
INFOGR – Computer Graphics
Jacco Bikker   - April-July 2016  - Lecture 4: “Ray Tracing (2)”

Welcome!



Today’s Agenda:

 Recap

 End of the Primary Ray

 Normals

 The Camera

 Assignment P2



Recap

INFOGR – Lecture 4 – “Ray Tracing (2)” 3

𝑝0

𝑝1

𝑝2

𝐸

𝑝
2
−

𝑝
0

O

𝐷

 𝑐

t

 𝑞

𝑝2

0 255
0

255



Today’s Agenda:
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Shading
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Shading

The End

We used primary rays to find the primary intersection point.

Determining light transport:

 Sum illumination from all light sources
 …If they are visible.

We used a primary ray to find the object visible through a pixel:
Now we will use a shadow ray to determine visibility of a light source.
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Shading

Shadow Ray

Constructing the shadow ray:

𝑝(𝑡) = 𝑂 + 𝑡𝐷

Ray origin: the primary intersection point 𝐼.

Ray direction: 𝑃𝑙𝑖𝑔ℎ𝑡 − 𝐼

Restrictions on 𝑡:      0 < 𝑡 < | 𝑃𝑙𝑖𝑔ℎ𝑡 − 𝐼 |
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Shading

Shadow Ray

Direction of the shadow ray:  
𝑃𝑙𝑖𝑔ℎ𝑡−𝐼

| 𝑃𝑙𝑖𝑔ℎ𝑡−𝐼 |

Equally valid:                               
𝐼−𝑃𝑙𝑖𝑔ℎ𝑡

| 𝑃𝑙𝑖𝑔ℎ𝑡−𝐼 |
or   

𝐼−𝑃𝑙𝑖𝑔ℎ𝑡

| 𝐼−𝑃𝑙𝑖𝑔ℎ𝑡 |

Note that we get different intersection points 
depending on the direction of the shadow ray.

It doesn’t matter: the shadow ray is used to 
determine if there is an occluder, not where.

This has two consequences:

1. We need a dedicated shadow ray query;
2. Shadow ray queries are (on average) twice as fast.  (why?)
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Shading

Shadow Ray

“In theory, theory and practice are the same. In practice, they are not.”

Problem 1:

Our shadow ray queries report intersections at 𝑡 = ~0. Why?

Cause: the shadow ray sometimes finds the surface it 
originated from as an occluder, resulting in shadow acne.

Fix: offset the origin by ‘epsilon’ times the shadow ray direction.

Note: don’t forget to reduce 𝑡𝑚𝑎𝑥 by epsilon.
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Shading

Shadow Ray

“In theory, theory and practice are the same. In practice, they are not.”

Problem 2:

Our shadow ray queries report intersections at 𝑡 = 𝑡𝑚𝑎𝑥. Why?

Cause: when firing shadow rays from the light source, they may find 
the surface that we are trying to shade.

Fix: reduce 𝑡m𝑎x by   2 ∗ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛.
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Shading

Shadow Ray

“The most expensive shadow rays are those that do not find an 
intersection.”

Why?

(because those rays tested every primitive before concluding that there was no occlusion)
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Shading

Transport

The amount of energy travelling from the light via the 
surface point to the eye depends on:

 The brightness of the light source

 The distance of the light source to the surface point

 Absorption at the surface point

 The angle of incidence of the light energy
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Shading

Transport

Brightness of the light source:

Expressed in watt (W), or joule per second  ( 𝐽/𝑠 or 𝐽𝑠−1).

Energy is transported by photons.

Photon energy depends on wavelength; energy for a 
‘yellow’ photon is ~3.31 ∙ 10−19 J.

A 100W light bulb thus emits ~3.0 ∙ 1020 photons per 
second.
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Shading
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Transport

Energy at distance 𝑟:

For a point light, a brief pulse of light energy spreads out as 
a growing sphere. The energy is distributed over the 
surface of this sphere.

It is therefore proportional to the inverse area of the 
sphere at distance 𝑟, i.e.:

𝐸/𝑚2 = 𝐸𝑙𝑖𝑔ℎ𝑡

1

4𝜋𝑟2

Light energy thus dissipates at a rate of  
1

𝑟2.

This is referred to as distance attenuation.



Shading

Transport

Absorption:

Most materials absorb light energy. The wavelengths that 
are not fully absorbed define the ‘color’ of a material.

The reflected light is thus:

𝐸𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 = 𝐸𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 ∙ 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

Note that 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 cannot exceed 1; the reflected light is 
never more than the incoming light.
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Shading

Transport

Energy arriving at an angle:

A small bundle of light arriving at a surface affects a larger 
area than the cross-sectional area of the bundle.

Per 𝑚2, the surface thus receives 
less energy. The remaining energy 
is proportional to:

cos 𝛼 or:   𝑁 ∙ 𝐿.
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Shading

Transport

All factors:

 Emitted light : defined as RGB color, floating point

 Distance attenuation: 
1

𝑟2

 Absorption, modulate by material color

 N dot L
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Shading
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Normals

We Need a Normal

For a plane, we already have the normal.

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 or    𝑃 ∙ 𝑁 + 𝐷 = 0
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Distance attenuation:    𝟏/𝒓𝟐

Angle of incidence:         𝑵 ∙ 𝑳



Normals

We Need a Normal

Question:

How does light intensity relate to scene size?
i.e.: if I scale my scene by a factor 2, what should I do to my lights?

Distance attenuation requires scaling light intensity by 22

 Scene scale does not affect 𝑁 ∙ 𝐿.
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Normals

We Need a Normal

Question:

What happens when a light is near the horizon?

 Angle approaches 90°; cos 𝛼 approaches 0

 Light is distributed over an infinitely large surface

Note: below the horizon, cos𝛼 becomes negative.

 Clamp 𝑁 ∙ 𝐿 to zero.
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Normals

We Need a Normal

Normals are also used to prevent shadow rays.

Situation:

A light source is behind the surface we hit with the primary ray:

𝑁 ∙ 𝐿 < 0

In this case, visibility is 0, and we do not cast the shadow ray.
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Normals

We Need a Normal

Normals for spheres:

The normal for a sphere at a point 𝑃 on the sphere is parallel to the 
vector from the center of the sphere to 𝑃.

𝑁𝑃 =
𝑃 − 𝐶

| 𝑃 − 𝐶 |
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Normals

We Need a Normal

Normals for spheres:

When a sphere is hit from the inside, we need to reverse the normal.

𝑁𝑃 =
𝐶 − 𝑃

| 𝑃 − 𝐶 |

How to detect this situation when it is not trivial:

1. Calculate the normal in the usual manner (𝑃 − 𝐶);

2. If 𝑁𝑃 ∙ 𝐷𝑟𝑎𝑦 < 0 then  𝑁𝑃 = −𝑁𝑃.
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Normals

Normal Interpolation

Simulating smooth surfaces using normal 
interpolation:

1. Generate vertex normals.

A vertex normal is calculated by averaging the 
normals of the triangles connected to the vertex 
and normalizing the result.

2. Interpolate the normals over the triangle. 

In a ray tracer, use barycentric coordinates to do 
this. Normalize the interpolated normal.
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Normals

Normal Interpolation

Using the interpolated normal:

 Use the interpolated normal in the 𝑁 ∙ 𝐿 calculation.
 Use the original face normal when checking if a light is visible.
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Camera

Preparing a Free Camera

The view frustum is uniquely defined by:

 A camera position
 A target location
 A field of view (angle)
 A rotation around the view vector

We can limit this further by specifying an ‘up’ vector, e.g. 0, 1, 0 :

 Camera and target position
 Field of view

Data we need to produce primary rays:

 Camera position, three screen corners.
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Camera

Most Basic Setup

View direction: 
V = normalize( target – pos )

Center of screen:
C = pos + V

Vectors to the left and right:
(-1, 0, 0)  and (1, 0, 0)

Vectors up and down:
(0, 1, 0)  and (0, -1, 0)

Screen corners:
p1 = C + left + up
p2 = C + right + up
p3 = C + left + down
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𝑉



Camera

Adding FOV

We know that:

𝑂 = 1

𝛼 =
1

2
𝐹𝑂𝑉

Using SOHCAHTOA:

tan 𝛼 =
𝑂

𝐴
 𝐴 =

𝑂

tan 𝛼
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Camera

Arbitrary Direction

View direction: 
V = normalize( target – pos )

We know that
up = (0,1,0)

Therefore
left = normalize( cross( V, up ) )

(note that this is true even when 𝑉 is not level)

up = cross( V, left );

Screen corners:
p1 = C + left + up
p2 = C + right + up
p3 = C + left + down
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Camera

Aspect Ratio

Basic idea:

If your window width is 1.3x your window 
height, ||p2-p1|| should be 1.3x ||p3-p1||.

So:
aspectRatio = height / width;

Screen corners:
p1 = C + left + up * aspectRatio
p2 = C + right + up * aspectRatio
p3 = C + left + down * aspectRatio
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Camera

Fisheye Lens
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See:
paulbourke.net/dome/fisheye

See:
rifty-business.blogspot.nl/2013/08/understanding-oculus-rift-distortion.html



Camera
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Camera

Rotating the Camera

Rotation, “The Hard Way”:

 Setup a camera matrix
 Apply this matrix to the screen center.
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Camera

Rotating the Camera

Rotate right, “The Easy Way”:

target = pos + V;
target += C * right;
V = normalize( target – pos );

Rotate up:

target = pos + V;
target += C * up;
V = normalize( target – pos );
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Camera

Framerate

You can make your camera rotate at a constant speed by factoring in 
frame time.

1. Measure the time (in milliseconds) it takes to render a frame
2. For the next frame, multiply movement by this number
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Assignment P2

New Challenge

Smallest executable.
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1k-sw-raytrace'em all by Tristar & Red Sector Inc. (2004)



Assignment P2

Use That Debug Output!
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END of “Ray Tracing (Part 2)”
next lecture: “Ray Tracing (Part 3)”


