
INFOGR – Computer Graphics
J. Bikker - April-July 2015 - Lecture 5: “3D Engine Fundamentals”

Welcome!

Today’s Agenda:

 Rendering Overview

 Matrices

 Transforms

Rendering

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Topics covered so far:

Lecture 1:
 Field study

Lecture 2:
 Rasters
 Vectors
 Color representation

Lecture 3:
 2D primitives
 3D primitives
 Textures

Rendering

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Rendering – Functional overview

1. Transform:
translating / rotating / scaling meshes

2. Project:
calculating 2D screen positions

3. Rasterize:
determining affected pixels

4. Shade:
calculate color per affected pixel

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

Animation, culling,
tessellation, ...

Postprocessing

Rendering

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Rendering – Data overview

Rendering

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Rendering – Data overview

world

car

wheel

wheel

wheel

wheel

turret

plane planecar

wheel

wheel

wheel

wheel

turret

buggy

wheel

wheel

wheel

wheel

dude

dudedude

camera

𝑇𝑐𝑎𝑚𝑒𝑟𝑎

𝑇𝑐𝑎𝑟1 𝑇𝑝𝑙𝑎𝑛𝑒1 𝑇𝑐𝑎𝑟2 𝑇𝑝𝑙𝑎𝑛𝑒2

𝑇𝑏𝑢𝑔𝑔𝑦

Rendering

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Rendering – Data overview

Objects are organized in a hierarchy: the
scenegraph.

In this hierarchy, objects have translations and
orientations relative to their parent node.

Relative translations and orientations are
specified using matrices.

Mesh vertices are defined in a coordinate
system known as object space.

Rendering

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Transform

Project

Rasterize

Shade

vertices, transforms

pixels

Rendering – Data overview

Transform takes our meshes from
object space (3D) to camera space
(3D).

Project takes the vertex data from
camera space (3D) to screen space
(2D).

textures, shaders, lights

camera transform

screen buffers

vertices

vertices

fragment positions

connectivity data

Rendering

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Rendering – Data overview

The screen is represented by (at least) two buffers:

Rendering

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Rendering – Components

Scenegraph
Culling

Vertex transform pipeline
Matrices to convert from one space to another
Perspective

Rasterization
Interpolation
Clipping
Depth sorting: z-buffer

Shading
Light / material interaction
Shadows / reflections / etc.

Lecture 7

Lecture 5
Lecture 6

Lecture 7
Lecture 7

P2
P3

Today’s Agenda:

 Rendering Overview

 Matrices

 Transforms

Matrices

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Bases in ℝ2 and ℝ3

Recall:

 Two linearly independent vectors form a base.
 We can reach any point in using:

 𝑎 = λ1𝑢 + λ2 𝑣

 If 𝑢 and 𝑣 are perpendicular unit vectors, the base is
orthonormal.

 The Cartesian coordinate system is an example of
this, with 𝑢 = (1,0) and 𝑣 = (0,1).

By manipulating 𝑢 and 𝑣, we can create a ‘coordinate
system’ within a coordinate system. 𝑢

 𝑣

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Bases in ℝ2 and ℝ3

This extends naturally to ℝ3:

Three vectors, 𝑢, 𝑣 and 𝑤 allow us to reach any point in
3D space;

𝑎 =λ1𝑢 + λ2 𝑣 + λ3 𝑤

Again, manipulating 𝑢, 𝑣 and 𝑤 changes where
coordinates specified as (λ1, λ2 , λ3) end up.

y

z

x

𝑢

𝑣

𝑤

Matrices

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices

A vector is an ordered set of d scalar values (i.e., a d-tuple):

 𝑣 =
𝑣1

𝑣2

𝑣3

or (𝑣1, 𝑣2, 𝑣3) or …

A 𝑚 × 𝑛 matrix is an array of 𝑚 ∙ 𝑛 scalar values, sorted in 𝑚 rows and 𝑛
columns:

𝐴 =
𝑎11 𝑎12

𝑎21 𝑎22

The elements 𝑎𝑖𝑗 are referred to as the coefficients of the matrix (or
elements, entries). Note that here 𝑖 is the row; 𝑗 is the column.

Matrices

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Terminology – special matrices

 A diagonal matrix is a matrix for which all elements aij are zero if 𝑖 ≠ 𝑗.
 An identity matrix is a diagonal matrix where each element 𝑎𝑖𝑖 = 1.
 The zero matrix contains only zeroes.

𝐴 =
1.5 0 0
0 0.99 0
0 0 3.14

𝐴 =
1 0 0
0 1 0
0 0 1

𝐴 =
0 0 0
0 0 0
0 0 0

Before we continue, what is a matrix?

 Just a group of numbers;
 In graphics: often a representation of a coordinate system.

x y z

Matrices

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices - operations

Matrix addition is defined as:

𝐴 = 𝐵 + 𝐶, with: c𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗

Note that addition is only defined for matrices with the same dimensions.

Example:

1 0
0 1

+
2 2
4 4

=
3 2
4 5

Subtraction works the same.

Matrices

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices - operations

Multiplying a matrix with a scalar is defined as follows:

𝐴 = λ𝐵, with: a𝑖𝑗 = λ𝑏𝑖𝑗

Example:

2
1 0
0 1

=
2 0
0 2

Matrices

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices - operations

Multiplying a matrix (dimensions 𝑚𝐴 × 𝑛𝐴) with another
matrix (dimensions 𝑚𝐵 × 𝑛𝐵):

𝐶 = 𝐴𝐵, with:

Example:

2 6 1
5 2 4

1 4
2 5
3 6

=
17 44
21 54

Note the dimensions of the resulting
matrix: 𝑚𝐴 × 𝑛𝐵 .

Matrix multiplication is only defined
if 𝑛𝐴 = 𝑚𝐵.

𝑐11 =

𝑘=1

2

𝑎1𝑘 𝑏𝑘1 = 2 ∗ 1 + 6 ∗ 2 + 1 ∗ 3 = 17

𝑐21 =

𝑘=1

2

𝑎2𝑘 𝑏𝑘1 = 5 ∗ 1 + 2 ∗ 2 + 4 ∗ 3 = 21

𝑐12 =

𝑘=1

2

𝑎1𝑘 𝑏𝑘2 = 2 ∗ 4 + 6 ∗ 5 + 1 ∗ 6 = 44

𝑐22 =

𝑘=1

2

𝑎2𝑘 𝑏𝑘2 = 5 ∗ 4 + 2 ∗ 5 + 4 ∗ 6 = 54

𝑐𝑖𝑗 =

𝑘=1

𝑛
𝐴

𝑎𝑖𝑘 𝑏𝑘𝑗

Matrices

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices - operations

Doing matrix multiplication manually:

1 4
2 5
3 6

2 6 1
5 2 4

? ?
? ?

Note that each cell in the resulting matrix
is essentially the dot product of a row
and a column.

Some properties:

Matrix multiplication is distributive over
addition:

𝐴 𝐵 + 𝐶 = 𝐴𝐵 + 𝐴𝐶
𝐴 + 𝐵 𝐶 = 𝐴𝐶 + 𝐵𝐶

…and associative:

𝐴𝐵 𝐶 = 𝐴 𝐵𝐶

However, matrix multiplication is not
commutative, i.e., in general:

𝐴𝐵 ≠ 𝐵𝐴

Matrices

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices - operations

Doing matrix multiplication manually:

1 4
2 5
3 6

2 6 1
5 2 4

? ?
? ?

𝑎 𝑐
𝑏 𝑑

1 0
0 1

𝑎 𝑐
𝑏 𝑑

Multiplying by the zero matrix yields the
zero matrix:

0𝐴 = 𝐴0 = 0

Multiplying by the identity matrix yields
the original matrix:

𝐼𝐴 = 𝐴𝐼 = 𝐴

Matrices

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices - operations

The transpose 𝐴𝑇 of an 𝑚 × 𝑛 matrix is an 𝑛 × 𝑚 matrix that is obtained
by interchanging rows and columns: 𝑎𝑖𝑗 becomes 𝑎𝑗𝑖 for all 𝑖, 𝑗:

𝐴 =
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝐴𝑇 =
𝑎11 𝑎21 𝑎31

𝑎12 𝑎22 𝑎32

𝑎13 𝑎23 𝑎33

The transpose of the product of two matrices is:

𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇

Matrices

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices - operations

The inverse of a matrix 𝐴 is a matrix 𝐴-1 such that

𝐴𝐴−1 = 𝐴−1A = 𝐼

Note: only square matrix possibly have an inverse.

Matrices

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices - operations

We can multiply a d-dimensional vector by an 𝑚 × 𝑑 matrix:

𝑎11 ⋯ 𝑎1𝑑

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑑

𝑣1

⋮
𝑣𝑑

=

𝑎11𝑣1 + ⋯ + 𝑎1𝑑𝑣𝑑

⋯ + ⋯ + ⋯
𝑎𝑚1𝑣1 + ⋯ + 𝑎𝑚𝑑𝑣𝑑

Example: multiply a 3D vector by a 3x3 matrix:

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝑥
𝑦
𝑧

=

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧
𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧
𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧

Matrices

Note:

This is the same as matrix
concatenation; the vector is
simply an 𝑚 × 1 matrix.

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices - operations

We can multiply a d-dimensional vector by an 𝑚 × 𝑑 matrix:

𝑎11 ⋯ 𝑎1𝑑

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑑

𝑣1

⋮
𝑣𝑑

=

𝑎11𝑣1 + ⋯ + 𝑎1𝑑𝑣𝑑

⋯ + ⋯ + ⋯
𝑎𝑚1𝑣1 + ⋯ + 𝑎𝑚𝑑𝑣𝑑

Example: multiply a 3D vector by a 3x3 matrix:

𝑢𝑥 𝑣𝑥 𝑤𝑥

𝑢𝑦 𝑣𝑦 𝑤𝑦

𝑢𝑧 𝑣𝑧 𝑤𝑧

𝑥
𝑦
𝑧

=

𝑢𝑥𝑥 + 𝑣𝑥𝑦 + 𝑤𝑥𝑧
𝑢𝑦𝑥 + 𝑣𝑦𝑦 + 𝑤𝑦𝑧

𝑢𝑧𝑥 + 𝑣𝑧𝑦 + 𝑤𝑧𝑧
= 𝑥𝑢 + 𝑦 𝑣 + 𝑧𝑤

Matrices

Note:

This is the same as matrix
concatenation; the vector is
simply an 𝑚 × 1 matrix.

u v w

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices – determinant

The determinant 𝐴 of an 𝑛 × 𝑛 matrix A is the signed
area or volume spanned by its column vectors.

Example (in ℝ2):

𝐴 =
𝑎11 𝑎12

𝑎21 𝑎22
det A = |A| =

𝑎11 𝑎12

𝑎21 𝑎22

In this case, the determinant is the oriented area of the
parallelogram defined by the two column vectors.

The determinant is positive if the vectors are counter-
clockwise, or negative if they are clockwise. Therefore:

det 𝑎1 𝑎2 = −det |𝑎2 𝑎1|

Matrices

(𝑎12, 𝑎22)

(𝑎11, 𝑎21)

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices – determinant

The determinant 𝐴 of an 𝑛 × 𝑛 matrix A is the
signed volume spanned by its column vectors.

In ℝ3, the determinant is the oriented area of the
parallelepiped defined by the three column
vectors.

det 𝐴 = 𝐴 =
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

Matrices

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices – determinant

Calculating determinants: Laplace’s expansion.

The determinant of a matrix is the sum of the products
of the elements of any row or column of the matrix
with their cofactors.

The cofactor of an entry 𝑎𝑖𝑗 in an 𝑛 × 𝑛 matrix A is:

 The determinant of the (𝑛 − 1) × 𝑛 − 1 matrix A’ ,
 that is obtained from A by removing the 𝑖-th row

and 𝑗-th column,
 multiplied by -1i+j .

Matrices

Example:

𝐴 =
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝑎11
𝑐 =

𝑎22 𝑎23

𝑎32 𝑎33
∗ (−12)

𝑎12
𝑐 =

𝑎21 𝑎23

𝑎31 𝑎33
∗ (−13)

𝑎13
𝑐 =

𝑎21 𝑎22

𝑎31 𝑎32
∗ (−14)

𝐴 = 𝑎11 𝑎11
𝑐 + 𝑎12 𝑎12

𝑐 +𝑎13 𝑎13
𝑐

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices – determinant

Full example for 3 × 3 matrix:

0 1 2
3 4 5
6 7 8

= 0
4 5
7 8

− 1
3 5
6 8

+ 2
3 4
6 7

3 5
6 8

= 3 ∗ 8 ∗ −12 + 5 ∗ 6 ∗ −13 = −6

3 4
6 7

= 3 ∗ 7 ∗ −12 + 4 ∗ 6 ∗ −13 = −3

0 – 1 ∗ −6 + 2 ∗ −3 = 0.

Matrices

Generic approach for a for 3 × 3 matrix:

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

= 𝑎
𝑒 𝑓
ℎ 𝑖

− ⋯

= 𝑎𝑒𝑖 + 𝑏𝑓𝑔 + 𝑐𝑑ℎ − (𝑐𝑒𝑔 + 𝑎𝑓ℎ + 𝑏𝑑𝑖)

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

Rule of Sarrus for 2 × 2:
𝑎 𝑏
𝑐 𝑑

= 𝑎𝑑 − 𝑏𝑐

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices – adjoint

The adjoint (or adjugate) 𝐴 of matrix 𝐴 is the transpose of the
cofactor matrix of A.

Example:

𝐴 =
2 5
1 3

 𝐶 =
3 ∗ (−12) 1 ∗ (−13)
5 ∗ (−13) 2 ∗ (−14)

=
3 −1

−5 2

𝑎𝑑𝑗 𝐴 = 𝐶𝑇 =
3 −5

−1 2
.

Matrices

The cofactor of an entry 𝑎𝑖𝑗 in an 𝑛 × 𝑛
matrix A is:

 The determinant of the
(𝑛 − 1) × 𝑛 − 1 matrix A’ ,

 that is obtained from A by removing
the 𝑖-th row and 𝑗-th column,

 multiplied by -1i+j .

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices – inverse

The adjoint is used to calculate the inverse 𝐴
_1 of a matrix A:

𝐴
_1 =

 𝐴

|𝐴|

Matrices

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Matrices – overview

𝐴 =
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

=
1 0 0
0 1 0
0 0 1

𝑛 × 𝑚: n rows, m columns

det 𝐴 = 𝐴 = 1 = 𝑎𝑒𝑖 + 𝑏𝑓𝑔 + 𝑐𝑑ℎ − (𝑐𝑒𝑔 + 𝑎𝑓ℎ + 𝑏𝑑𝑖)

𝐴 =
1 0
0 1

note:
−1 0
0 1

= −1, and: det 𝑎1 𝑎2 = −det |𝑎2 𝑎1|

cofactor 𝑎11
𝑐 =

𝑎22 𝑎23

𝑎32 𝑎33
∗ (−12) Adjoint 𝐴 of A is 𝐶𝑇; inverse 𝐴

_1 is
 𝐴

|𝐴|
.

Matrices

y

z

x

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

Today’s Agenda:

 Rendering Overview

 Matrices

 Transforms

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces - introduction

As we have seen before, we can multiply a matrix with a vector.

In 2D:
𝑎11 𝑎12

𝑎21 𝑎22

𝑥
𝑦 =

𝑎11𝑥 + 𝑎12𝑦
𝑎21𝑥 + 𝑎22𝑦

In 3D:
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝑥
𝑦
𝑧

=

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧
𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧
𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧

Geometric interpretation:

scalar multiplication of
𝑎11

𝑎21
by 𝑥, plus

scalar multiplication of
𝑎12

𝑎22
by 𝑦 yields

transformed point.

= 𝑥
𝑎11

𝑎21
+ 𝑦

𝑎12

𝑎22

= 𝑥
𝑎11

𝑎21

𝑎31

+ 𝑦
𝑎12

𝑎22

𝑎32

+ 𝑧
𝑎13

𝑎23

𝑎33

𝑎11

𝑎21

𝑎12

𝑎22

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – introduction

A matrix allows us to transform a coordinate system.

× =

rotation
+

scale

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – scaling

To scale by a factor 2 with respect to
the origin, we apply the matrix

2 0
0 2

Applied to a vector, we get:

2 0
0 2

𝑥
𝑦 =

2𝑥 + 0𝑦
0𝑥 + 2𝑦

=
2𝑥
2𝑦

This is called uniform scaling.

𝑥, 𝑦 =
(2,1)

2𝑥, 2𝑦 =
(4,2)

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – projection

If we set one of the 𝑎𝑖𝑖 to 0, we get an
orthographic projection.

1 0
0 0

This is useful for projecting a shadow
of the dragon on the x-axis, or to draw
a 3D object on a 2D screen.

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – reflection

We can construct a matrix that will
swap 𝑥 and 𝑦 coordinates to get a
reflection in the line 𝑦 = 𝑥:

0 1
1 0

𝑥
𝑦 =

0𝑥 + 1𝑦
1𝑥 + 0𝑦

=
𝑦
𝑥

𝑦 = 𝑥

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – shearing

Pushing things sideways:

1 1
0 1

𝑥
𝑦 =

1𝑥 + 1𝑦
1𝑦

=
𝑥 + 𝑦

𝑥

This is called shearing.

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – rotation

To rotate counter-clockwise about the
origin, we use the following matrix:

cos ∅ −𝑠𝑖𝑛∅
sin ∅ 𝑐𝑜𝑠∅

For clockwise rotation, we use

cos ∅ 𝑠𝑖𝑛∅
−sin ∅ 𝑐𝑜𝑠∅

Ф

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – linear transformations

A function 𝑇: ℝ𝑛 → ℝ𝑚 is called a linear transformation,
if it satisfies:

1. 𝑇 𝑢 + 𝑣 = 𝑇 𝑢 + 𝑇 𝑣
for all 𝑢, 𝑣 ϵ ℝ𝑛.

2. 𝑇 𝑐 𝑣 = 𝑐𝑇 𝑣
for all 𝑣 ∈ ℝ𝑛 and all scalars c.

Linear transformations can be represented by matrices.

We can summarize both conditions into one equation:

𝑇 𝑐1𝑢 + 𝑐2 𝑣 = 𝑐1𝑇 𝑢 + 𝑐2𝑇 𝑣
for all 𝑢, 𝑣 ∈ ℝ𝑛 and all scalars c1, c2.

𝑥, 𝑦 =
(2,1)

2𝑥, 2𝑦 =
(4,2)

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – linear transformations

𝑇 𝑐1𝑢 + 𝑐2 𝑣 = 𝑐1𝑇 𝑢 + 𝑐2𝑇 𝑣
for all 𝑢, 𝑣 ∈ ℝ𝑛 and all scalars c1, c2.

Remember Cartesian coordinates, where each vector 𝑤
can be expressed as a linear combination of base vectors
𝑢 and 𝑣:

𝑤 =
𝑥
𝑦 = 𝑥

1
0

+ 𝑦
0
1

If we apply a linear transform T to this vector, we get

𝑇
𝑥
𝑦 = T 𝑥

1
0

+ 𝑦
0
1

= 𝑥𝑇(
1
0

) + 𝑦𝑇(
0
1

)

𝑥, 𝑦 =
(2,1)

2𝑥, 2𝑦 =
(4,2)

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – linear transformations

𝑇 𝑐1𝑢 + 𝑐2 𝑣 = 𝑐1𝑇 𝑢 + 𝑐2𝑇 𝑣
for all 𝑢, 𝑣 ∈ ℝ𝑛 and all scalars c1, c2.

Matrices are constructed conveniently using
two base vectors.

𝑢

 𝑣

𝑢

 𝑣

𝑢

 𝑣

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – transforming normals

Unfortunately, normals are not always transformed correctly.

To transform a normal vector 𝑛 correctly under a given linear
transformation 𝐴, we have to apply the matrix

𝐴
_1 𝑇

Why?

Note: if the transform is orthonormal,
A

_1 = 𝐴 T ; therefore 𝐴
_1 𝑇 = 𝐴 .

𝑛

 𝑡

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – transforming normals

We know that tangent vectors are transformed correctly: 𝐴 𝑡 = 𝑡𝐴 . But: 𝐴𝑛 ≠ 𝑛𝐴.
Goal: find a matrix 𝐌 that transforms 𝒏 correctly, i.e. 𝑀𝑛 = 𝑛𝑀, where 𝑛𝑀 is the correct normal of
the transformed surface.

Because the original normal vector 𝑛 is perpendicular to the original tangent vector 𝑡, we know

that 𝑛𝑇 𝑡 = 0. This is the same as 𝑛𝑇 𝐼 𝑡 = 0. Since I = 𝐴
_1𝐴, this is the same as 𝑛𝑇 (𝐴

_1𝐴) 𝑡 = 0.

Because 𝐴 𝑡 = 𝑡𝐴 is the correctly transformed tangent vector, we have 𝑛𝑇𝐴
_1 𝑡𝐴 = 0.

Because their scalar product is 0, 𝑛𝑇𝐴
_1 must be orthogonal to 𝑡𝐴. So, the vector we are looking for

must be: 𝑛𝑀
𝑇 = 𝑛𝑇𝐴

_1 (which suggests 𝑀 = 𝐴
_1).

Because of how matrix multiplication is defined, 𝑛𝑀
𝑇 and 𝑛𝑇 are transposed vectors. We can rewrite

this to 𝑛𝑀 = (𝑛𝑇𝐴
_1)T. And finally, remember that 𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇 , which gets us 𝑛𝑀 = 𝐴

_1 𝑇𝑛.

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – needful things

Three things left undiscussed:

1. Reverting a transform
2. Combining transforms
3. Translation

Reverting a transform:

Invert the matrix.

Note: doesn’t always work; e.g. the
matrix for orthographic projection
has no inverse.

Combining transforms:

Use matrix multiplication.

Note: matrix multiplication is not
commutative, mind the order!

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – translation

Translation is not a linear transform.

With linear transforms, we get:

𝑎11 𝑎12

𝑎21 𝑎22

𝑥
𝑦 =

𝑎11𝑥 + 𝑎12𝑦
𝑎21𝑥 + 𝑎22𝑦

But we need something like:

𝑥
𝑦 =

𝑥 + 𝑥𝑡

𝑦 + 𝑦𝑡

We can do this with a combination of linear transformations and
translations called affine transformations.

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – translation

Observe: in 2D, shearing “pushes things sideways” (e.g., in
the 𝑥 direction), in a “fixed level” (the 𝑦 value).

We are thus performing a translation in a 1D subspace (a
line), using matrix multiplication in 2D.

In 3D, shearing leads to translation in a 2D subspace, i.e. a
plane.

(𝑥, 𝑦, 0)

(𝑥, 𝑦, 𝑙)

(𝑥 + 𝑥𝑡, 𝑦, 𝑙)

(𝑥 + 𝑥𝑡, 𝑦, 0)

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – translation

By adding a 3rd dimension to 2D space, we can use matrix
multiplication to do translation.

𝑀
𝑥
𝑦
𝑧

=
𝑥 + 𝑥𝑡

𝑦 + 𝑦𝑡

𝑧

But: what does matrix 𝑀 look like? What about 𝑥𝑡 and 𝑦𝑡?
And how do we deal with the third coordinate 𝑧?

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – translation

Shearing in 3D based on the z coordinate is a simple generalization of 2D
shearing:

1 0 𝑥𝑡

0 1 𝑦𝑡

0 0 1

𝑥
𝑦
𝑧

=
1𝑥 + 𝑧𝑥𝑡 + 0𝑧
1𝑦 + 𝑧𝑦𝑡 + 0𝑧
0𝑥 + 0𝑦 + 𝑧

=
𝑥 + 𝑥𝑡𝑧
𝑦 + 𝑦𝑡𝑧

𝑧

The final step is to set z to 1.

1 0 𝑥𝑡

0 1 𝑦𝑡

0 0 1

𝑥
𝑦
1

=
𝑥 + 𝑥𝑡

𝑦 + 𝑦𝑡

1

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – translation

Translations in 2D can be represented as shearing in 3D by looking at the
plane 𝑧 = 1.

By representing our 2D points (𝑥, 𝑦) by 3D vectors (𝑥, 𝑦, 1), we can
translate them about (𝑥𝑡, 𝑦𝑡) by applying the following matrix:

1 0 𝑥𝑡

0 1 𝑦𝑡

0 0 1

𝑥
𝑦
1

=
𝑥 + 𝑥𝑡

𝑦 + 𝑦𝑡

1

That works for points. What about vectors? We use the following transform:

1 0 𝑥𝑡

0 1 𝑦𝑡

0 0 1

𝑥
𝑦
0

=
𝑥
𝑦
0

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – translation

Affine transformations (i.e., linear transformations and translations) can be
done with matrix multiplication if we add homogeneous coordinates, i.e.

 A third coordinate 𝑧 = 1 to each point: 𝑝 =
𝑥
𝑦
1

 A third coordinate z = 0 to each vector: 𝑣 =
𝑥
𝑦
0

 A third row (0 0 1) to each matrix.

Transforms

INFOGR – Lecture 5 – “3D Engine Fundamentals”

Spaces – translation

These concepts apply naturally to 3D, in which case we again add a
homogeneous coordinate, i.e.

 A fourth coordinate w = 1 to each point;

 A fourth coordinate 𝑤 = 0 to each vector;

 A fourth row (0 0 0 1) to each matrix.

Transforms

Today’s Agenda:

 Rendering Overview

 Matrices

 Transforms

INFOGR – Computer Graphics
J. Bikker - April-July 2015 - Lecture 5: “3D Engine Fundamentals”

END of “3D Engine Fundamentals”
next lecture: “Transformations”

