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Jacco Bikker   - April-July 2016  - Lecture 3: “Ray Tracing (Introduction)”

Welcome!



Today’s Agenda:

 Primitives (contd.)

 Ray Tracing

 Intersections

 Assignment 2

 Textures
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Previously in INFOGR



Primitives

Implicit curves: 𝑓 𝑥, 𝑦 = 0

Circle: 𝑥2 + 𝑦2 − 𝑟2 = 0
Line: 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

Slope-intersect form of a line: 𝑦 = 𝑎𝑥 + 𝑐

Normal of line 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0:   𝑁 =
𝐴
𝐵

Distance of line 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0 to the origin: |𝐶| (if 𝑁 = 1).
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Primitives

Parametric representation

Parametric curve:

𝑥
𝑦 =

𝑔(𝑡)
ℎ(𝑡)

Example: line

𝑝0 = 𝑥𝑝0
, 𝑦𝑝0

, 𝑝1 = (𝑥𝑝1
, 𝑦𝑝1

)

𝑥
𝑦 =

𝑥𝑝0

𝑦𝑝0
+ 𝑡

𝑥𝑝1
− 𝑥𝑝0

𝑦𝑝1
− 𝑦𝑝0

Or

𝑝 𝑡 = 𝑝0 + 𝑡 𝑝1 − 𝑝0 , 𝑡 ∈ ℝ.

p0

p1

In this example:

𝑝0 is the support vector;

𝑝1 − 𝑝0 is the direction 
vector.
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Slope-intercept:

𝑦 = 𝑎𝑥 + 𝑐

Implicit representation:

−𝑎𝑥 + 𝑦 − 𝑐 = 0
𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

Parametric representation:

𝑝 𝑡 = 𝑝0 + 𝑡 𝑝1 − 𝑝0

p0

p1

∆𝑥

∆𝑦

Primitives
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Circle - parametric

𝑥
𝑦 =

𝑥𝑐 + 𝑟 cos𝜙
𝑦𝑐 + 𝑟 sin𝜙

𝜙 = “phi”

𝜙

c

𝜙

𝑟

𝑥

𝑦

cos𝜙 =
𝑥

𝑟

𝑠𝑖𝑛 𝜙 =
𝑦

𝑟

𝑡𝑎𝑛 𝜙 =
𝑦

𝑥

adjacent

o
p

p
o

si
te

SOH CAH TOA

Primitives
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Circle – sphere (implicit)

Recall: the implicit representation for a circle 
with radius 𝑟 and center 𝑐 is:

𝑥 − 𝑐𝑥
2 + 𝑦 − 𝑐𝑦

2 − 𝑟2 = 0

or: ∥ p − c ∥ 2 − 𝑟2 = 0  ∥ 𝑝 − 𝑐 ∥ = 𝑟

In ℝ3, we get:

𝑥 − 𝑐𝑥
2 + 𝑦 − 𝑐𝑦

2 + 𝑧 − 𝑐𝑧
2 − 𝑟2 = 0

or: ∥ 𝑝 − 𝑐 ∥= 𝑟

c

 𝑝

Primitives

INFOGR – Lecture 3 – “Ray Tracing (Introduction)” 8



Line – plane (implicit)

Recall: the implicit representation for a line is:

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

In ℝ3, we get a plane:

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0
p1

p2

Primitives
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Parametric surfaces

A parametric surface in ℝ3  needs two parameters:

𝑥 = 𝑓(𝑢, 𝑣),
𝑦 = 𝑔(𝑢, 𝑣),
𝑧 = ℎ(𝑢, 𝑣).

For example, a sphere:

𝑥 = 𝑟 cos𝜙 sin 𝜃,
𝑦 = 𝑟 sin𝜙 sin 𝜃,
𝑧 = 𝑟 cos 𝜃.

Doesn’t look very convenient (compared to the 
implicit form), but it will prove useful for texture 
mapping.

𝜙

𝜃

Primitives
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Parametric planes

Recall the parametric line definition:

𝑝 𝑡 = 𝑝0 + 𝑡 𝑝1 − 𝑝0

For a plane, we need to parameters:

𝑝 𝑠, 𝑡 = 𝑝0 + 𝑠 𝑝1 − 𝑝0 + 𝑡(𝑝2 − 𝑝0)

or:

𝑝 𝑠, 𝑡 = 𝑝0 + 𝑠  𝑣 + 𝑡𝑤

where:
 𝑝0 is a point on the plane;
  𝑣 and 𝑤 are two linearly independent 

vectors on the plane;
 𝑠, 𝑡 ∈ ℝ.

y

z

x

𝑣

𝑤

𝑝0

Primitives
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Today’s Agenda:

 Primitives (contd.)

 Ray Tracing

 Intersections

 Assignment 2

 Textures





PART 1: Introduction (today)

PART 2: Shading (May 10)

PART 3: Reflections, refraction, absorption (May 17)

PART 4: Path Tracing (June 21)
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Ray Tracing



Ray Tracing:

World space

 Geometry
 Eye
 Screen plane
 Screen pixels
 Primary rays
 Intersections
 Point light
 Shadow rays

Light transport

 Extension rays

Light transport
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Ray Tracing



Ray Tracing:

World space

 Geometry
 Eye
 Screen plane
 Screen pixels
 Primary rays
 Intersections
 Point light
 Shadow rays

Light transport

 Extension rays

Light transport
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Ray Tracing



Ray Tracing
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Ray Tracing:

World space

 Geometry
 Eye
 Screen plane
 Screen pixels
 Primary rays
 Intersections
 Point light
 Shadow rays

Light transport

 Extension rays

Light transport

Note:

We are calculating 
light transport 
backwards.

INFOGR – Lecture 3 – “Ray Tracing (Introduction)” 18

Ray Tracing



Ray Tracing
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Ray Tracing
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Ray Tracing



Physical basis

Ray tracing uses ray optics to simulate the 
behavior of light in a virtual environment.

It does so by finding light transport paths:

 From the ‘eye’
 Through a pixel
 Via scene surfaces
 To one or more light sources.

At each surface, the light is modulated.
The final value is deposited at the pixel 
(simulating reception by a sensor).
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Ray Tracing



Today’s Agenda:

 Primitives (contd.)

 Ray Tracing

 Intersections

 Assignment 2

 Textures



Intersections

Ray definition

A ray is an infinite line with a start point:

𝑝(𝑡) = 𝑂 + 𝑡𝐷, where 𝑡 > 0.

struct Ray
{

float3 O; // ray origin
float3 D; // ray direction
float t; // distance

};

The ray direction is generally normalized.
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Ray setup

A ray is initially shot through a pixel on the screen plane. 
The screen plane is defined in world space:

Camera position: E = (0,0,0)

View direction: 𝑉

Screen center: C = 𝐸 + 𝑑𝑉
Screen corners: p0 = 𝐶 + −1,−1,0 , 𝑝1 = 𝐶 + 1, −1,0 , 𝑝2 = 𝐶 + (−1,1,0)

From here:

 Change FOV by altering 𝑑;
 Transform camera by multiplying E, 𝑝0, 𝑝1, 𝑝2 with the camera matrix.
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Intersect



Ray setup

Point on the screen:

𝑝 𝑢, 𝑣 = 𝑝0 + 𝑢 𝑝1 − 𝑝0 + 𝑣(𝑝2 − 𝑝0)

Ray direction (before normalization):

𝐷 = 𝑝 𝑢, 𝑣 − 𝐸

Ray origin:

𝑂 = 𝐸

𝑝0

𝑝1

𝑝2

𝐸
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Intersect

𝑝
2
−

𝑝
0



Ray intersection

Given a ray 𝑝(𝑡) = 𝑂 + 𝑡𝐷, we determine the 
smallest intersection distance 𝑡 by intersecting the 
ray with each of the primitives in the scene.

Ray / plane intersection:

Plane: p ∙ 𝑁 + 𝑑 = 0

Ray: 𝑝(𝑡) = 𝑂 + 𝑡𝐷

Substituting for 𝑝(𝑡), we get

𝑂 + 𝑡𝐷 ∙ 𝑁 + 𝑑 = 0

𝑡 = −(𝑂 ∙ 𝑁 + 𝑑)/(𝐷 ∙ 𝑁)

𝑃 = 𝑂 + 𝑡𝐷

𝑝0

𝑝1

𝑝2

𝐸
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Intersect



Intersect

Ray intersection

Ray / sphere intersection:

Sphere:  𝑝 − 𝐶 ∙ 𝑝 − 𝐶 − 𝑟2 = 0

Ray: 𝑝(𝑡) = 𝑂 + 𝑡𝐷

Substituting for 𝑝(𝑡), we get

𝑂 + 𝑡𝐷 − 𝐶 ∙ 𝑂 + 𝑡𝐷 − 𝐶 − 𝑟2 = 0

𝐷 ∙ 𝐷 𝑡2 + 2𝐷 ∙ 𝑂 − 𝐶 𝑡 + (𝑂 − 𝐶)2−𝑟2 = 0

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 → 𝑥 =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎

𝑎 = 𝐷 ∙ 𝐷

𝑏 = 2𝐷 ∙ (𝑂 − 𝐶)
𝑐 = 𝑂 − 𝐶 ∙ 𝑂 − 𝐶 − 𝑟2

𝑝0

𝑝1

𝑝2

𝐸

Negative: 
no intersections
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Ray Intersection

Efficient ray / sphere intersection:

void Sphere::IntersectSphere( Ray ray )
{

vec3 c = this.pos - ray.O;
float t = dot( c, ray.D );
vec3 q = c - t * ray.D;
float p2 = dot( q, q );
if (p2 > sphere.r2) return; 
t -= sqrt( sphere.r2 – p2 );
if ((t < ray.t) && (t > 0)) ray.t = t;
// or: ray.t = min( ray.t, max( 0, t ) );

}

Note:

This only works for rays that start outside the sphere.

O

𝐷

 𝑐

t

 𝑞

𝑝2

Intersect
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Today’s Agenda:

 Primitives (contd.)

 Ray Tracing

 Intersections

 Assignment 2

 Textures



Deadline assignment 1:

Wednesday May 11, 23.59

Assignment 2: ”Write a basic ray tracer.”

 Using the template
 In a 1024x512 window
 Two views, each 512x512
 Left view: 3D
 Right view: 2D slice
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Assignment 2



Assignment 2: ”Write a basic ray tracer.”

Steps:

1. Create a Camera class; default: position (0,0,0), 
looking at (0,0,-1).

2. Create a Ray class
3. Create a Primitive class and derive from it a 

Sphere and a Plane class
4. Add code to the Camera class to create a primary 

ray for each pixel
5. Implement Intersect methods for the primitives
6. Per pixel, find the nearest intersection and plot a 

pixel
7. Add controls to move and rotate the camera
8. Add a checkerboard pattern to the floor plane.

9. Add reflections and shadow rays (next lecture).
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Assignment 2

For y = 0, visualize every 10th ray

Visualize the intersection points



Extra points:

 Add additional primitives, e.g.:

 Triangle, quad, box
 Torus, cylinder
 Fractal

 Add textures to all primitives

 Add a sky dome

 Add refraction and absorption (next lecture)

 One extra point for the fastest ray tracer

 One extra point for the smallest ray tracer 
meeting the minimum requirements.
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Assignment 2



Official:

 Full details in the official assignment 2 document, 
available today from the website.

 Deadline: May 31st 2016, 23:59.

 Small exhibition of noteworthy entries on 
Thursday June 2nd and on the website.
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Assignment 2



Today’s Agenda:

 Primitives (contd.)

 Ray Tracing

 Intersections

 Assignment 2

 Textures



Textures
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Texturing a Plane

Given a plane: 𝑦 = 0 (i.e., with a normal vector (0,1,0) ).

Two vectors on the plane define a basis: 𝑢 = (1,0,0) and  𝑣 = (0,0,1).

Using these vectors, any point on the plane can be reached: 𝑃 = λ1𝑢 + λ2  𝑣.

We can now use λ1, λ2 to define a color at P: 𝐹(λ1, λ2) = ⋯ .

𝑢

 𝑣 P



Textures

Example:

𝐹(λ1, λ2) = sin(λ1)

Another example:

𝐹(λ1, λ2) = ( int (2 ∗ λ1) + (int)λ2) & 1
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Textures

Other examples (not explained here):

Perlin noise
Details:  http://www.noisemachine.com/talk1

Voronoi / Worley noise
Details:  “A cellular texture basis function”, S. Worley, 1996.
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Textures

INFOGR – Lecture 3 – “Geometry”



Textures

Obviously, not all textures can be generated procedurally.

For the generic case, we lookup the color value in a pixel buffer.

𝑥
𝑦 = 𝑃 ∙ 𝑢

𝑃 ∙  𝑣

Note that we find the pixel to read based on 𝑃; we don’t find a ‘𝑃’ 
for every pixel of the texture.

𝑢

 𝑣

P

∗
𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡

0 255
0

255
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Textures

Retrieving a pixel from a texture:

𝑥
𝑦 = 𝑃 ∙ 𝑢

𝑃 ∙  𝑣
∗

𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡

We don’t want to read outside the texture. To prevent this, we have 
two options:

1. Clamping

2. Tiling

Tiling is efficiently achieved using a bitmask. This requires texture 
dimensions that are a power of 2.

0 255
0

255
𝑥
𝑦 =

𝑐𝑙𝑎𝑚𝑝(𝑃 ∙ 𝑢, 0, 1)

𝑐𝑙𝑎𝑚𝑝(𝑃 ∙  𝑣, 0,1)
∗

𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡

𝑥
𝑦 =

𝑓𝑟𝑎𝑐(𝑃 ∙ 𝑢)

𝑓𝑟𝑎𝑐(𝑃 ∙  𝑣)
∗

𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡
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Textures

Texture mapping: oversampling
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Textures

Texture mapping: undersampling
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Textures

Fixing oversampling

Oversampling: reading the same pixel from a texture multiple times.
Symptoms: blocky textures.

Remedy: bilinear interpolation:
Instead of clamping the pixel location to 
the nearest pixel, we read from four pixels.

𝑤𝑝1 :  (1 − 𝑓𝑟𝑎𝑐(𝑥)) ∗ (1 − 𝑓𝑟𝑎𝑐(𝑦))
𝑤𝑝2 :  𝑓𝑟𝑎𝑐 𝑥 ∗ (1 − 𝑓𝑟𝑎𝑐 𝑦 )

𝑤𝑝3 :  1 − 𝑓𝑟𝑎𝑐 𝑥 ∗ 𝑓𝑟𝑎𝑐(𝑦)

𝑤𝑝4 :  1 − (𝑤𝑃1 +
𝑤𝑃2 +

𝑤𝑃3)
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Textures

Fixing oversampling
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Textures

Fixing undersampling

Undersampling: skipping pixels while reading from a texture.
Symptoms: Moiré, flickering, noise.

Remedy: MIP-mapping.

The texture is reduced to 25% by averaging
2x2 pixels. This is repeated until a 1x1 image
remains.

When undersampling occurs, we switch to
the next MIP level.
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Textures
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Textures
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Textures

Trilinear interpolation: blending between MIP levels.
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Today’s Agenda:

 Primitives (contd.)

 Ray Tracing

 Intersections

 Assignment 2

 Textures
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END of “Ray Tracing (Introduction)”
next lecture: “Ray Tracing (Part 2)”


