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Welcome!
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Today’s Agenda:

 The Raster Display

 Vector Math

 Colors

 2D Primitives

 3D Primitives



Raster Displays

Discretization
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Raster Displays

Discretization

Rasterization:

“Converting a vector image into a raster image 
for output on a video display or printer or 
storage in a bitmap file format.”

(Wikipedia)
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Raster Displays

Rasterization

Improving rasterization:

1. Increase resolution;
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Raster Displays

Rasterization

Improving rasterization:

1. Increase resolution;
2. Anti-aliasing;
3. Animation.
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Raster Displays

Discretization

π=4
a2+b2= 𝑎 + 𝑏
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Raster Displays

CRT – Cathode Ray Tube

Physical implementation – origins

Electron beam zig-zagging over a 
fluorescent screen.
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Raster Displays

CRT – Cathode Ray Tube

0,0 x

y

x=1

y=1

0,0x=-1

y=-1

Physical implementation – consequences

 Origin in the top-left corner of the screen
 Axis system directly related to pixel count

Not the coordinate system we expected…
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Raster Displays

Frame rate

PAL: 25fps
NTSC: 30fps (actually: 29.97)
Typical laptop screen: 60Hz
High-end monitors: 120-240Hz
Cartoons: 12-15fps

Human eye:
‘Frame-less’
Not a raster.

How many fps / megapixels is ‘enough’?
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Raster Displays

Frame rate

Even 100 frames per second may result in a 
noticeable delay of 30ms.

A very high frame rate minimizes the 
response time of the simulation.

Frame 1 Frame 2 Frame 3

Sim 1 Sim 2 Sim 3

Input 1 Input 2 Input 3

0 ms 20 ms 40 ms 60 ms
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Raster Displays

Generating images

Rendering:
“The process of generating an image  from a 2D or 3D model by means of a computer program.”
(Wikipedia)

Two main methods:

1. Ray tracing: for each pixel: what color do we assign to it?
2. Rasterization: for each triangle, which pixels does it affect?

on a raster
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Today’s Agenda:

 The Raster Display

 Vector Math

 Colors

 2D Primitives

 3D Primitives



2D space

Px=0                                                        width-1

Py=0

height-1

x=0                                                         1

1

y=0

Conversion: Px = x * width
Py = (1-y) * height

Vector Math
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2D space

x=0                                                          1

1

y=0

z

Vector Math

INFOGR – Lecture 2 – “Graphics Fundamentals” 19



Vectors

In ℝd, a vector can be defined 
as an ordered d-tuple:

A vector can also be defined by 
its length and direction.

v1

v2

...
vd

 𝑣 =

5
4

𝑣1 = 5

𝑣2 = 4

The Euclidean length or 
magnitude of a vector is 
calculated using:

ǁ  𝑣ǁ= 𝑣1
2 + 𝑣2

2 + ⋯+ 𝑣𝑑2

In 2D, this is similar to the 
Pythagorean theorem:

𝑎2 + 𝑏2 = 𝑐2

Vector Math
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Vectors

A unit vector is a vector 
with length = 1:

ǁ  𝑣ǁ = 1

A null vector is a vector 
with length = 0, e.g.:

in ℝ3  :
0
0
0

 𝑣 =

A vector can be normalized by 
dividing it by its magnitude:

 𝑣𝑢𝑛𝑖𝑡 =
 𝑣

ǁ  𝑣ǁ

Can we normalize 
every vector?

Vector Math
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Vectors

A 2D vector (𝑣𝑥, 𝑣𝑦) can be 

seen as the point 𝑣𝑥, 𝑣𝑦 in the 

Cartesian plane.

A 2D vector (𝑣𝑥, 𝑣𝑦) can be 

seen as an offset from the 
origin.

4
1

Note:

Positions and vectors in ℝ3 

can be both represented by 
3-tuples (𝑥, 𝑦, 𝑧), but they 
are not the same!

Vector Math
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Vectors

The sum of two vectors in ℝd ,

 𝑣 = (𝑣1, 𝑣2, . . , 𝑣𝑑) and

𝑤 = (𝑤1, 𝑤2, . . , 𝑤𝑑)

is defined as:

 𝑣 + 𝑤 = 

(𝑣1 + 𝑤1, 𝑣2 + 𝑤2, … , 𝑣𝑑 + 𝑤𝑑)
4
1

1
2

5
3

Example:

(4,1) + (1,2) = (5,3)

Vector subtraction is 
similarly defined.

Vector addition is commutative  (as can be easily seen from the geometric interpretation):

(4,1) + (1,2) = (5,3) = (1,2) + (4,1).

Vector Math
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Vectors

The scalar multiple of a d-
dimensional vector  𝑣 is 
defined as:

λ  𝑣 = (𝜆𝑣1, 𝜆𝑣2, . . , 𝜆𝑣𝑑)

Scalar multiplication can 
change the length of a vector.

It can also change the direction
of the vector, which is reversed 
if λ < 0.

Two vectors  𝑣 and 𝑤 are 
parallel if one is a scalar 
multiple of the other, i.e.:

there is a λ such that  𝑣 = λ𝑤.

Vector Math
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Vectors

Parallel vectors are called 
linearly dependent.

If they are not parallel, vectors 
are linearly independent.

A special case is when two 
vectors are perpendicular to 
each other; in this case, each 
vector is a normal vector of the 
other.

In ℝ2, we can easily create a 
normal vector for (𝑣𝑥 , 𝑣𝑦):

𝑛 = ( −𝑣𝑦 , 𝑣𝑥 )

or

𝑛 = ( 𝑣𝑦 , −𝑣𝑥 )

Question: does this also 
work in ℝ3 ?

Vector Math
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Bases

We can use two linearly 
independent vectors to 
produce any vector:

 𝑎 = λ1𝑢 + λ2  𝑣

This doesn’t just work for 
perpendicular vectors.

𝑢

 𝑣

 𝑎

 𝑣

𝑢

Vector Math
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We can use two linearly 
independent vectors to 
produce any vector:

 𝑎 = λ1𝑢 + λ2  𝑣

This doesn’t just work for 
perpendicular vectors.

Any pair of linearly 
independent vectors form a 
2D basis.

This extends naturally to 
higher dimensions.

Bases

Vector Math

INFOGR – Lecture 2 – “Graphics Fundamentals” 27



“Any pair of linearly independent 
vectors form a 2D basis”:

The Cartesian coordinate system is 
an example of this.

In this case the vectors (1,0) and 
(0,1) form an orthonormal basis:

1. The vectors are 
perpendicular to each other;

2. The vectors are unit vectors.

Bases

Vector Math
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x

y

z

x

y

z

Bases

A coordinate system can be left 
handed or right handed.

Note that this only affects the 
interpretation of the vectors; the 
vectors themselves are the same in 
each case.

Vector Math
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Dot product

Given vectors  𝑎, 𝑢 and  𝑣, we 
know that:

 𝑎 = λ1𝑢 + λ2  𝑣

We can determine λ1 and λ2

using the dot product*.

*: AKA inner product  or scalar product

𝑢

 𝑣

 𝑎

The dot product of vector 
 𝑣 and 𝑤 is defined as:

 𝑣 ∙ 𝑤 = 𝑣1𝑤1 + 𝑣2𝑤2 + ⋯+ 𝑣𝑑𝑤𝑑

or

 𝑣 ∙ 𝑤 =        𝑣𝑖 𝑤𝑖Σ
i=0

d

Vector Math
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Dot product

The dot product projects one 
vector on another.

If  𝑎 and 𝑢 are unit vectors, we 
can calculate the angle between 
them using the dot product:

λ = cos ∝ = 𝑢 ∙  𝑎

or, if they are not normalized:

cos ∝ =
𝑢 ∙  𝑎

ǁ𝑢ǁ ǁ  𝑎ǁ

𝑢

 𝑎

𝜆

 𝑣

Projecting a vector on two 
linearly independent 
vectors yields a coordinate 
within the 2D basis.

This works regardless 
of the direction and scale 
of 𝑢 and  𝑣 , and also in ℝ3.

Vector Math

α

𝜆1

𝜆2
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Cross product

2D Transforms

The cross product can be used to 
calculate a vector perpendicular 
to a 2D basis formed by 2 vectors. 
It is defined as:

𝑣2𝑤3 – 𝑣3𝑤2

 𝑣 × 𝑤 = 𝑣3𝑤1 – 𝑣1𝑤3

𝑣1𝑤2 – 𝑣2𝑤1

Note:
The cross product is only defined 
in ℝ3.

y

z

x

𝑣

𝑤

 𝑣 × 𝑤
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2D Transforms
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 The Raster Display

 Vector Math

 Colors

 2D Primitives

 3D Primitives



Colors

Color representation

Computer screens emit light in three colors: red, green 
and blue.

By additively mixing these, we can produce most colors: 
from black (red, green and blue turned off) to white (red, 
green and blue at full brightness).

In computer graphics, colors are stored in discrete form. 
This has implications for:

 Color resolution (i.e., number of unique values per 
component);

 Maximum brightness (i.e., range of component values).
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Colors

Color representation

The most common color representation is 
32-bit ARGB, which stores red, green and 
blue as 8 bit values (0..255). 

Alternatively, we can use 16 bit for one 
pixel (RGB 565),

or a color palette. In that case, one byte is 
used per pixel, but only 256 unique colors 
can be used for the image.
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Colors

Color representation
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Colors

Color representation
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Colors

Color representation

INFOGR – Lecture 2 – “Graphics Fundamentals” 41



Colors

Color representation

Textures can typically safely be stored 
as palletized images.

Using a smaller palette will result in 
smaller compressed files.
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Colors

Color representation

Using a fixed range (0:0:0 … 255:255:255) places a cap on the 
maximum brightness that can be represented:

 A white sheet of paper: (255,255,255)
 A bright sky: (255,255,255)

The difference becomes apparent when we look at the sky and 
the sheet of paper through sunglasses.

(or, when the sky is reflected in murky water)
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Colors

Color representation

For realistic rendering, it is important to use an internal color 
representation with a much greater range than 0..255 per color 
component.

HDR: High Dynamic Range;

We store one float value per color component.

Including alpha, this requires 128bit per pixel.
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 The Raster Display

 Vector Math

 Colors
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 3D Primitives



2D Primitives

Recap

Vectors and their properties:

 Magnitude, direction
 Scalar product
 Null vector, normal
 Parallel, linear (in)depence
 Commutative addition & subtraction
 Dot product, cross product

Concepts:

 ℝd spaces
 (orthonormal) 2D basis, Cartesian
 Left handed, right handed

4
1

1
2

5
3
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2D Primitives

Implicit representation

Implicit curve:

𝑓 𝑥, 𝑦 = 0

Function 𝑓 maps two-dimensional 
points to a real value, i.e.

𝑥, 𝑦 → 𝑓(𝑥, 𝑦)

The points for which this value is 0 
are on the curve.

Example: circle

𝑥2 + 𝑦2 − 𝑟2 = 0

If  𝑝 = (x, y) is a point on 
the circle, and 
 𝑝 is a vector from the origin 
to 𝑝, it’s length must be 𝑟, 
so   ⃦  𝑝 ⃦ = 𝑟.

Example: circle with center c and radius r:

(x-c𝑥)2 + 𝑦 − 𝑐𝑦
2 − 𝑟2 = 0

c

 𝑝

 𝑝
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2D Primitives

Implicit representation

Implicit curve:

𝑓 𝑥, 𝑦 = 0

Function 𝑓 maps two-dimensional 
points to a real value, i.e.

𝑥, 𝑦 → 𝑓(𝑥, 𝑦)

The points for which this value is 0 
are on the curve.

Example: line

Slope-intersect form:

𝑦 = 𝑎𝑥 + 𝑐

Implicit form:

−𝑎𝑥 + 𝑦 − 𝑐 = 0

In general:

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

𝑦 =
2

3
𝑥 + 1

𝑐

∆𝑥

∆𝑦

𝑎 =
∆y

∆x
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2D Primitives

Implicit line representation 

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

In this case:

A = −
2

3
, B = 1 , C = −1

The vector (A,B) is a normal of 
the line.

𝑐

∆𝑥

∆𝑦

Slope-intersect form:

𝑦 = 𝑎𝑥 + 𝑐

Implicit form:

−𝑎𝑥 + 𝑦 − 𝑐 = 0

General form:

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

𝑦 =
2

3
𝑥 + 1

 𝑝(𝑥, 𝑦)

 𝑝(−𝑥,−𝑦)

 𝑝(𝑦,−𝑥)

 𝑝(−𝑦, 𝑥)
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2D Primitives

Implicit line representation 

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

In this case:

A = −
2

3
, B = 1 , C = −1

The vector (A,B) is a normal of 
the line.

𝑐

∆𝑥

∆𝑦

We can use the normal to 
calculate the distance of a point 
to the line:

𝑑 = 𝑁 ∙ 𝑝 + 𝐶

For 𝑝 = 3,3 :

𝑑 = −
2

3
∗ 3 + 1 ∗ 3 − 1

= −2 + 3 − 1 = 0

For 𝑝 = 0,0 :

𝑑 = −
2

3
∗ 0 + 1 ∗ 0 − 1

= −1 (? )

𝑦 =
2

3
𝑥 + 1
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2D Primitives

Implicit line representation 

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

Given point 𝑝1 and 𝑝2, we 
determine A, B and C as follows:

 𝑙 = 𝑝2 − 𝑝1

𝑁 = −𝑙𝑦 , 𝑙𝑥

𝐴 = 𝑁𝑥 , 𝐵 = 𝑁𝑦 , 𝐶 = −(𝑁 · 𝑝1)

It is convenient to normalize the normal:

Only when ǁ𝑁ǁ = 1, |C| is the distance of the line to the origin.

p1

p2

Test with the line from the 
previous slides:

𝑝1 = −3,−1
𝑝2 = 3,3

 𝑙 = 6,4

𝑁 = −4,6
𝐴 = −4, 𝐵 = 6
𝐶 = −( −4 ∗ −3 + 6 ∗ −1)

= −6

−4𝑥 + 6𝑦 − 6 = 0

−
2

3
𝑥 + 𝑦 − 1 = 0

|𝐶|
+

-
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END of “Graphics Fundamentals”
next lecture: “Ray Tracing (Introduction)”


