
INFOGR – Computer Graphics
Jacco Bikker - April-July 2016 - Lecture 6: “Boxes”

Welcome!

Today’s Agenda:

 Introduction

 Boxes

 AABBs

 Groupings

 Efficiency

 To Rasterization

Introduction

Finalizing the Ray Tracer

… and slowly moving to rasterization:

 Generic scenes: intersecting triangles
 More speed
 Application responsiveness
 Boxes

INFOGR – Lecture 6 – “Boxes” 3

Introduction

Intersecting a Triangle

Many ways to intersect a triangle…

Start with the plane:

𝑁 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑣2 − 𝑣1 × 𝑣3 − 𝑣1

𝑑 = −(𝑁 ∙ 𝑣1)

Calculate the intersection of the ray and the plane:

𝑡 = −(𝑂 ∙ 𝑁 + 𝑑)/(𝐷 ∙ 𝑁)

𝑃 = 𝑂 + 𝑡𝐷

And finally, see if point P is on the same side of the
three planes between the edges and the origin.

For a more efficient algorithm, see:
Fast, Minimum Storage Ray/Triangle Intersection, Möller & Trumbore. Journal of Graphics Tools, 1997.

INFOGR – Lecture 6 – “Boxes” 4

𝑣1

𝑣2

𝑣3

𝑂

𝐷

Introduction

Intersecting a Box

Basic ray/box intersection:

1. Intersect the ray with each of the 6 planes;
2. Keep the intersections that are on the same side of

the remaining planes;
3. Determine the closest intersection point.

INFOGR – Lecture 6 – “Boxes” 5

𝑂

𝐷

Today’s Agenda:

 Introduction

 Boxes

 AABBs

 Groupings

 Efficiency

 To Rasterization

Boxes

Special Case: AABB

AABB: Axis Aligned Bounding Box.

Slab test:

Intersect the ray against pairs of planes;
𝑡𝑚𝑖𝑛 = +∞, 𝑡𝑚𝑎𝑥 = −∞
𝑡𝑚𝑖𝑛 = min(𝑡1, 𝑡2)
𝑡𝑚𝑎𝑥 = max(𝑡1, 𝑡2)

intersection if: 𝑡𝑚𝑖𝑛 < 𝑡𝑚𝑎𝑥

Since the box is axis aligned, calculating t is cheap:

𝑡 = −(𝑂 ∙ 𝑁 + 𝑑)/(𝐷 ∙ 𝑁)

= −(𝑂𝑥 ∙ 𝑁𝑥 + 𝑑)/(𝐷𝑥 ∙ 𝑁𝑥)

= (𝑥𝑝𝑙𝑎𝑛𝑒 − 𝑂𝑥)/𝐷𝑥

INFOGR – Lecture 6 – “Boxes” 7

max(𝑡𝑚𝑖𝑛,)
min(𝑡𝑚𝑎𝑥,)

𝑡1

𝑡2

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

𝑡1

𝑡2

𝑡𝑚𝑖𝑛

𝑑 = −(𝑁 ∙ 𝑃), where P is a point on the plane.

In this case, for 𝑁 = (1,0,0):
𝑑 = −𝑃𝑥 = −𝑥𝑝𝑙𝑎𝑛𝑒 , and thus:

𝑡 = −(𝑂𝑥 ∙ 𝑁𝑥 + 𝑑)/(𝐷𝑥 ∙ 𝑁𝑥)

= −(𝑂𝑥 − 𝑥𝑝𝑙𝑎𝑛𝑒)/𝐷𝑥

=(𝑥𝑝𝑙𝑎𝑛𝑒 − 𝑂𝑥)/𝐷𝑥

Note: during college, the last equation was

erroneously written as (𝑂𝑥 − 𝑥𝑝𝑙𝑎𝑛𝑒)/𝐷𝑥.

Boxes

Special Case: AABB

In pseudo-code:

bool intersection(box b, ray r)
{

float tx1 = (b.min.x - r.O.x) / r.D.x;
float tx2 = (b.max.x - r.O.x) / r.D.x;

float tmin = min(tx1, tx2);
float tmax = max(tx1, tx2);

float ty1 = (b.min.y - r.O.y) / r.D.y;
float ty2 = (b.max.y - r.O.y) / r.D.y;

tmin = max(tmin, min(ty1, ty2));
tmax = min(tmax, max(ty1, ty2));

return tmax >= tmin;
}

INFOGR – Lecture 6 – “Boxes” 8

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

Intersecting a box in 3D:
- 6 multiplications (*)
- 6 subtractions
- 10 min/max
- 1 comparison.
(cheaper than a sphere)

Today’s Agenda:

 Introduction

 Boxes

 AABBs

 Groupings

 Efficiency

 To Rasterization

AABBs

Why Do We Care

We can use an AABB to quickly discard objects.

INFOGR – Lecture 6 – “Boxes” 10

AABBs

Calculating the AABB

Definition:

struct AABB
{

vec3 bmin, bmax;
};

For a sphere:

AABB box;
box.bmin = centre – vec3(r, r, r);
box.bmax = centre + vec3(r, r, r);

INFOGR – Lecture 6 – “Boxes” 11

𝑟

AABBs

Calculating the AABB

For a triangle:

AABB box;
box.bmin = vec3(+INF, +INF, +INF);
box.bmax = vec3(-INF, -INF, -INF);
for(int i = 0; i < 3; i++)
{

for(int a = 0; a < 3; a++)
{

box.bmin[a] = min(vert[i][a], box.bmin[a]);
box.bmax[a] = max(vert[i][a], box.bmax[a]);

}
}

For multiple triangles, the algorithm is the same.

INFOGR – Lecture 6 – “Boxes” 12

AABBs

Calculating the AABB

For multiple AABBs (union):

box.bmin.x = min(A.bmin.x, B.bmin.x);
box.bmax.x = max(A.bmax.x, B.bmax.x);
box.bmin.y = min(A.bmin.y, B.bmin.x);
box.bmax.y = max(A.bmax.y, B.bmax.y);
box.bmin.z = min(A.bmin.z, B.bmin.z);
box.bmax.z = max(A.bmax.z, B.bmax.z);

INFOGR – Lecture 6 – “Boxes” 13

AABBs

Calculating the AABB

Checking AABB intersection:

(A.bmin.x < B.bmax.x)
&& (A.bmin.y < B.bmax.y)
&& (A.bmin.z < B.bmax.z)

INFOGR – Lecture 6 – “Boxes” 14

Today’s Agenda:

 Introduction

 Boxes

 AABBs

 Groupings

 Efficiency

 To Rasterization

Groupings

Hierarchical Grouping

Using AABBs, we can recursively group
objects.

 A ray that misses a green box will not
check the triangles inside it;

 A ray that misses a blue box will skip
the two green boxes inside it;

 A ray that misses the red box doesn’t
hit anything at all.

INFOGR – Lecture 6 – “Boxes” 16

Groupings

Hierarchical Grouping

In a rasterization-based world:

 If a green box is outside the view
frustum, we don’t have to render the
triangles inside it;

 If a blue box is outside the view
frustum, we don’t have to test the green
boxes inside it;

 If the red box is outside the view
frustum, we don’t see anything.

INFOGR – Lecture 6 – “Boxes” 17

Groupings

Culling a Bounding Box

A bounding box is outside the view frustum when:

 All it’s vertices on the backside of a single plane.

INFOGR – Lecture 6 – “Boxes” 18

Groupings

Culling a Bounding Box

A bounding box is outside the view frustum when:

 All it’s vertices on the backside of a single plane.

INFOGR – Lecture 6 – “Boxes” 19

Groupings

Culling a Bounding Box

Instead of checking all eight vertices, we can limit
the test to a single vertex.

 If 𝑁𝑥>0, we use bmax.x, else bmin.x;
 If 𝑁𝑦>0, we use bmax.y, else bmin.y;

 If 𝑁𝑧>0, we use bmax.z, else bmin.z.

INFOGR – Lecture 6 – “Boxes” 20

Groupings

INFOGR – Lecture 6 – “Boxes” 21

Culling a Bounding Box

What about the problematic case?

1. Our test is a conservative test; i.e. it will produce
false negatives, but no false positives.

2. We can improve accuracy (at the cost of extra
calculations) by reversing roles: use the planes of
the AABB to cull the frustum.

Note that this still leaves certain tricky cases. For a perfect solution, check:
http://gamedev.stackexchange.com/questions/44500/how-many-and-which-axes-to-use-for-3d-obb-collision-with-sat

Today’s Agenda:

 Introduction

 Boxes

 AABBs

 Groupings

 Efficiency

 To Rasterization

Efficiency

Measuring Performance

Stopwatch class:

Using System.Diagnostics.Stopwatch;

Useful property:

 long ElapsedMilliseconds { get; }

Methods:

 Reset
 Start
 Stop

INFOGR – Lecture 6 – “Boxes” 23

Note:

Accuracy may vary. Measure lots of
work, not a single line of code. Aim for
tens of milliseconds, not nanoseconds.

Note:

Multithreading affects measurements.
Profile single-threaded code; tune
your multi-threading independently.

Note:

Use a profiler for more accuracy and
detail. Try e.g. SlimTune, or Prof-It:
http://prof-it.sourceforge.net

Efficiency

Optimization Primer

Some things to keep in mind:

 Float or double
 Don’t do work you don’t need to do

 Early out
 Reduce precision
 Lights with finite radius
 Things that can’t occlude light

INFOGR – Lecture 6 – “Boxes” 24

𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 =

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒 1 −
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑟𝑎𝑑𝑖𝑢𝑠

4 2

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 + 1

From:
Real Shading in Unreal Engine 4, Karis, 2013
(also used in Frostbite).

Loop hoisting:
Take expressions that do not rely on the loop
counter outside the loop.

for(int i = 0; i < lights; i++) {
vec3 N = intersection->GetNormal();
vec3 L = light[i]->pos –

intersection->pos;
L.Normalize();
if (dot(L, N) > 0) {

…
}

}



vec3 N = intersection->GetNormal();
for(int i = 0; i < lights; i++) {

vec3 L = light[i]->pos –
intersection->pos;

if (dot(L, N) > 0) {
L.Normalize();
…

}
}

Efficiency

Optimization Primer

Some things to keep in mind:

 Float or double
 Don’t do work you don’t need to do
 Precalculate

 Loop hoisting
 Vertex shaders

INFOGR – Lecture 6 – “Boxes” 25

Efficiency

Optimization Primer

Some things to keep in mind:

 Float or double
 Don’t do work you don’t need to do
 Precalculate
 Expensive operations

 sin, cos
 sqrt
 /
 *
 +, -

INFOGR – Lecture 6 – “Boxes” 26

Look-up tables:

If you need sin/cos, it’s often much faster to
use a look-up table.

float sintab[3600], costab[3600];
for(int i = 0; i < 3600; i++)
{

sintab[i] = Math.Sin(i / 10);
costab[i] = Math.Cos(i / 10);

}

…

float s = sintab[(int)(a * 10)];
float c = costab[(int)(a * 10)];

Efficiency

Optimization Primer

Some things to keep in mind:

 Float or double
 Don’t do work you don’t need to do
 Precalculate
 Expensive operations
 Programming Language

 C#/C++
 C++/Asm

INFOGR – Lecture 6 – “Boxes” 27

Efficiency

Perceived Performance

Incremental Rendering

1. Real-time preview:

 Depth map
 Depth map plus materials
 Render without recursive reflections
 Render with very limited recursion

Still not real-time?

 Render half-res
 Adaptive resolution
 Optimize the application a bit

INFOGR – Lecture 6 – “Boxes” 28

Efficiency

Perceived Performance

Incremental Rendering

2. Stationary camera:

 Render with normal recursion

Keep the application responsive:

Render lines of pixels until a certain number of
milliseconds has passed; continue in the next frame.

INFOGR – Lecture 6 – “Boxes” 29

Efficiency

Perceived Performance

Incremental Rendering

3. ‘Photograph mode’ :

 Invoked with a key
 Render with extreme recursion
 Use anti-aliasing
 Add screenshot feature

Keep the application responsive!

INFOGR – Lecture 6 – “Boxes” 30

Today’s Agenda:

 Introduction

 Boxes

 AABBs

 Groupings

 Efficiency

 To Rasterization

Rasterization

Primary Rays

Ray tracing versus
Rasterization

INFOGR – Lecture 6 – “Boxes” 32

Rasterization

Primary Rays

Ray tracing versus
Rasterization

INFOGR – Lecture 6 – “Boxes” 33

Rasterization:

1. Transform primitive into camera space
2. Project vertices into 2D screen space
3. Determine which pixels are affected
4. Use z-buffer to sort (pixels of) primitives
5. Clip against screen boundaries

Rasterization

Shadow Rays

The rasterization pipeline renders triangles one at a time.

 Shading calculations remain the same
 But determining light visibility is non-trivial.

Rasterization does not have access to global data.

INFOGR – Lecture 6 – “Boxes” 34

Rasterization

Spaces

Ray tracing typically happens in a single 3D coordinate system.

In rasterization, we use many coordinate systems:

 Camera space
 Clip space
 2D screen space
 Model space
 Tangent space

We need efficient tools to get from one space to another. We will make
extensive use of matrices to do this.

INFOGR – Lecture 6 – “Boxes” 35

Rasterization

INFOGR – Lecture 6 – “Boxes” 36

Common Concepts

Many things remain the same:

 Normal interpolation
 Shading
 Texture mapping
 The camera
 Boxes.

Today’s Agenda:

 Introduction

 Boxes

 AABBs

 Groupings

 Efficiency

 To Rasterization

Mid-term Exam

INFOGR – Lecture 6 – “Boxes” 38

What to study for the exam?

1. Slides (mind cursive terminology!)

2. Example exam (now online, discuss next Thursday)

3. Tutorial sheets

Expectations:

 Fluency with vectors, including dot product,
cross product, normalization and all
combinations thereof.

 Good understanding of the ray tracing
algorithm and light transport.

 Knowledge of terminology used in the
lectures.

INFOGR – Computer Graphics
Jacco Bikker - April-July 2016 - Lecture 6: “Boxes”

END of “Boxes”
next lecture: “Acceleration Structures”

