tic: ⊾ (depth < 144

: = inside / L it = nt / nc, dde os2t = 1.0f 0, N); 3)

st $a = nt - nc_1 b - nt$ st Tr = 1 - (R0 + (1 - 1))Tr) R = (D = nnt - R - 1)

= diffuse = true;

efl + refr)) 88 (depth k HANDI

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it properly if; adiance = SampleLight(%rand I. .x + radiance.y + radiance.r) > 0_____

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pourse st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * Pourse

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, Doth prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

INFOGR – Computer Graphics

Jacco Bikker - April-July 2016 - Lecture 1: "Introduction"

Welcome!

tice (depth < NAS

:= inside / i nt = nt / nc, dde os2t = 1.0f - ont 0, N); 3)

at a = nt - nc, b - nt - at Tr = 1 - (R0 + - - fr) R = (D * nnt - N *

= diffuse; = true;

: :fl + refr)) && (depth & MANDICI

D, N); refl * E * diffuse; = true;

AXDEPTH)

v = true;

st brdfPdf = EvaluateDiffuse(L, N) * Paurole st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following vive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, soft urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Today's Agenda:

- Topic Introduction
- Course Introduction
- Team
- Practical Details
- Assignments
- Field Study
- State of the Art

Introduction

r) R = (U : = diffuse = true;

. :fl + refr))

D, N); -efl * E * dif = true;

AXDEPTH)

survive = Surv estimation if; adiance = Sam e.x + radiance

v = true; at brdfPdf = E at3 factor = d at weight = Mi at cosThetaOut E = ((weight

andom walk /ive)

bt3 brdf = SampJusteCause 3
pdf;
n = E * brdf * (dot(N, R) / pdf);
sion = true:

Introduction

AXDEPTH)

adiance = Sam e.x + radiance v = true; at brdfPdf = E

at weight = Mi at cosThetaOut E * ((weight

andom walk - d

sion = true:

HATO 5: GUARDIANS MULTIPLAYER BETA

ot3 brdf = Samp ALCOHSuse, N. rl, r2, u urvive; pdf; n = E * brdf * (dot(N, R) / pdf);

Introduction

pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Introduction

pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Introduction

iic: ⊾(depth < N

= = inside / 1 nt = nt / nc, ddd os2t = 1.0f = nn 0, N); 3)

at a = nt - nc, b - nt at Tr = 1 - (R0 + (1 Tr) R = (0 * nnt - N

= diffuse = true;

efl + refr)) && (depth k MANDI)

D, N); refl * E * diff: = true;

WXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(&rand, I, &... e.x + radiance.y + radiance.z) > 0) ##

v = true; at brdfPdf = EvaluateDiffuse(L, N,) * Pau st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely follow: /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Introduction

tic: ⊾ (depth < N

: = inside / : it = nt / nc, d ss2t = 1.0f - -), N); 3)

at a = nt - nc, b - nt at Tr = 1 - (R0 + (1 Tr) R = (D * nnt - N

= diffuse; = true;

: :fl + refr)) && (depth k HARDIII)

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability different estimation - doing it property if; radiance = SampleLight(&rand I .x + radiance.y + radiance.r) > 0) &

v = true;

st brdfPdf = EvaluateDiffuse(L, N) Pri st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely fello /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Introduction

tic: ⊾ (depth < 10

= inside / 1 ht = nt / nc, d os2t = 1.0f - n o, N); 3)

at a = nt - nc, b - nt at Tr = 1 - (80 + (1 Tr) R = (D * nnt - N

= diffuse = true:

efl + refr)) && (depth k HANDIIII

D, N); ref1 * E * diffu = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(%rand, I, Market e.x + radiance.y + radiance.z) > 0) %

v = true; at brdfPdf = EvaluateDiffuse(L, N.) * Pour st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) *

andom walk - done properly, closely followin /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Lord of the Rings

Introduction

tics € (depth < 100

- inside it = nt / nc, dif ss2t = 1.8f 3, N); 3)

at $a = nt - nc_{0} b - nt - nt_{0}$ at Tr = 1 - (80 + 1) $Tr) R = (0 * nnt - 1)^{-1}$

= diffuse; = true:

D, N); -efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(dif estimation - doing it properly if; radiance = SampleLight(&rand, 1, 0 e.x + radiance.y + radiance.z) > 0)

v = true;

st brdfPdf = EvaluateDiffuse(L, N)
st3 factor = diffuse * INVPI;
st weight = Mis2(directPdf, brdfPdf
st cosThetaOut = dot(N, L);
E * ((weight * cosThetaOut) / direct

andom walk - done properly, closely /ive)

; st3 brdf = SampleDiffuse(diffuse, "Star Wars pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Introduction

tic: ⊾ (depth < P

= inside / 1 nt = nt / nc, d: ss2t = 1.0f = nn 3, N); 3)

st a = nt - nc, b - nt st Tr = 1 - (80 + (1 Tr) R = (0 * nnt - 8 *

= diffuse; = true;

: :fl + refr)) && (depth & MANDITIN

D, N); refl * E * diff: = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it property ff; radiance = SampleLight(&rand I .x + radiance.y + radiance.r) = 0 = 0

v = true; tbrdfPdf = EvaluateDiffuse(L, N.) * Promise tt3 factor = diffuse * INVPI; ot weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * Order

andom walk - done properly, closely following /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Zootopia

Introduction

tica ⊾ (depth (c)100

= inside / : it = nt / nc, dda ss2t = 1.0f - ont 3, N); 3)

= diffuse = true;

D, N); refl * E * diffus = true;

AXDEPTH)

survive = SurvivalProbability(d estimation - doing it properly if; radiance = SampleLight(%rand, I e.x + radiance.y + radiance.z)

v = true; at brdfPdf = EvaluateDiffuse(L, st3 factor = diffuse = INVPI; at weight = Mis2(directPdf, brdf at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / di

andom walk - done properly, close /ive)

; ot3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, bpd: prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Introduction

tice ≰ (depth < 1000

st = nt / nc. dd s2t = 1.0f), N); 3)

st a = nt - nc, b - n† st Tr = 1 - (R0 + 1 Tr) R = (D * nnt - N *

= diffuse; = true;

-•fl + refr)) && (depth < NAM

), N); ~efl * E * diffu = true;

AXDEPTH)

survive = SurvivalProbability(diff estimation - doing it properly = if; radiance = SampleLight(&rand, I, f e.x + radiance.y + radiance.z) = 0

v = true; at brdfPdf = EvaluateDiffuse(L, N st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPc at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / direct

andom walk - done properly, close /ive)

st3 brdf = SampleDiffuse(diffuse, Just Cause 3
prvive;
pdf;
n = E * brdf * (dot(N, R) / pdf);
sion = true;

Introduction

tic: ≰ (depth < NA)

= inside / 1 nt = nt / nc., dds 552t = 1.0f - nn 5, N); 3)

at a = nt - nc, b - nt at Tr = 1 - (80 + (1 - 1 Tr) R = (D * nnt - N *

= diffuse = true;

-:fl + refr)) && (depth & NADIIII

), N); ~efl * E * diffu = true;

WXDEPTH)

survive = SurvivalProbability(difference estimation - doing it property if; radiance = SampleLight(&rand, I .x + radiance.y + radiance.z) = 0

v = true; at brdfPdf = EvaluateDiffuse(L, N) = Pour st3 factor = diffuse = INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following a /ive)

; ot3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, loc prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Introduction

tic: ⊾ (depth k 19

: = inside / 1 it = nt / nc, dde os2t = 1.0f - not 0, N); 3)

st a = nt - nc, b - nt st Tr = 1 - (80 + (1) Tr) R = (D * nnt - N *

= diffuse = true;

-:fl + refr)) && (depth & NADIIII

), N); ~efl * E * diffu = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; adiance = SampleLight(%rand, I, M) e.x + radiance.y + radiance.z) > 0) %

v = true; at brdfPdf = EvaluateDiffuse(L, N.) Promise at3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) *

andom walk - done properly, closely following a /ive)

; ot3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, loc prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Introduction

tice ⊾ (depth < 1000

= inside / 1 it = nt / nc, dde ss2t = 1.0f - nnt 5, N); 3)

st $a = nt - hc_{1}b - mt + c_{2}b - mt + c_{3}b - mt + c_{4}b - c_{4}b -$

= diffuse; = true;

: :fl + refr)) && (depth < HANDING

D, N); refl * E * diffu = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(&rand, I, I) e.x + radiance.y + radiance.r) > 0)

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pour st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely follow: /ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, 0 pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Introduction

tic: K (depth < 1923

= inside / 1 it = nt / nc, dde ss2t = 1.0f - nnt), N); 3)

st a = nt - nc, b - nt - st Tr = 1 - (R0 + (1 - 10 Tr) R = (D * nnt - N * 10

= diffuse; = true;

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(&rand I, difference) e.x + radiance.y + radiance.r) = 0.000

v = true; at brdfPdf = EvaluateDiffuse(L, N) = P: st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely fol /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

INFOGR – Lecture 2 – "Field Study"

Introduction

tice ⊾ (depth < 1000

= inside / l nt = nt / nc, d/n -952t = 1.8f - nnt / 2, N); 8)

st a = nt - nc, b = nt + cst Tr = 1 - (R0 + (1 - 0))Tr) R = (D - nnt - N - 0)

E = diffuse; = true;

efl + refr)) && (depth k HANDIII)

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability different estimation - doing it properly if; radiance = SampleLight(&rand, I, L, L, 2.x + radiance.y + radiance.r) = 0

v = true; t brdfPdf = EvaluateDiffuse(L, N) * at3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf)

at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following /ive)

st3 brdf = SampleDiffuse(diffuse, N, r1, r2, N, bot urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Computer Graphics 2016:

Looking for realism (in several wrong places):

. Rasterization

- Geometry
- Textures, shaders
- Clipping, culling
- Post processing
-

2. Ray tracing

...

- Ray/triangle intersections
- Bounding volume hierarchy
- Snell, Fresnel, Beer
- Whitted, Cook, Kajiya

3. Mathematics

- Vectors
- Matrices
- Transformations

Introduction

tic: ⊾ (depth ⊂ NASS

: = inside / 1 it = nt / nc, ddo os2t = 1.0f - nnt " D, N); B)

at $a = nt - nc_{0} b + nt +$ at Tr = 1 - (R0 + (1 - 10) Tr) R = (D * nnt - N * -

= diffuse; = true;

: :fl + refr)) && (depth k HANDIIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it property ff; radiance = SampleLight(%rand, I, Marchine e.x + radiance.y + radiance.z) = 0.0000

v = true; ot brdfPdf = EvaluateDiffuse(L, N) * Paury st3 factor = diffuse * INVPI; ot weight = Mis2(directPdf, brdfPdf); ot cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) **

andom walk - done properly, closely following /ive)

; t33 brdf = SampleDiffuse(diffuse, N, r1, r2, SR. 5,57 ;rvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Language: Dutch, because of reasons.

Prerequisites: C#.

Literature: Fundamentals of Computer Graphics (3rd edition), by Peter Shirley and Steve Marschner (or 4th, or 2nd, or 1st).

15 lectures.

Supporting working colleges in all lecture weeks except the first:

- On Tuesdays,
- In many different rooms see schedule.

Introduction

tice k (depth < 100⊂

int = nt / nc, ddm ss2t = 1.0f - nt), N);
})

at a = nt - nc, b - nt at Tr = 1 - (R0 + 1 fr) R = (D * nnt - N *

= diffuse; = true;

-: :fl + refr)) && (depth is MARD)

D, N); -efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; adiance = SampleLight(%rand, I,) e.x + radiance.y + radiance.z) > 0) %

v = true; t brdfPdf = EvaluateDiffuse(L, N) Provide st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * 0

andom walk - done properly, closely fol. /ive)

; ot3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, Upd) prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Exams:

- Mid-term: May 24th.
- End of term: June 30th.
- Retake: July 14th.

Attendance:

You are not required to attend any of the lectures / tutorials / practica (i.e., if you are here, it's because you want to).*

*Obviously, attendance is highly recommended.

Microsoft

Graphics

UNIVERSITEIT UTRECHT - INFORMATION AND COMPUTING SCIENCES

academic year 2015/16 - 4th period

M Inbox - bikker.j@gmail.com	Google Calendar - Week of 2 🗙 🗰 general Graphics 2015/201 🗙 🕓 WhatsApp Web 🗙		X
← → C ♠ Apps ★ Bookmarks G google	ogr2016.slack.com/messages/general/details/	😭 🕐 🐯 🕼	5 ≡
Graphics 2015/2 ~) jbikker	#general 13 members Company-wide announcements and work-based matters	Q Search @ 🛠	3:
CHANNELS (2) (+) # general # random	April 22nd	About #general	×
DIRECT MESSAGES (13) (+) slackbot aquila 169 extrabb gerbenaalvanger hugo.hogenbirk 	 jbikker 2:36 PM joined #general jbikker 2:48 PM set the channel purpose: Discuss INFOGR related topics here. hugo.hogenbirk 3:19 PM joined #general. Also, @aquila169 joined, @extrabb joined, 	Channel Details Purpose Discuss INFOGR related topics here. Created by you on April 22nd	•
o marijns95 o mthq o snookik o sp o yorick	https://infogr2016.slack.c	2 1/13 Members	•
+ Invite People	jbikker 5:45 PM Ik had m ingesteld op uu.nl, hoe voeg ik domains toe? jbikker 5:56 PM	aquila169 datdutchdude	0

😑 🗩 Forums 🙏 Members 🗸				?	•) 🎍
Q Search 🔹 Login 🔮 Register					
Board index > Game Technology Bachelor Courses > Graphics (INFOGR)					0
Graphics (INFOGR)					
New Topic 🗹 Search this forum Q 🌣			0 top	cs • Page	e 1 of 1
Announcements	Replies	Views	Last post		
General forum rules by Arjan Egges » Tue Mar 01, 2016 3:25 pm » in General	0	1319	by Arjan Egges → Tue Mar 01, 2016 3:25 pm		
Display topics from previous: All Topics 🔻 Sort by Pos	st time 🔻 Descending 🔻	Go			
New Topic 🗹			0 top	cs • Page	e 1 of 1
< Return to Board Index				Jump	to 👻
Who is online Users browsing this forum: https://www.projects.se	<mark>cience.u</mark> ı	ı.nl	<mark>/gmt</mark>		
Forum permissions					
You cannot post new topics in this forum You cannot reply to topics in this forum You cannot edit your posts in this forum You cannot delete your posts in this forum You cannot post attachments in this forum					
A Board index	🔄 Contact us 🗥 The team	🗊 Delete a	all board cookies • All times a	are UTC+(02:00

Introduction

-ic: ⊾ (depth < 155

: = inside / 1 it = nt / nc, dda os2t = 1.0f = nnt − 5, N); 8)

at a = nt - nc, b - nt - n at Tr = 1 - (80 + 1 Tr) R = (0 * nnt - N

= diffuse; = true;

: :fl + refr)) && (depth < HANDIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(&rand, I, II, e.x + radiance.y + radiance.z) > 0)

v = true;

at brdfPdf = EvaluateDiffuse(L, N) Prove st3 factor = diffuse = INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following : /ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, soft urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Course characteristics:

This is a very intensive course. Be sure to keep up, i.e. don't miss lectures.

Be aware that this course will be attended by a diverse student population:

- Math-savvy students;
- Programming gurus;
- Game people;
- Informatics guys.

Regardless of your skill level and interests, make use of this course to improve.

tice (depth < NAS

:= inside / i nt = nt / nc, dde os2t = 1.0f - ont 0, N); 3)

at a = nt - nc, b - nt - at Tr = 1 - (R0 + - - fr) R = (D * nnt - N *

= diffuse; = true;

: :fl + refr)) && (depth & MANDICI

D, N); refl * E * diffuse; = true;

AXDEPTH)

v = true;

st brdfPdf = EvaluateDiffuse(L, N) * Paurole st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following vive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, soft urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Today's Agenda:

- Topic Introduction
- Course Introduction
- Team
- Practical Details
- Assignments
- Field Study
- State of the Art

Team

tic: k (depth < 100

= inside / L it = nt / nc, dde os2t = 1.0f - nnt -D, N); δ)

st $a = nt - nc_{1} b - nt$ st Tr = 1 - (R0 + (1))Tr) R = (0 = nnt - R)

= diffuse; = true;

-:fl + refr)) && (depth & MADIII

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it properly ff; radiance = SampleLight(&rand, I e.x + radiance.y + radiance.z) > 0)

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pours st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, source; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Lecturer:

Jacco Bikker

bikkerj@gmail.com / j.bikker@uu.nl Office: BBL 424

Background:

Gamedev:

- Lost Boys
- Davilex
- Green Dino
- Overloaded
- Vanguard

Academia:

IGAD

Education:

- HBO
- Doctoral (Delft; Ray Tracing in Games, 2012)

Team

fice (depth c Hose

= = inside / 1 it = nt / nc, dde ss2t = 1.0f - nnt 7 5, N); 3)

at a = nt - nc, b - nt at Tr = 1 - (R0 + 1 fr) R = (0 * nnt - 1

= diffuse; = true;

-:fl + refr)) && (depth k HANDIIII

), N); ~efl * E * diffus = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(&rand, I, I, I) e.x + radiance.y + radiance.z) > 0) #0

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pun st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following /ive)

, t3 brdf = SampleDiffuse(diffuse, N, r1, r2, HR, hpr urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Student Assistants:

- 1. Gerben Aalvanger
- 2. Hugo Hogenbirk
- 3. Casper Schouls
- 4. Bruno dos Santos Carvalhal
- 5. Sam van der Wal

tice (depth < NAS

:= inside / i nt = nt / nc, dde os2t = 1.0f - ont 0, N); 3)

at a = nt - nc, b - nt - at Tr = 1 - (R0 + - - fr) R = (D * nnt - N *

= diffuse; = true;

: :fl + refr)) && (depth & MANDICI

D, N); refl * E * diffuse; = true;

AXDEPTH)

v = true;

st brdfPdf = EvaluateDiffuse(L, N) * Paurole st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following vive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, soft urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Today's Agenda:

- Topic Introduction
- Course Introduction
- Team
- Practical Details
- Assignments
- Field Study
- State of the Art

Practical Details

tic: ⊾(depth < 1000

= * inside / : it = nt / nc, dda -552t = 1.0f = nnt -5, N); 3)

at a = nt - nc, b - nt - n at Tr = 1 - (80 + 1 Tr) R = (D * nnt - N

= diffuse; = true;

: :fl + refr)) && (depth (MAND)

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it property if; adiance = SampleLight(%rand, I & e.x + radiance.y + radiance.z) = 0 %

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pun st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following /ive)

; t33 brdf = SampleDiffuse(diffuse, N, r1, r2, 48, hpt urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Assignment Overview:

i. P1: Tutorial;
ii. P2: Ray Tracing;
iii. P3: Rasterization.
Final practicum grade is 0.2 * P1 + 0.4 * P2 + 0.4 * P3.

Exam overview:

i. T1: Mid-term exam;
ii. T2: Final exam.
Final exam grade is 05 * T1 + 0.5 * T2.

Final grade: (2T + P) / 3

Passing criteria:

Final Grade \geq 6.0 (after rounding); both T and P \geq 5.0 (after rounding).

Practical Details

tic: ⊾ (depth ⊂ NASS

= inside / 1
it = nt / nc, dds
os2t = 1.81 - nnt
), N);
3)

at a = nt - nc, b + nt + + at Tr = 1 - (R0 + (1 - 1) Tr) R = (D * nnt - N *

= diffuse; = true;

-: :fl + refr)) && (depth is HANDII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; adiance = SampleLight(%rand, I, M) = x + radiance.y + radiance.r) > 0) %

v = true; t brdfPdf = EvaluateDiffuse(L, N) = Paur st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following -/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, Dod prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

How to hand in assignments:

http://www.cs.uu.nl/docs/submit

Practical Details

tic: ⊾ (depth < NASS

= = inside / 1 it = nt / nc, dde -552t = 1.0f = nnt -5, N); 8)

st a = nt - nc, b - nt st Tr = 1 - (80 + (1 Tr) R = (D * nnt - N

= diffuse; = true;

efl + refr)) && (depth k HAADIIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; adiance = SampleLight(%rand, I, %) s.x + radiance.y + radiance.z) > 0) %%

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pours st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following -/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, D) pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Retake: only if you failed the course, and scored at least a 4.0 (before rounding).

Retake / Theory:

Retake covers all theory and replaces min(T1, T2).

Retake / Practical:

 Retake replaces min(P1, P2, P3). Topic will be assigned individually.

tice (depth < NAS

:= inside / i nt = nt / nc, dde os2t = 1.0f - ont 0, N); 3)

at a = nt - nc, b - nt - at Tr = 1 - (R0 + - - fr) R = (D * nnt - N *

= diffuse; = true;

: :fl + refr)) && (depth & MANDICI

D, N); refl * E * diffuse; = true;

AXDEPTH)

v = true;

st brdfPdf = EvaluateDiffuse(L, N) * Paurole st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following vive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, soft urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Today's Agenda:

- Topic Introduction
- Course Introduction
- Team
- Practical Details
- Assignments
- Field Study
- State of the Art

Assignments

tic: ⊾ (depth ⊂ 100

= inside / 1 it = nt / nc, dde os2t = 1.0f - nnt -D, N); B)

E * diffuse = true;

-: efl + refr)) 88 (depth k HANDIII

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(%rand I = 1) e.x + radiance.y + radiance.r) = 0 %

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Proceed st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) * Context E * (weight * cosThetaOut) * (weight * cosThetaOut) * (weight * cosThet

andom walk - done properly, closely following -/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, F1, F2, UR, prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

PART 1: Mathematics

Tutorial 1 will be available on Thursday, April 28th.

PART 2: Programming assignment

P1 (OpenTK Tutorial) is now available from the website. Assistance is available on Tuesday, May 3rd in rooms BBG-079, -083, -109 and -112.

tice (depth < NAS

:= inside / i nt = nt / nc, dde os2t = 1.0f - ont 0, N); 3)

at a = nt - nc, b - nt - at Tr = 1 - (R0 + - - fr) R = (D * nnt - N *

= diffuse; = true;

: :fl + refr)) && (depth & MANDICI

D, N); refl * E * diffuse; = true;

AXDEPTH)

v = true;

st brdfPdf = EvaluateDiffuse(L, N) * Paurole st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following vive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, soft urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Today's Agenda:

- Topic Introduction
- Course Introduction
- Team
- Practical Details
- Assignments
- Field Study
- State of the Art

Field Study

A. S. Douglas. Noughts and Crosses. EDSAC, 1952.

v = true; at brdfPdf = EvaluateDiffuse st3 factor = diffuse * INVPI at weight = Mis2(directPdf, brdfP at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPd

), N);

= true;

AXDEPTH)

if;

andom walk - done properly, closely fell vive)

at3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, N rvive; pdf; i = E * brdf * (dot(N, R) / pdf); sion = true:

Field Study

tic: ⊾ (depth < 10

= inside / 1 nt = nt / nc. dda 552t = 1.8f - nn 5, N); 3)

at a = nt - nc, b - nt at Tr = 1 - (80 + 11 Tr) R = (0 * nnt - 8 * 11

= diffuse
= true;

-:fl + refr)) && (depth is HANDIII

), N); ~efl * E * diffus = true;

WXDEPTH)

survive = SurvivalProbability different estimation - doing it property if; adiance = SampleLight(&rand, I 2.x + radiance.y + radiance.z) 0 %

v = true; t brdfPdf = EvaluateDiffuse(L, N) = Purch st3 factor = diffuse = INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) = 0000

andom walk - done properly, closely following . /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, Upd prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Field Study

), N); efl * E * diffuse;

AXDEPTH)

survive = SurvivalProbability adiance = SampleLight(&rand, I. e.x + radiance.y + radiance.z) >

v = true; at brdfPdf = EvaluateDiffuse(L, N st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPd at cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directRdf

vive)

at3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, so urvive; pdf; n = E * brdf * (dot(N, R) / pdf);

sion = true:

Field Study

ic: € (depth ⊂ PAsc-

= inside / 1 it = nt / nc, dde -552t = 1.0f - nnt -5, N); 3)

st a = nt - nc, b - nt - st Tr = 1 - (R0 + 1 Tr) R = (D * nnt - N

= diffuse; = true:

>, N); refl * E * diffuse;

AXDEPTH)

survive = SurvivalProbability(diff estimation - doing it properly if; radiance = SampleLight(&rand, I, A e.x + radiance.y + radiance.z) > 0

v = true; at brdfPdf = EvaluateDiffuse(L, N) st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * (rad)

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, F1, F2, UR, body pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Field Study

tic: k (depth < 100

= inside / 1 ht = nt / nc, dda bs2t = 1.0f = nn 0, N); 3)

at a = nt - nc, b - nt at Tr = 1 - (R0 - (Tr) R = (D * nnt - N

= diffuse; = true;

-:fl + refr)) && (depth k HAADI

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(differ estimation - doing it properly ff; radiance = SampleLight(&rand, I e.x + radiance.y + radiance.r) > 0)

w = true; ot brdfPdf = EvaluateDiffuse(L, N) * Po st3 factor = diffuse * INVPI; ot weight = Mis2(directPdf, brdfPdf); ot cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely fol /ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2 urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Early graphics:

2D, with limitations

0

lo Oŝ

- Tiles
- Few colors
- Sprites

Field Study

st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

ndom walk - done properly, closely following :

, t33 brdf = SampleDiffuse(diffuse, N, r1, r2, R, bp; urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Field Study

tic: ⊾ (depth < NA

= inside / 1 it = nt / nc, dde ss2t = 1.0f - nnt 5, N); 3)

st a = nt - nc, b + nt + + st Tr = 1 - (R0 + (1 - 1) Tr) R = (D * nnt - N * + +

= diffuse; = true;

-:fl + refr)) && (depth & MAXDIIII

D, N); ~efl * E * diffuse; = true;

WXDEPTH)

survive = SurvivalProbability difference estimation - doing it property if; adiance = SampleLight(%rand, I e.x + radiance.y + radiance.z) > 0) %

v = true; st brdfPdf = EvaluateDiffuse(L, N.) Pour st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, local pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

History of Graphics

tic: **i (dept**h ⊂ N

: = inside / L it = nt / nc, dde os2t = 1.0f - nnt 0, N); 3)

st a = nt - nc, b - nt st Tr = 1 - (80 + (1) Tr) R = (D * nnt - N *

= diffuse = true;

efl + refr)) && (depth k HADDIII

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it property if; radiance = SampleLight(&rand, I, I) e.x + radiance.y + radiance.z) = 0

v = true; ot brdfPdf = EvaluateDiffuse(L, N) * Pours st3 factor = diffuse * INVPI; ot weight = Mis2(directPdf, brdfPdf); ot cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following a /ive)

; st3 brdf = SampleDiffuse(diffuse, N, F1, F2, GR, G prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

History of Graphics

tic: € (depth < PA

= inside / 1 it = nt / nc, dde ss2t = 1.0f - nnt 5, N); 8)

at a = nt - nc, b + nt + + at Tr = 1 - (R0 + (1 - 10 Tr) R = (D * nnt - N *

= diffuse = true;

-:fl + refr)) && (depth is HANDIII)

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(different estimation - doing it property, ff; adiance = SampleLight(&rand, I. &., e.x + radiance.y + radiance.z) > 0) %%

v = true;

at brdfPdf = EvaluateDiffuse(L, N) Pauro st3 factor = diffuse = INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following -/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, kr; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

	ISIN	MAI		JAYTE	
G40x480 - (81, 4	5), (721, 525)		ILAI IS DIBI	TEIR DEIR	INCS
Imagen Acerca cceso /Parar F12 F8	Formato Video : MPEG-1 (VBR) Full Size, 30.00fps, 80q Audio : MPEG-1 L2				
Cursor efecto a los clicks tfiguración	48.00Hz, stereo, 192kb Opdones Prese	ps :ts			
Jefield 2/3 Recordi	ng Sample Video (1080p) tes / 14.668				

Field Study

Game production:

Code Art

t3 brdf = SampleDiffuse(diffuse, N, r1, rvive; pdf; = E * brdf * (dot(N, R) / pdf); ion = tore;

Crysis:

> 1M lines of code; 85k shaders

Unreal 3 engine: 2M lines of code

Frostbite: "10x Unreal 3"

Minecraft: < 200k lines of code.

Field Study

tic: k (depth < 100

= inside / 1 ht = nt / nc, dde os2t = 1.0f - nnt -0, N); 3)

st a = nt - nc, b - nt - st Tr = 1 - (R0 + (1 Tr) R = (D * nnt - N

= diffuse; = true;

: **:fl + refr)) && (depth** k HANDE

), N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(different estimation - doing it property ff; radiance = SampleLight(&rand, I ... e.x + radiance.y + radiance.z) = 0.55

v = true; at brdfPdf = EvaluateDiffuse(L, N) * at3 factor = diffuse * INVPI;

st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * ();

andom walk - done properly, closely following : /ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, soft urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

History of graphics in games, digest

Initially fast progression:

- from 2D to 3D,
- from monochrome to true-color,
- from wireframe to shaded,
- from sparse to highly detailed.

But also:

from reasonably efficient to produce to extremely labor-intensive.

State of the Art

tic: k (depth < 10.55

= inside / : it = nt / nc, dde ss2t = 1.0f - nnt -5, N); 3)

at a = nt - nc, b - nt - --at Tr = 1 - (R0 + (1 - ----Tr) R = (0 * nnt - N

= diffuse; = true;

-: :fl + refr)) && (depth < H

D, N); -efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(Srand, I, I, I, e.x + radiance.y + radiance.z) > 0)

v = true;

st brdfPdf = EvaluateDiffuse(L, N) * Paulos st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * 000

andom walk - done properly, closely following : /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, R, b) pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Industry example: Unreal Engine 4

- Lights
- Shadows
- Reflections
- Ambient occlusion
- Light shafts
- Indirect lighting cache
- Ray traced soft shadows
- Bump mapping

- Graphics
 - Rendering Overview
 - Lighting and Shadows
 - Lighting Quick Start Guide
 - Types of Lights
 - Shadow Casting
 - Light Mobility
 - Movable Lights
 - Static Lights
 - Stationary lights
 - Lightmass Global Illumination
 - Reflection Environment
 - Ambient Occlusion
 - Light Shafts
 - Light Functions
 - Ambient Cubemaps
 - Distance Field Ambient Occlusion
 - IES Light Profiles
 - Indirect Lighting Cache
 - Lit Translucency
 - Ray Traced Distance Field Soft
 - Shadows
 - Light Propagation Volumes
 - Bump Mapping w/o Tangent Space
 - Materials
 - Post Process Effects
 - Particle Systems

State of the Art

tice ≰ (depth < 10.5⊂

= inside / i it = nt / nc, ddo os2t = 1.0f - nnt -D, N); ∂)

at a = nt - nc, b - nt at Tr = 1 - (R0 + (1 Tr) R = (0 * nnt - N

= diffuse; = true;

efl + refr)) && (depth < NA

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; adiance = SampleLight(&rand, I e.x + radiance.y + radiance.z) > 0) #

v = true;

st brdfPdf = EvaluateDiffuse(L, N) * Prunce st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * [Pd

andom walk - done properly, closely following -/ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, sr urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Industry example: Unreal Engine 4

Lights

- Shadows
- Reflections
- Ambient occlusion
- Light shafts
- Indirect lighting cache
- Ray traced soft shadows
- Bump mapping

- Graphics
 - Rendering Overview
 - Lighting and Shadows
 - Lighting Quick Start Guide
 - Types of Lights
 - Shadow Casting
 - Light Mobility
 - Movable Lights
 - <u>Static Lights</u>
 - Stationary lights
 - Lightmass Global Illumination
 - Reflection Environment
 - Ambient Occlusion
 - <u>Light Shafts</u>
 - Light Functions
 - Ambient Cubemaps
 - Distance Field Ambient Occlusion
 - IES Light Profiles
 - Indirect Lighting Cache
 - Lit Translucency
 - Ray Traced Distance Field Soft
 - Shadows
 - Light Propagation Volumes
 - Bump Mapping w/o Tangent Space
 - Materials
 - Post Process Effects
 - Particle Systems

State of the Art

tic: ≰ (depth < Nac⊂

= inside / 1 it = nt / nc, ddo os2t = 1.8f - ont 3, N); 3)

st a = nt - nc, b - nt st Tr = 1 - (R0 + (1 - 1) Tr) R = (0 * nnt - N *

= diffuse; = true;

-:fl + refr)) && (depth < H

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(different estimation - doing it properly if; radiance = SampleLight(&rand, I) e.x + radiance.y + radiance.z) > 0)

v = true;

st brdfPdf = EvaluateDiffuse(L, N) * Paurole st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * 100

ndom walk - done properly, closely following -/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, Lor pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Industry example: Unreal Engine 4

- Lights
- Shadows
- Reflections
- Ambient occlusion
- Light shafts
- Indirect lighting cache
- Ray traced soft shadows
- Bump mapping

- Graphics
 - Rendering Overview
 - Lighting and Shadows
 - Lighting Quick Start Guide
 - Types of Lights
 - Shadow Casting
 - Light Mobility
 - Movable Lights
 - <u>Static Lights</u>
 - Stationary lights
 - Lightmass Global Illumination
 Reflection Environment
 - Ambient Occlusion
 - Light Shafts
 - Light Functions
 - Ambient Cubemaps
 - Distance Field Ambient Occlusion
 - IES Light Profiles
 - Indirect Lighting Cache
 - Lit Translucency
 - Ray Traced Distance Field Soft
 - Shadows
 - Light Propagation Volumes
 - Bump Mapping w/o Tangent Space
 - Materials
 - Post Process Effects
 - Particle Systems

State of the Art

Industry example: Unreal Engine 4

- ic: (depth c NASS
- = inside / 1 it = nt / nc, ddo os2t = 1.0f - nnt 0, N(); 3)
- st a = nt nc, b + nt ... st Tr = 1 - (80 + (1 - ... Tr) R = (0 * nnt - N *
- = diffuse; = true;
- : :**fl + refr))** && (depth
- D, N); refl * E * diffuse; = true;
- AXDEPTH)
- survive = SurvivalProbability(difference estimation - doing it properly) if; radiance = SampleLight(&rand, I, I) e.x + radiance.y + radiance.z) > 0) &
- v = true; at brdfPdf = EvaluateDiffuse(L, N.) * Pours) at3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)
- andom walk done properly, closely following : /ive)
- ; t3 brdf = SampleDiffuse(diffuse, N, r1, r2, 48, 4p; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

- Lights
- Shadows
- Reflections
- Ambient occlusion
- Light shafts
- Indirect lighting cache
- Ray traced soft shadows
- Bump mapping

- Graphics
 - Rendering Overview
 - Lighting and Shadows
 - Lighting Quick Start Guide
 - Types of Lights
 - Shadow Casting
 - Light Mobility
 - Movable Lights
 - <u>Static Lights</u>
 - Stationary lights
 - Lightmass Global Illumination
 Reflection Environment
 Ambient Occlusion
 - Light Shafts
 - Light Functions
 - Ambient Cubemaps
 - Distance Field Ambient Occlusion
 - IES Light Profiles
 - Indirect Lighting Cache
 - Lit Translucency
 - Ray Traced Distance Field Soft
 - Shadows
 - Light Propagation Volumes
 - Bump Mapping w/o Tangent Space
 - <u>Materials</u>
 - Post Process Effects
 - Particle Systems

State of the Art

tice ≰ (depth < 10.00

= = inside / 1 it = nt / nc. dde os2t = 1.0f = nnt D, N); B)

at a = nt - nc, b - nt at Tr = 1 - (R0 + (1 - 1 - 1 Tr) R = (0 * nnt - N *

= diffuse; = true;

efl + refr)) && (depth < HA

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(&rand, I e.x + radiance.y + radiance.z) > 0) #

v = true;

st brdfPdf = EvaluateDiffuse(L, N) * Prussed st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * (Pd

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, R, ser pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Industry example: Unreal Engine 4

- Lights
- Shadows
- Reflections
- Ambient occlusion
- Light shafts
- Indirect lighting cache
- Ray traced soft shadows
- Bump mapping

Engine Features

Graphics

Rendering Overview

- Lighting and Shadows
- Lighting Quick Start Guide
- Types of Lights

Shadow Casting

Light Mobility

Movable Lights

Static Lights

- Stationary lights
- Lightmass Global Illumination
 <u>Reflection Environment</u>
 <u>Ambient Occlusion</u>

Light Shafts

Light Functions

Ambient Cubemaps

Distance Field Ambient Occlusion

IES Light Profiles

Indirect Lighting Cache

Lit Translucency

Ray Traced Distance Field Soft

<u>Shadows</u>

Light Propagation Volumes

Bump Mapping w/o Tangent Space

- Materials
- Post Process Effects
- Particle Systems

State of the Art

tice ≰ (depth < NASS

= = inside / 1 it = nt / nc, dde ss2t = 1.0f = nnt 5, N); 3)

at a = nt - nc, b - nt at Tr = 1 - (R0 + (1 - 0) Tr) R = (D * nnt - N *)

= diffuse; = true;

-:fl + refr)) && (depth < NA

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(different estimation - doing it properly if; radiance = SampleLight(&rand, I , I e.x + radiance.y + radiance.z) > 0)

v = true;

st brdfPdf = EvaluateDiffuse(L, N) * Paulos st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * 000

ndom walk - done properly, closely following -/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, bord urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Industry example: Unreal Engine 4

- Lights
- Shadows
- Reflections
- Ambient occlusion
- Light shafts
- Indirect lighting cache
- Ray traced soft shadows
- Bump mapping

Engine Features

Graphics

Rendering Overview

Lighting and Shadows

- Lighting Quick Start Guide
- Types of Lights
 - Shadow Casting
- Light Mobility

Movable Lights

Static Lights

- Stationary lights
- Lightmass Global Illumination Reflection Environment Ambient Occlusion Light Shafts Light Functions Ambient Cubemaps Distance Field Ambient Occlusion IES Light Profiles Indirect Lighting Cache Lit Translucency Ray Traced Distance Field Soft Shadows Light Propagation Volumes Bump Mapping w/o Tangent Space
- <u> Materials</u>
- Post Process Effects
- Particle Systems

State of the Art

), N); efl * E * diffuse;

AXDEPTH)

survive = SurvivalProbability(diffe radiance = SampleLight(&rand, I. e.x + radiance.y + radiance.z) > 0)

v = true;

at brdfPdf = EvaluateDiffuse(L, N) st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf) at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely follow vive)

at3 brdf = SampleDiffuse(diffuse, N, r1, r2, LR, st rvive; pdf; i = E * brdf * (dot(N, R) / pdf); sion = true:

Industry example: Unreal Engine 4

- Lights
- Shadows
- Reflections
- Ambient occlusion
- Light shafts
- Indirect lighting cache
- Ray traced soft shadows
- **Bump mapping**

<u>Eng</u>	ine Features	
Ξ <u>(</u>	Graphics	
	Rendering Overview	
	Lighting and Shadows	
	Lighting Quick Start Guide	
	<u>Types of Lights</u>	
	Shadow Casting	
•	Light Mobility	
	Movable Lights	
	Static Lights	
	Stationary lights	
	Lightmass Global Illumination	
	Reflection Environment	
_	Ambient Occlusion	
	Light Shafts	
	Light Functions	
	Ambient Cubemaps	
	Distance Field Ambient Occlusion	
	IES Light Profiles	
	Indirect Lighting Cache	
	Lit Translucency	
	Ray Traced Distance Field Soft	
	<u>Shadows</u>	
-	Light Propagation Volumes	7
	Bump Mapping w/o Tangent Space	
	<u>Materials</u>	J
	Post Process Effects	N

Particle Systems

State of the Art

le: ≰(depth < PL⊂

= inside / 1 it = nt / nc, ddo os2t = 1.0f - nnt D, N); B)

st a = nt - nc, b - nt st Tr = 1 - (80 + (1 Tr) R = (0 * nnt - N

= diffuse; = true;

--:fl + refr)) && (depth < H

D, N); refl * E * diffuse; = true;

AXDEPTH)

v = true;

at brdfPdf = EvaluateDiffuse(L, N) * Paulot st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * COM

indom walk - done properly, closely following -/ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, p) urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Industry example: Unreal Engine 4

- Lights
- Shadows
- Reflections
- Ambient occlusion
- Light shafts
- Indirect lighting cache
- Ray traced soft shadows
 - Bump mapping

Graphics

Rendering Overview

- Lighting and Shadows
- Lighting Quick Start Guide
- Types of Lights

Shadow Casting

Light Mobility

Movable Lights

<u>Static Lights</u>

Stationary lights

Lightmass Global Illumination
 Reflection Environment

Ambient Occlusion

Light Shafts

Light Functions

Ambient Cubemaps

Distance Field Ambient Occlusion

IES Light Profiles

Indirect Lighting Cache

Lit Translucency

Ray Traced Distance Field Soft

Shadows

Light Propagation Volumes

Bump Mapping w/o Tangent Space

- Materials
- Post Process Effects
- Particle Systems

State of the Art

tice ≰ (depth < ™.....

= = inside / 1 it = nt / nc, dde -552t = 1.0f - nnt -5, N); 8)

at a = nt - nc, b - nt at Tr = 1 - (R0 + (1 Tr) R = (D * nnt - N

= diffuse; = true;

-: :fl + refr)) && (depth < HAA

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(different estimation - doing it properly if; radiance = SampleLight(&rand, I, II, e.x + radiance.y + radiance.r) > 0) %

v = true;

st brdfPdf = EvaluateDiffuse(L, N) * Pause st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * India

andom walk - done properly, closely following -/ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, sr urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Industry example: Unreal Engine 4

- Lights
- Shadows
- Reflections
- Ambient occlusion
- Light shafts

- Indirect lighting cache
- Ray traced soft shadows
- Bump mapping

- Graphics
 - Rendering Overview
 - Lighting and Shadows
 - Lighting Quick Start Guide
 - Types of Lights
 - Shadow Casting
 - Light Mobility
 - Movable Lights
 - <u>Static Lights</u>
 - Stationary lights
 - Lightmass Global Illumination
 Reflection Environment
 Ambient Occlusion
 Light Shafts
 Light Functions
 Ambient Cubemaps
 Distance Field Ambient Occlusion
 IES Light Profiles
 Indirect Lighting Cache
 Lit Translucency
 - _____
 - Ray Traced Distance Field Soft
 - <u>Shadows</u>
 - Light Propagation Volumes
 - Bump Mapping w/o Tangent Space
 - Materials
 - Post Process Effects
 - Particle Systems

State of the Art

Modern rendering in games:

Stacking algorithms that solve part of the problem:

Shadows Reflections Participating media Indirect light

Designed to 'look good', not to be (necessarily) correct Each partial solution comes with parameters and limitations

But: well-suited for today's hardware.

e.x + radiance.y + radiance.z) > 0) Million w = true; ot brdfPdf = EvaluateDiffuse(L, N) * Pour st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L);

survive = SurvivalProbability(diff

adiance = SampleLight(&rand, I.

E * ((weight * cosThetaOut) / directPdf) * (andom walk - done properly, closely following

/ive)

efl + refr)) && (depth

efl * E * diffuse;

), N);

AXDEPTH)

if;

, H33 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, h) prvive; pdf; h = E * brdf * (dot(N, R) / pdf); sion = true:

Next week:

Foundation

(depth = 10.5 = inside / 1 t = nt / nc, s2t = 1.0f

at a = nt at Tr = 1 -Tr) R = (D * E * diffuse;

fl + cefr))

D, N); -ef1 * E * diff = true;

AXDEPTH)

survive = Survi estimation - d if; adiance = Samp e.x + radiance.

v = true; tbrdfPdf = EvaluateDiffuse(L, N) st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf;

ndom walk - done properly, closely following rive)

, st3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, state pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

tic: **(depth** < 100

: = inside / l : it = nt / nc, dde os2t = 1.0f - nn: 0, N); 0)

st a = nt - nc, b - nt st Tr = 1 - (80 + (1 Tr) R = (0 * nnt - N

= diffuse; = true;

-:fl + refr)) && (depth < NADIII

D, N); -efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbatestimation - doing the stimation - doing the structure of the struc

v = true; at brdfPdf = EvaluateDiffuse(L, N,) * Process st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * 0

andom walk - done properly, closely following : /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, R, R, r pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

INFOGR – Computer Graphics

Jacco Bikker - April-July 2016 - Lecture 1: "Introduction"

END of "Introduction"

next lecture: "Graphics Fundamentals"

