
INFOGR – Computer Graphics
Jacco Bikker - April-July 2016 - Lecture 6: “Boxes”

Welcome!

Today’s Agenda:

 Introduction

 Boxes

 AABBs

 Groupings

 Efficiency

 To Rasterization

Introduction

Finalizing the Ray Tracer

… and slowly moving to rasterization:

 Generic scenes: intersecting triangles
 More speed
 Application responsiveness
 Boxes

INFOGR – Lecture 6 – “Boxes” 3

Introduction

Intersecting a Triangle

Many ways to intersect a triangle…

Start with the plane:

𝑁 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑣2 − 𝑣1 × 𝑣3 − 𝑣1

𝑑 = −(𝑁 ∙ 𝑣1)

Calculate the intersection of the ray and the plane:

𝑡 = −(𝑂 ∙ 𝑁 + 𝑑)/(𝐷 ∙ 𝑁)

𝑃 = 𝑂 + 𝑡𝐷

And finally, see if point P is on the same side of the
three planes between the edges and the origin.

For a more efficient algorithm, see:
Fast, Minimum Storage Ray/Triangle Intersection, Möller & Trumbore. Journal of Graphics Tools, 1997.

INFOGR – Lecture 6 – “Boxes” 4

𝑣1

𝑣2

𝑣3

𝑂

𝐷

Introduction

Intersecting a Box

Basic ray/box intersection:

1. Intersect the ray with each of the 6 planes;
2. Keep the intersections that are on the same side of

the remaining planes;
3. Determine the closest intersection point.

INFOGR – Lecture 6 – “Boxes” 5

𝑂

𝐷

Today’s Agenda:

 Introduction

 Boxes

 AABBs

 Groupings

 Efficiency

 To Rasterization

Boxes

Special Case: AABB

AABB: Axis Aligned Bounding Box.

Slab test:

Intersect the ray against pairs of planes;
𝑡𝑚𝑖𝑛 = +∞, 𝑡𝑚𝑎𝑥 = −∞
𝑡𝑚𝑖𝑛 = min(𝑡1, 𝑡2)
𝑡𝑚𝑎𝑥 = max(𝑡1, 𝑡2)

intersection if: 𝑡𝑚𝑖𝑛 < 𝑡𝑚𝑎𝑥

Since the box is axis aligned, calculating t is cheap:

𝑡 = −(𝑂 ∙ 𝑁 + 𝑑)/(𝐷 ∙ 𝑁)

= −(𝑂𝑥 ∙ 𝑁𝑥 + 𝑑)/(𝐷𝑥 ∙ 𝑁𝑥)

= (𝑥𝑝𝑙𝑎𝑛𝑒 − 𝑂𝑥)/𝐷𝑥

INFOGR – Lecture 6 – “Boxes” 7

max(𝑡𝑚𝑖𝑛,)
min(𝑡𝑚𝑎𝑥,)

𝑡1

𝑡2

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

𝑡1

𝑡2

𝑡𝑚𝑖𝑛

𝑑 = −(𝑁 ∙ 𝑃), where P is a point on the plane.

In this case, for 𝑁 = (1,0,0):
𝑑 = −𝑃𝑥 = −𝑥𝑝𝑙𝑎𝑛𝑒 , and thus:

𝑡 = −(𝑂𝑥 ∙ 𝑁𝑥 + 𝑑)/(𝐷𝑥 ∙ 𝑁𝑥)

= −(𝑂𝑥 − 𝑥𝑝𝑙𝑎𝑛𝑒)/𝐷𝑥

=(𝑥𝑝𝑙𝑎𝑛𝑒 − 𝑂𝑥)/𝐷𝑥

Note: during college, the last equation was

erroneously written as (𝑂𝑥 − 𝑥𝑝𝑙𝑎𝑛𝑒)/𝐷𝑥.

Boxes

Special Case: AABB

In pseudo-code:

bool intersection(box b, ray r)
{

float tx1 = (b.min.x - r.O.x) / r.D.x;
float tx2 = (b.max.x - r.O.x) / r.D.x;

float tmin = min(tx1, tx2);
float tmax = max(tx1, tx2);

float ty1 = (b.min.y - r.O.y) / r.D.y;
float ty2 = (b.max.y - r.O.y) / r.D.y;

tmin = max(tmin, min(ty1, ty2));
tmax = min(tmax, max(ty1, ty2));

return tmax >= tmin;
}

INFOGR – Lecture 6 – “Boxes” 8

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

Intersecting a box in 3D:
- 6 multiplications (*)
- 6 subtractions
- 10 min/max
- 1 comparison.
(cheaper than a sphere)

Today’s Agenda:

 Introduction

 Boxes

 AABBs

 Groupings

 Efficiency

 To Rasterization

AABBs

Why Do We Care

We can use an AABB to quickly discard objects.

INFOGR – Lecture 6 – “Boxes” 10

AABBs

Calculating the AABB

Definition:

struct AABB
{

vec3 bmin, bmax;
};

For a sphere:

AABB box;
box.bmin = centre – vec3(r, r, r);
box.bmax = centre + vec3(r, r, r);

INFOGR – Lecture 6 – “Boxes” 11

𝑟

AABBs

Calculating the AABB

For a triangle:

AABB box;
box.bmin = vec3(+INF, +INF, +INF);
box.bmax = vec3(-INF, -INF, -INF);
for(int i = 0; i < 3; i++)
{

for(int a = 0; a < 3; a++)
{

box.bmin[a] = min(vert[i][a], box.bmin[a]);
box.bmax[a] = max(vert[i][a], box.bmax[a]);

}
}

For multiple triangles, the algorithm is the same.

INFOGR – Lecture 6 – “Boxes” 12

AABBs

Calculating the AABB

For multiple AABBs (union):

box.bmin.x = min(A.bmin.x, B.bmin.x);
box.bmax.x = max(A.bmax.x, B.bmax.x);
box.bmin.y = min(A.bmin.y, B.bmin.x);
box.bmax.y = max(A.bmax.y, B.bmax.y);
box.bmin.z = min(A.bmin.z, B.bmin.z);
box.bmax.z = max(A.bmax.z, B.bmax.z);

INFOGR – Lecture 6 – “Boxes” 13

AABBs

Calculating the AABB

Checking AABB intersection:

(A.bmin.x < B.bmax.x)
&& (A.bmin.y < B.bmax.y)
&& (A.bmin.z < B.bmax.z)

INFOGR – Lecture 6 – “Boxes” 14

Today’s Agenda:

 Introduction

 Boxes

 AABBs

 Groupings

 Efficiency

 To Rasterization

Groupings

Hierarchical Grouping

Using AABBs, we can recursively group
objects.

 A ray that misses a green box will not
check the triangles inside it;

 A ray that misses a blue box will skip
the two green boxes inside it;

 A ray that misses the red box doesn’t
hit anything at all.

INFOGR – Lecture 6 – “Boxes” 16

Groupings

Hierarchical Grouping

In a rasterization-based world:

 If a green box is outside the view
frustum, we don’t have to render the
triangles inside it;

 If a blue box is outside the view
frustum, we don’t have to test the green
boxes inside it;

 If the red box is outside the view
frustum, we don’t see anything.

INFOGR – Lecture 6 – “Boxes” 17

Groupings

Culling a Bounding Box

A bounding box is outside the view frustum when:

 All it’s vertices on the backside of a single plane.

INFOGR – Lecture 6 – “Boxes” 18

Groupings

Culling a Bounding Box

A bounding box is outside the view frustum when:

 All it’s vertices on the backside of a single plane.

INFOGR – Lecture 6 – “Boxes” 19

Groupings

Culling a Bounding Box

Instead of checking all eight vertices, we can limit
the test to a single vertex.

 If 𝑁𝑥>0, we use bmax.x, else bmin.x;
 If 𝑁𝑦>0, we use bmax.y, else bmin.y;

 If 𝑁𝑧>0, we use bmax.z, else bmin.z.

INFOGR – Lecture 6 – “Boxes” 20

Groupings

INFOGR – Lecture 6 – “Boxes” 21

Culling a Bounding Box

What about the problematic case?

1. Our test is a conservative test; i.e. it will produce
false negatives, but no false positives.

2. We can improve accuracy (at the cost of extra
calculations) by reversing roles: use the planes of
the AABB to cull the frustum.

Note that this still leaves certain tricky cases. For a perfect solution, check:
http://gamedev.stackexchange.com/questions/44500/how-many-and-which-axes-to-use-for-3d-obb-collision-with-sat

Today’s Agenda:

 Introduction

 Boxes

 AABBs

 Groupings

 Efficiency

 To Rasterization

Efficiency

Measuring Performance

Stopwatch class:

Using System.Diagnostics.Stopwatch;

Useful property:

 long ElapsedMilliseconds { get; }

Methods:

 Reset
 Start
 Stop

INFOGR – Lecture 6 – “Boxes” 23

Note:

Accuracy may vary. Measure lots of
work, not a single line of code. Aim for
tens of milliseconds, not nanoseconds.

Note:

Multithreading affects measurements.
Profile single-threaded code; tune
your multi-threading independently.

Note:

Use a profiler for more accuracy and
detail. Try e.g. SlimTune, or Prof-It:
http://prof-it.sourceforge.net

Efficiency

Optimization Primer

Some things to keep in mind:

 Float or double
 Don’t do work you don’t need to do

 Early out
 Reduce precision
 Lights with finite radius
 Things that can’t occlude light

INFOGR – Lecture 6 – “Boxes” 24

𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 =

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒 1 −
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑟𝑎𝑑𝑖𝑢𝑠

4 2

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 + 1

From:
Real Shading in Unreal Engine 4, Karis, 2013
(also used in Frostbite).

Loop hoisting:
Take expressions that do not rely on the loop
counter outside the loop.

for(int i = 0; i < lights; i++) {
vec3 N = intersection->GetNormal();
vec3 L = light[i]->pos –

intersection->pos;
L.Normalize();
if (dot(L, N) > 0) {

…
}

}

vec3 N = intersection->GetNormal();
for(int i = 0; i < lights; i++) {

vec3 L = light[i]->pos –
intersection->pos;

if (dot(L, N) > 0) {
L.Normalize();
…

}
}

Efficiency

Optimization Primer

Some things to keep in mind:

 Float or double
 Don’t do work you don’t need to do
 Precalculate

 Loop hoisting
 Vertex shaders

INFOGR – Lecture 6 – “Boxes” 25

Efficiency

Optimization Primer

Some things to keep in mind:

 Float or double
 Don’t do work you don’t need to do
 Precalculate
 Expensive operations

 sin, cos
 sqrt
 /
 *
 +, -

INFOGR – Lecture 6 – “Boxes” 26

Look-up tables:

If you need sin/cos, it’s often much faster to
use a look-up table.

float sintab[3600], costab[3600];
for(int i = 0; i < 3600; i++)
{

sintab[i] = Math.Sin(i / 10);
costab[i] = Math.Cos(i / 10);

}

…

float s = sintab[(int)(a * 10)];
float c = costab[(int)(a * 10)];

Efficiency

Optimization Primer

Some things to keep in mind:

 Float or double
 Don’t do work you don’t need to do
 Precalculate
 Expensive operations
 Programming Language

 C#/C++
 C++/Asm

INFOGR – Lecture 6 – “Boxes” 27

Efficiency

Perceived Performance

Incremental Rendering

1. Real-time preview:

 Depth map
 Depth map plus materials
 Render without recursive reflections
 Render with very limited recursion

Still not real-time?

 Render half-res
 Adaptive resolution
 Optimize the application a bit

INFOGR – Lecture 6 – “Boxes” 28

Efficiency

Perceived Performance

Incremental Rendering

2. Stationary camera:

 Render with normal recursion

Keep the application responsive:

Render lines of pixels until a certain number of
milliseconds has passed; continue in the next frame.

INFOGR – Lecture 6 – “Boxes” 29

Efficiency

Perceived Performance

Incremental Rendering

3. ‘Photograph mode’ :

 Invoked with a key
 Render with extreme recursion
 Use anti-aliasing
 Add screenshot feature

Keep the application responsive!

INFOGR – Lecture 6 – “Boxes” 30

Today’s Agenda:

 Introduction

 Boxes

 AABBs

 Groupings

 Efficiency

 To Rasterization

Rasterization

Primary Rays

Ray tracing versus
Rasterization

INFOGR – Lecture 6 – “Boxes” 32

Rasterization

Primary Rays

Ray tracing versus
Rasterization

INFOGR – Lecture 6 – “Boxes” 33

Rasterization:

1. Transform primitive into camera space
2. Project vertices into 2D screen space
3. Determine which pixels are affected
4. Use z-buffer to sort (pixels of) primitives
5. Clip against screen boundaries

Rasterization

Shadow Rays

The rasterization pipeline renders triangles one at a time.

 Shading calculations remain the same
 But determining light visibility is non-trivial.

Rasterization does not have access to global data.

INFOGR – Lecture 6 – “Boxes” 34

Rasterization

Spaces

Ray tracing typically happens in a single 3D coordinate system.

In rasterization, we use many coordinate systems:

 Camera space
 Clip space
 2D screen space
 Model space
 Tangent space

We need efficient tools to get from one space to another. We will make
extensive use of matrices to do this.

INFOGR – Lecture 6 – “Boxes” 35

Rasterization

INFOGR – Lecture 6 – “Boxes” 36

Common Concepts

Many things remain the same:

 Normal interpolation
 Shading
 Texture mapping
 The camera
 Boxes.

Today’s Agenda:

 Introduction

 Boxes

 AABBs

 Groupings

 Efficiency

 To Rasterization

Mid-term Exam

INFOGR – Lecture 6 – “Boxes” 38

What to study for the exam?

1. Slides (mind cursive terminology!)

2. Example exam (now online, discuss next Thursday)

3. Tutorial sheets

Expectations:

 Fluency with vectors, including dot product,
cross product, normalization and all
combinations thereof.

 Good understanding of the ray tracing
algorithm and light transport.

 Knowledge of terminology used in the
lectures.

INFOGR – Computer Graphics
Jacco Bikker - April-July 2016 - Lecture 6: “Boxes”

END of “Boxes”
next lecture: “Acceleration Structures”

