, 0, vertices.Length, indices, 0, indices.Length/3);
}

effect.Parameters["World"].SetValue(Matrix.Identity);
effect.Parameters["View"].SetValue(Matrix.CreateLookAt(...));
effect.Parameters["Projection"].SetValue(Matrix.CreatePerspectiveFieldOfView(...));

That’s it!



HLSL tips and tricks
Some useful things to know about HLSL

Just a quick glance, google it for details



Useful functions in HLSL
Vector length

◦ float len = length(myVector);

Normalize vector
◦ myNormal = normalize(myNormal);

Cross product
◦ float3 crossProduct = cross(forward, up);

Dot product
◦ float intensity = dot(normal, lightDirection);

Clamp value between [3,5]
◦ int x = clamp(y, 3, 5);

Clamp value between [0,1]
◦ int x = saturate(y);
◦ In some cases, this function is free!



Useful functions in HLSL
Other functions:

◦ abs, min, max, sin, cos, tan, pow, sqrt, exp, log, floor, lerp, smoothstep, reflect, refract, and many more..

Most common math functions are available

Just Google for ‘HLSL function name’ or ‘CG function name’



Sampling textures in HLSL
Define a texture global variable

◦ Texture2D MyTexture;

◦ Set its value in C#.

Then we define a texture sampler

sampler2D MySampler = sampler_state
{ 

texture = <MyTexture>;
magfilter = LINEAR;
minfilter = LINEAR;
mipfilter = LINEAR;
AddressU = mirror;
AddressV = mirror; 

};



Sampling textures in HLSL
Now we need to ‘read’ the texture

◦ This is called sampling

◦ Lots of ways to do it

Sample function in HLSL

Note that we pass the sampler, not the texture.

Texture coordinates
◦ [0,1] range 

◦ Usually you’d pass a variable (like interpolated texture coordinates)

Returns a float4

float4 color = tex2D(MySampler, float2(0.2, 0.3));



Sampling textures in HLSL
Lots of sampling functions available

◦ But you won’t need most of these

And these aren’t the only ones!

tex2D
tex2Dbias
tex2Dgrad
tex2Dlod
tex2Dproj



Sampling textures in HLSL
1D Textures

2D Textures

3D Textures

Cubemaps

All of these have their own sampling functions
◦ tex1D, tex2D, tex3D, texCUBE



Swizzling
Take a look at the following code

You can also reuse components

Or reuse one components four times

float4 a;
float4 b;
a = b.wyzx;

float4 a;
float4 b;
a = b.wyyx;

float4 a;
float4 b;
a = b.xxxx;



Swizzling
Generate a 2D vector from a 4D vector

Or a 4D vector from a 2D vector

Instead of .xyzw, we can also use .rgba

float2 a;
float4 b;
a = b.xz;

float4 a;
float2 b;
a = b.xxyy;

float4 a;
float4 b;
a = b.rgba;



Common errors
You’ve forgotten a semicolon

◦ ERROR: Unexpected token ‘something’

◦ Take a look at the line before the error

You misspelled variable names in C#
◦ Shader parameters and technique names are all CASE Sensitive!

Mesh doesn’t show up
◦ It’s probably the cullmode

◦ Or your World Matrix

◦ Or your View Matrix

◦ Or your Projection Matrix

◦ Or some other render state

◦ Or… I don’t know, it’s your code!



Common errors
Debugging shaders is hard

◦ Certainly harder than the CPU

◦ Can’t step through code, add breakpoints, etc.

◦ Can’t Console.WriteLine values

All is not lost though!
◦ Just don’t write any errors.



Common errors
Start with very simple shaders

◦ Don’t write everything and test it afterwards.

◦ Use a very simple pixel shader to write your vertex shader

◦ Make sure you test all the code you write. Lots of sanity checks!

◦ If you’ve finished with your vertex shader, write simple pixel shaders to test all the input
◦ Returning colors is kind of like Console.WriteLine()

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{

return float4(1,0,0,0);
}

float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{

return float4(input.Normal,0);
}



Common errors
Document every line of code

◦ It’s not that many lines of code anyway!

Use proper variable naming
◦ Indicate global variables

◦ If a vector is a normalized vector, call it myVectorN

◦ If a vector is in world space, call it positionW or positionWorld or worldPosition, just indicate it.

◦ Same thing with view space

◦ Same thing with projected coordinates

◦ If a vector points to the camera, call it toCamera, if it’s pointing to the camera and is normalized, call it 
toCameraN

If there’s a built-in function for it, use it!

Test your vertex declaration
◦ Often the semantics in the C# vertex declaration and the HLSL struct don’t match



Help, my shader was working and now 
it’s not working anymore!
Changed your shader code?

◦ Well, there’s your problem

Changed C# code?
◦ Some render state probably changed.

Render states changed by SpriteBatch

You’ll need to change it back, even though you didn’t set it explicitly in the first place

GraphicsDevice.BlendState = BlendState.AlphaBlend;
GraphicsDevice.DepthStencilState = DepthStencilState.None;
GraphicsDevice.RasterizerState = RasterizerState.CullCounterClockwise;
GraphicsDevice.SamplerStates[0] = SamplerState.LinearClamp;

GraphicsDevice.BlendState = BlendState.Opaque;
GraphicsDevice.DepthStencilState = DepthStencilState.Default;



Help, my shader was working and now 
it’s not working anymore!
Some other shader may also have changed the render states

◦ Check this first

Some global variables might be incorrect
◦ Example: 

◦ Render object 1 with a 100x scaling matrix

◦ Forget to set the world matrix back to 1x scaling

◦ Render object 2, which is so big, it gets clipped away

◦ You can check these values easily in C#



The End
ANY QUESTIONS?



Buy The Flock!



The End
ANY QUESTIONS?


