INFOGR – Computer Graphics

J. Bikker - April-July 2015 - Lecture 7: "Visibility"

Welcome!


```
p. N );
refl * E * diffuse;
= true;

MAXDEPTH)

survive = SurvivalProbability( diffuse
estimation - doing it properly, distribute
estimation - doing it properly, distribute
est. + radiance = SampleLight( &rand, I, It, It)
fr;
radiance = SampleLight( &rand, I, It, It)
est. + radiance.y + radiance.z) > 0) it in
survive;
at brdfPdf = EvaluateDiffuse( L, N ) * Purply
st weight = Mis2( directPdf, brdfPdf );
st weight = Mis2( directPdf, brdfPdf );
st cosThetaOut = dot( N, L );
E * ((weight * cosThetaOut) / directPdf) * (radiance)
st andom walk - done properly, closely following
vive)

;
st3 brdf = SampleDiffuse( diffuse, N, r1, r2, iR, land
urvive;
pdf;
n = E * brdf * (dot( N, R ) / pdf);
sion = true;
```

efl + refr)) && (depth < HA

....

efl + refr)) && (depth < MA

efl * E * diffuse;

), N);

Perpendicular

Vectors perpendicular to
$$\binom{x}{y}$$
: $\binom{-y}{x}$, $\binom{y}{-x}$

Calculating a vector perpendicular to
$$\begin{pmatrix} x \\ y \end{pmatrix}$$
: $\begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$ *additional rules apply

Verify:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix} = x * -y + y * x + z * 0 = 0.$$

Today's Agenda:

- Depth Sorting
- Clipping
- Visibility
- The Midterm Exam

), N);

MAXDEPTH)

efl * E * diffuse;

survive = SurvivalProbability(diff

Rendering – Functional overview

- 1. Transform: translating / rotating meshes
- 2. Project: calculating 2D screen positions
- 3. Rasterize: determining affected pixels
- 4. Shade: calculate color per affected pixel

3. Rasterize: *determining affected pixels*

Questions:

- What is the screen space position of the fragment?
- Is that position actually on-screen?
- Is the fragment the nearest fragment for the affected pixel?

How do we efficiently determine visibility of a pixel?

Animation, culling, tessellation, ... meshes Transform vertices Project vertices Rasterize fragment positions Shade pixels Postprocessing

Old-skool depth sorting: Painter's Algorithm

- Sort polygons by depth
- Based on polygon center
- Render depth-first

Advantage:

Doesn't require z-buffer

Problems:

- Cost of sorting
- Doesn't handle all cases Overdraw

Overdraw:

Inefficiency caused by drawing multiple times to the same pixel.

), N); efl * E * diffuse; MAXDEPTH) survive = SurvivalProbability(diff. adiance = SampleLight(&rand, I, M. e.x + radiance.y + radiance.z) > 0) [[

Correct order: BSP

root

```
MAXDEPTH)
survive = SurvivalProbability( differ
radiance = SampleLight( &rand, I, M.,
e.x + radiance.y + radiance.z) > 0) [[]
```


Correct order: BSP root full empty MAXDEPTH) survive = SurvivalProbability(differ radiance = SampleLight(&rand, I, Mt. e.x + radiance.y + radiance.z) > 0) ##

Draw order using a BSP:

- Guaranteed to be correct (hard cases result in polygon splits)
- No sorting required, just a tree traversal

But:

- Requires construction of BSP: not suitable for dynamic objects
- Does not eliminate overdraw

), N);

MAXDEPTH)

efl * E * diffuse;

survive = SurvivalProbability diff

adiance = SampleLight(&rand, I. II.

Z-buffer

A z-buffer stores, per screen pixel, a depth value. The depth of each fragment is checked against this value:

- If the fragment is further away, it is discarded
- Otherwise, it is drawn, and the z-buffer is updated.

The z-buffer requires:

- An additional buffer
- Initialization of the buffer to z_{max}
- Interpolation of *z* over the triangle
- A z-buffer read and compare, and possibly a write.

), N);

efl * E * diffuse;

survive = SurvivalProbability(dif

adiance = SampleLight(&rand, I.

e.x + radiance.y + radiance.z) > 0

Z-buffer

What is the best representation for depth in a z-buffer?

- 1. Interpolated z (convenient, intuitive);
- 2. 1/z (or: $n + f \frac{fn}{z}$) (more accurate nearby);
- 3. $(int)((2^31-1)/z);$
- 4. $(uint)((2^32-1)/-z);$
- 5. $(uint)((2^32-1)/(-z-1))$.

efl + refr)) && (depth

survive = SurvivalProbability(diff

adiance = SampleLight(&rand, I.

efl * E * diffuse;

MAXDEPTH)

Z-buffer optimization

In the ideal case, the nearest fragment for a pixel is drawn first:

- This causes all subsequent fragments for the pixel to be discarded;
- This minimizes the number of writes to the frame buffer and z-buffer.

The ideal case can be approached by using Painter's to 'pre-sort'.

efl + refr)) && (depth

survive = SurvivalProbability(diff

adiance = SampleLight(&rand, I.

efl * E * diffuse;

MAXDEPTH)

'Z-fighting':

Occurs when two polygons have almost identical z-values.

Floating point inaccuracies during interpolation will cause unpleasant patterns in the image.

), N);

efl * E * diffuse;

survive = SurvivalProbability(diff

Today's Agenda:

- Depth Sorting
- Clipping
- Visibility
- The Midterm Exam

), N);

MAXDEPTH)

efl * E * diffuse;

survive = SurvivalProbability(diff

adiance = SampleLight(&rand, I. ...

Clipping

Many triangles are partially off-screen. This is handled by *clipping* them.

Sutherland-Hodgeman clipping:

Clip triangle against 1 plane at a time; Emit n-gon (0, 3 or 4 vertices).

```
), N );
efl * E * diffuse;
= true;
MAXDEPTH)
survive = SurvivalProbability( diff
adiance = SampleLight( &rand, I.
e.x + radiance.y + radiance.z) > 0)
v = true;
at brdfPdf = EvaluateDiffuse( L, N )
st3 factor = diffuse * INVPI;
st weight = Mis2( directPdf, brdfPdf )
at cosThetaOut = dot( N, L );
E * ((weight * cosThetaOut) / directPdf) *
andom walk - done properly, closely follow
ot3 brdf = SampleDiffuse( diffuse, N, r1, r2, R, s
= E * brdf * (dot( N, R ) / pdf);
```

Sutherland-Hodgeman

Input: list of vertices

Algorithm:

Per edge with vertices v_0 and v_1 :

- If v₀ and v₁ are 'in', emit v₁
- If v_0 is 'in', but v_1 is 'out', emit C
- If v_0 is 'out', but v_1 is 'in', emit C and v_1 where C is the intersection point of the edge and the plane

Output: list of vertices, defining a convex n-gon.

in

Vertex

Vertex

Vertex

e.	
	out
0	Vertex 1
1	Intersection 1
2	Intersection 2
	Vertex 0

sndom walk - done properly, closely following
sive)

st3 brdf = SampleDiffuse(diffuse, N, r1, r2, &R, &
srvive;
pdf;
n = E * brdf * (dot(N, R) / pdf);

E * ((weight * cosThetaOut) / directPdf)

efl * E * diffuse;

survive = SurvivalProbability(di

st weight = Mis2(directPdf, brdfPdf st cosThetaOut = dot(N, L);

adiance = SampleLight(&rand,

), N);

= true;

efl * E * diffuse;

survive = SurvivalProbability(diff

e.x + radiance.y + radiance.z) > 0)

at brdfPdf = EvaluateDiffuse(L, N)

st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) Sutherland-Hodgeman

Calculating the intersections with plane ax + by + cz + d = 0:

$$dist_v = v \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} + d$$

$$f = \frac{|dist_{v0}|}{|dist_{v0}| + |dist_{v1}|}$$

$$I = v_0 + f(v_1 - v_0)$$

After clipping, the input n-gon may have at most 1 extra vertex. We may have to triangulate it:

$$0,1,2,3,4 \rightarrow 0, 1, 2 + 0, 2, 3 + 0, 3, 4.$$


```
sndom walk - done properly, closely fellowing
/ive)

st3 brdf = SampleDiffuse( diffuse, N, r1, r2, NR, No
irvive;
pdf;
n = E * brdf * (dot( N, R ) / pdf);
```

Guard bands To reduce the

To reduce the number of polygons that need clipping, some hardware uses *guard bands*: an invisible band of pixels outside the screen.

- Polygons outside the screen are discarded, even if they touch the guard band;
- Polygons partially inside, partially in the guard band are drawn without clipping;
- Polygons partially inside the screen, partially outside the guard band are clipped.

;

st3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, Npd survive;
pdf;
n = E * brdf * (dot(N, R) / pdf);

survive = SurvivalProbability(d

st weight = Mis2(directPdf, brdfPdf);
st cosThetaOut = dot(N, L);
E * ((weight * cosThetaOut) / directPdf
sndom walk - done properly, closely foll

), N);

MAXDEPTH)

v = true;

efl * E * diffuse;

survive = SurvivalProbability(diff.

radiance = SampleLight(&rand, I, AL, e.x + radiance.y + radiance.z) > 0) 6

st brdfPdf = EvaluateDiffuse(L, N) =
st3 factor = diffuse * INVPI;
st weight = Mis2(directPdf, brdfPdf);
st cosThetaOut = dot(N, L);

Sutherland-Hodgeman

Clipping can be done against arbitrary planes.

Today's Agenda:

- Depth Sorting
- Clipping
- Visibility
- The Midterm Exam

), N);

MAXDEPTH)

efl * E * diffuse;

survive = SurvivalProbability(diff

adiance = SampleLight(&rand, I. ...

st weight = Mis2(directPdf, brdfPdf);
st cosThetaOut = dot(N, L);
E * ((weight * cosThetaOut) / directPdf)
sndom walk - done properly, closely folio

1 = E * brdf * (dot(N, R) / pdf);

ot3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, N

Only rendering what's visible:

"Performance should be determined by visible geometry, not overall world size."

- Do not render geometry outside the view frustum
- Better: do not process geometry outside frustum
- Do not render occluded geometry
- Do not render anything more detailed than strictly necessary

Culling

Observation:

50% of the faces of a cube are not visible.

On average, this is true for all meshes.

Culling 'backfaces':

Triangle: ax + by + cz + d = 0

Camera: (x, y, z)

Visible: fill in camera position in plane equation.

ax + by + cz + d > 0: *visible*.

Cost: 1 dot product per triangle.

), N); efl * E * diffuse; = true; MAXDEPTH) survive = SurvivalProbability(adiance = SampleLight(&rand, I st weight = Mis2(directPdf, brdfPdf at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf andom walk - done properly, closely fell

at3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, N

1 = E * brdf * (dot(N, R) / pdf);

), N);

MAXDEPTH)

efl * E * diffuse;

adiance = SampleLight(&rand,

Culling

Observation:

If the *bounding sphere* of a mesh is outside the view frustum, the mesh is not visible.

But also:

If the *bounding sphere* of a mesh intersects the view frustum, the mesh may be not visible.

View frustum culling is typically a *conservative test:* we sacrifice accuracy for efficiency.

Cost: 1 dot product per mesh.

andom walk - done properly, closely fol

= E * brdf * (dot(N, R) / pdf);

ot3 brdf = SampleDiffuse(diffuse, N, r1, r2, RR)

Culling

Observation:

If the *bounding sphere* over a group of bounding spheres is outside the view frustum, a group of meshes is invisible.

We can store a bounding volume hierarchy in the scene graph:

- Leaf nodes store the bounds of the meshes they represent;
- Interior nodes store the bounds over their child nodes.

Cost: 1 dot product per scene graph subtree.

Visibility

), N);

= true;

MAXDEPTH)

v = true;

efl * E * diffuse;

survive = SurvivalProbability diff

radiance = SampleLight(&rand, I, AL, e.x + radiance.y + radiance.z) > 0) 0

ot brdfPdf = EvaluateDiffuse(L, N) ot3 factor = diffuse * INVPI; ot weight = Mis2(directPdf, brdfPdf);

Culling

Observation:

If a grid cell is outside the view frustum, the contents of that grid cell are not visible.

Cost: 0 for out-of-range grid cells.


```
st cosThetaOut = dot( N, L );
E * ((weight * cosThetaOut) / directPdf) * (rudless
andom walk - done properly, closely following solutions);
;
st3 brdf = SampleDiffuse( diffuse, N, r1, r2, 4R, 1906
urvive;
pdf;
n = E * brdf * (dot( N, R ) / pdf);
sion = true;
```

Visibility

Indoor visibility: Portals

Observation: if a window is invisible, the room it links to is invisible.

```
), N );
efl * E * diffuse;
= true;
MAXDEPTH)
survive = SurvivalProbability( diff.
adiance = SampleLight( &rand, I. A.
e.x + radiance.y + radiance.z) > 0)
v = true;
at brdfPdf = EvaluateDiffuse( L, N )
st3 factor = diffuse * INVPI;
et weight = Mis2( directPdf, brdfPdf )
at cosThetaOut = dot( N, L );
E * ((weight * cosThetaOut) / directPdf) * (Pull
at3 brdf = SampleDiffuse( diffuse, N, r1, r2, R, lp:
= E * brdf * (dot( N, R ) / pdf);
```


Visibility

), N);

= true;

MAXDEPTH)

efl * E * diffuse;

survive = SurvivalProbability(diff

radiance = SampleLight(&rand, I,)
e.x + radiance.y + radiance.z) > 0)

st3 factor = diffuse * INVPI;

Visibility determination

Coarse:

- Grid-based (typically outdoor)
- Portals (typically indoor)

Finer:

- Frustum culling
- Occlusion culling

Finest:

- Backface culling
- Clipping
- Z-buffer

visibility determination

Today's Agenda:

- Depth Sorting
- Clipping
- Visibility
- The Midterm Exam

), N);

MAXDEPTH)

efl * E * diffuse;

survive = SurvivalProbability(diff

adiance = SampleLight(&rand, I. ...

Midterm Exam

Time for your examination.

Where: EDUC-GAMMA

When: Thursday, May 21st, 2015, at 13.30 Duration: Two hours, three for dyslexia

Contents:

- Mathematics (lectures 1..5 + slides, tutorial sheets)
- Graphics theory (lectures 1..7 + slides)

What to study:

- Slides
- Book can be helpful too
- Tutorial sheets

Need extra time? Entitled to it? Notify me!

1 = E * brdf * (dot(N, R) / pdf);

