
INFOGR – Computer Graphics
J. Bikker - April-July 2016 - Lecture 11: “Visibility”

Welcome!

Smallest Ray Tracers:

Executable

 5692598 & 5683777: RTMini_minimal.exe – 2803 bytes
 5741858: ASM_CPU_Min_Exe – 994 bytes

Source

 4279433 & 5543800: Haskell ray tracer; 2280 characters.
 5741858: C# ray tracer, 1235 characters.

using V=System.Numerics.Vector3;using static System.Math; using f=System.Single;using System.Drawing;class
S{public V P,C=V.One;public int T;public f r,R;public S(V p,f a,f b){P=p;R=a*a;r=b;}public void I(R r){V L
=P-r.O;f a=V.Dot(L,r.D),d=V.Dot(L,L)-a*a;if(a>0&&d<R){f t=a-(f)Sqrt(R-d);if(t>0&&t<r.i){r.i=t;r.N=
V.Normalize(r.O+t*r.D-P);r.p=this;}}}}class R{public V O,D,N;public S p;public f i=99;public R(V o,V d){O=
o+1e-4f*d;D=d;}public R(V d){D=d;}}class A{V P=V.One;S x=new S(V.UnitY*-500,498,.7f){T=1},y=new S(new V(-1
,0,4),.6f,1),z=new S(new V(1,0,4),.6f,0){C=V.UnitX};void D(R r){x.I(r);y.I(r);z.I(r);}A(){int S=512;Bitmap
b=new Bitmap(S,S);for(int i=0;i<S*S;i++)b.SetPixel(i%S,i/S,R(B(new R(V.Normalize(new V((f)(i%S)/S-.5f,.5f-
(f)(i/S)/S, 1)))))); b.Save("r.bmp");}V B(R r){D(r);V C=V.Zero;if(r.p!=null){V I=r.O+r.i*r.D,c=r.p.T>0?new
V((int)(I.X-9)+(int)(I.Z-9)&1):r.p.C,L=V.Normalize(P-I);f f=r.p.r,d;R a=new R(I,L);D(a);if(a.p==null){if (
(d=V.Dot(L,r.N))>0)C+=c*d*(1-f)/(V.Distance(I,P)/9+1);if((d=V.Dot(r.D,V.Reflect(L,r.N)))>0)C+=new V((f)Pow
(d,9)*f);}C+=f*B(new R(I,V.Reflect(r.D,r.N)))*c;} return C;}Color R(V v)=>Color.FromArgb(S(v.X),S(v.Y), S(
v.Z));int S(f f)=>(int)(f<0?0:f>1?1:Sqrt(f)*255);static void Main(){new A();}}

Fastest Ray Tracer:

Today’s Agenda:

 Depth Sorting

 Clipping

 Visibility

Rendering – Functional overview

1. Transform:
translating / rotating meshes

2. Project:
calculating 2D screen positions

3. Rasterize:
determining affected pixels

4. Shade:
calculate color per affected pixel

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

Animation, culling,
tessellation, ...

Postprocessing

Depth Sorting

INFOGR – Lecture 11 – “Visibility” 6

3. Rasterize:
determining affected pixels

Questions:

 What is the screen space position of the fragment?
 Is that position actually on-screen?
 Is the fragment the nearest fragment for the

affected pixel?

How do we efficiently determine visibility of a pixel?

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

Animation, culling,
tessellation, ...

Postprocessing

Depth Sorting

INFOGR – Lecture 11 – “Visibility” 7

Too far away to drawPart of the tree is off-screen

Torso closer than ground

City obscured by tree

Tree requires little detail

Tree between ground & sun

Old-skool depth sorting: Painter’s Algorithm

 Sort polygons by depth
 Based on polygon center
 Render depth-first

Advantage:

 Doesn’t require z-buffer

Problems:

 Cost of sorting
 Doesn’t handle all cases
 Overdraw

Depth Sorting

INFOGR – Lecture 11 – “Visibility” 9

Depth Sorting

Overdraw:

Inefficiency caused by drawing
multiple times to the same pixel.

INFOGR – Lecture 11 – “Visibility” 10

Depth Sorting

Correct order: BSP

root

INFOGR – Lecture 11 – “Visibility” 11

Depth Sorting

Correct order: BSP

root

front back

INFOGR – Lecture 11 – “Visibility” 12

Depth Sorting

Correct order: BSP

root

INFOGR – Lecture 11 – “Visibility” 13

front back

Depth Sorting

Correct order: BSP

root

INFOGR – Lecture 11 – “Visibility” 14

front back

Depth Sorting

Correct order: BSP

root

INFOGR – Lecture 11 – “Visibility” 15

front back

Depth Sorting

Correct order: BSP

root

INFOGR – Lecture 11 – “Visibility” 16

front back

Depth Sorting

Correct order: BSP

root

Sorting by BSP traversal:
Recursively
1. Render far side of plane
2. Render near side of plane

INFOGR – Lecture 11 – “Visibility” 17

front back

Draw order using a BSP:

 Guaranteed to be correct (hard cases result in polygon splits)
 No sorting required, just a tree traversal

But:

 Requires construction of BSP: not suitable for dynamic objects
 Does not eliminate overdraw

Depth Sorting

INFOGR – Lecture 11 – “Visibility” 18

Z-buffer

A z-buffer stores, per screen pixel, a depth value.
The depth of each fragment is checked against this value:

 If the fragment is further away, it is discarded
 Otherwise, it is drawn, and the z-buffer is updated.

The z-buffer requires:

 An additional buffer
 Initialization of the buffer to 𝑧𝑚𝑎𝑥

 Interpolation of 𝑧 over the triangle
 A z-buffer read and compare, and

possibly a write.

Depth Sorting

INFOGR – Lecture 11 – “Visibility” 19

Z-buffer

What is the best representation for depth in a z-buffer?

1. Interpolated z (convenient, intuitive);

2. 1/z (or: 𝑛 + 𝑓 −
𝑓𝑛

𝑧
) (more accurate nearby);

3. (int)((2^31-1)/z);
4. (uint)((2^32-1)/-z);
5. (uint)((2^32-1)/(-z + 1)).

Depth Sorting

INFOGR – Lecture 11 – “Visibility” 21

Note: we use zint =
232−1

−𝑧+1
:

this way, any z < 0 will be in the range
zadjusted = −𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 1 = 1. . ∞, therefore

1/𝑧𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 will be in the range 0..1, and thus

the integer value we will store uses the full
range of 0. . 232 − 1.
Here, 𝑧𝑖𝑛𝑡 = 0 represents 𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 0, and

𝑧𝑖𝑛𝑡 = 232 − 1 represents 𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = −∞.

Z-buffer optimization

In the ideal case, the nearest fragment for a pixel is drawn first:

 This causes all subsequent fragments for the pixel to be discarded;
 This minimizes the number of writes to the frame buffer and z-buffer.

The ideal case can be approached by using Painter’s to ‘pre-sort’.

Depth Sorting

INFOGR – Lecture 11 – “Visibility” 22

‘Z-fighting’:

Occurs when two polygons have almost identical
z-values.

Floating point inaccuracies during interpolation
will cause unpleasant patterns in the image.

Depth Sorting

INFOGR – Lecture 11 – “Visibility” 23

Stuff that is too far to drawPart of the tree is off-screen

Torso closer than ground

City obscured by tree

Tree requires little detail

Tree between ground & sun

Today’s Agenda:

 Depth Sorting

 Clipping

 Visibility

Clipping

Many triangles are partially off-screen. This is
handled by clipping them.

Sutherland-Hodgeman clipping:

Clip triangle against 1 plane at a time;
Emit n-gon (0, 3 or 4 vertices).

Clipping

INFOGR – Lecture 11 – “Visibility” 26

Sutherland-Hodgeman

Input: list of vertices

Algorithm:

Per edge with vertices v0 and v1:
 If v0 and v1 are ‘in’, emit v1

 If v0 is ‘in’, but v1 is ‘out’, emit C
 If v0 is ‘out’, but v1 is ‘in’, emit C and v1

where C is the intersection point of the edge and the plane.

Output: list of vertices,
defining a convex n-gon.

Clipping

0

1
2

in out

Vertex 0 Vertex 1

Vertex 1 Intersection 1

Vertex 2 Intersection 2

Vertex 0

INFOGR – Lecture 11 – “Visibility” 27

Sutherland-Hodgeman

Calculating the intersections with
plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0:

𝑑𝑖𝑠𝑡𝑣 = 𝑣 ∙
𝑎
𝑏
𝑐

+ 𝑑

𝑓 =
|𝑑𝑖𝑠𝑡𝑣0|

|𝑑𝑖𝑠𝑡𝑣0| + |𝑑𝑖𝑠𝑡𝑣1|

𝐼 = 𝑣0 + 𝑓(𝑣1 − 𝑣0)

Clipping

v0

v1

I

After clipping, the input n-gon may have at most 1
extra vertex. We may have to triangulate it:

0,1,2,3,4  0, 1, 2 + 0, 2, 3 + 0, 3, 4.

INFOGR – Lecture 11 – “Visibility” 28

Guard bands

To reduce the number of polygons that
need clipping, some hardware uses
guard bands : an invisible band of
pixels outside the screen.

 Polygons outside the screen are
discarded, even if they touch the
guard band;

 Polygons partially inside, partially
in the guard band are drawn
without clipping;

 Polygons partially inside the screen,
partially outside the guard band are
clipped.

Clipping

INFOGR – Lecture 11 – “Visibility” 29

Sutherland-Hodgeman

Clipping can be done against arbitrary planes.

Clipping

INFOGR – Lecture 11 – “Visibility” 30

Today’s Agenda:

 Depth Sorting

 Clipping

 Visibility

Stuff that is too far to drawPart of the tree is off-screen

Torso closer than ground

City obscured by tree

Tree requires little detail

Tree between ground & sun

Visibility

Only rendering what’s visible:

“Performance should be determined by visible geometry, not overall world size.”

 Do not render geometry
outside the view frustum

 Better: do not process
geometry outside frustum

 Do not render occluded
geometry

 Do not render anything
more detailed than strictly
necessary

INFOGR – Lecture 11 – “Visibility” 35

Visibility

Culling

Observation:
50% of the faces of a cube are not visible.

On average, this is true for all meshes.

Culling ‘backfaces’:

Triangle: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0
Camera: 𝑥, 𝑦, 𝑧
Visible: fill in camera position in plane equation.

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 > 0: visible.

Cost: 1 dot product per triangle.

INFOGR – Lecture 11 – “Visibility” 36

Visibility

Culling

Observation:
If the bounding sphere of a mesh is outside the
view frustum, the mesh is not visible.

But also:
If the bounding sphere of a mesh intersects the
view frustum, the mesh may be not visible.

View frustum culling is typically a conservative
test: we sacrifice accuracy for efficiency.

Cost: 1 dot product per mesh.

INFOGR – Lecture 11 – “Visibility” 37

Visibility

Culling

Observation:
If the bounding sphere over a group of bounding
spheres is outside the view frustum, a group of
meshes is invisible.

We can store a bounding volume hierarchy in the
scene graph:

 Leaf nodes store the bounds of the meshes
they represent;

 Interior nodes store the bounds over their
child nodes.

Cost: 1 dot product per scene graph subtree.

INFOGR – Lecture 11 – “Visibility” 38

Visibility

INFOGR – Lecture 11 – “Visibility” 39

Culling

Observation:
If a grid cell is outside the view frustum, the
contents of that grid cell are not visible.

Cost: 0 for out-of-range grid cells.

Visibility

Indoor visibility: Portals

Observation: if a window is invisible, the room it
links to is invisible.

INFOGR – Lecture 11 – “Visibility” 40

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Visibility determination

Coarse:

 Grid-based (typically outdoor)
 Portals (typically indoor)

Finer:

 Frustum culling
 Occlusion culling

Finest:

 Backface culling
 Clipping
 Z-buffer

Visibility

INFOGR – Lecture 11 – “Visibility” 52

Today’s Agenda:

 Depth Sorting

 Clipping

 Visibility

INFOGR – Computer Graphics
J. Bikker - April-July 2016 - Lecture 11: “Visibility”

END of “Visibility”
next lecture: “Advanced Shading”

