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Welcome!



Today’s Agenda:

 Rendering Overview

 Matrices

 Transforms
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Topics covered so far:

Basics:
 Rasters
 Vectors
 Color representation

Ray tracing:
 Light transport
 Camera setup
 Textures

Shading:
 N dot L
 Distance attenuation
 Pure specular
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Rendering – Functional overview

1. Transform:
translating / rotating / scaling meshes

2. Project:
calculating 2D screen positions

3. Rasterize:
determining affected pixels

4. Shade:
calculate color per affected pixel

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

Animation, culling, 
tessellation, ...

Postprocessing
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Rendering – Data overview
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Rendering – Data Overview

world

car

wheel

wheel

wheel

wheel

turret

plane planecar

wheel

wheel

wheel

wheel

turret

buggy

wheel

wheel

wheel

wheel

dude

dudedude

camera

𝑇𝑐𝑎𝑚𝑒𝑟𝑎

𝑇𝑐𝑎𝑟1 𝑇𝑝𝑙𝑎𝑛𝑒1 𝑇𝑐𝑎𝑟2 𝑇𝑝𝑙𝑎𝑛𝑒2

𝑇𝑏𝑢𝑔𝑔𝑦
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Rendering – Data Overview

Objects are organized in a hierarchy: the 
scenegraph.

In this hierarchy, objects have translations and 
orientations relative to their parent node.

Relative translations and orientations are 
specified using matrices.

Mesh vertices are defined in a coordinate 
system known as object space.



Rendering

INFOGR – Lecture 8 – “Engine Fundamentals”

Transform

Project

Rasterize

Shade

vertices, transforms

pixels

Rendering – Data Overview

Transform takes our meshes from 
object space (3D) to camera space 
(3D).

Project takes the vertex data from 
camera space (3D) to screen space 
(2D).

textures, shaders, lights

camera transform

screen buffers

vertices

vertices

fragment positions

connectivity data
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Rendering – Data Overview

The screen is represented by (at least) two buffers:
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Rendering – Components

Scenegraph
Culling

Vertex transform pipeline
Matrices to convert from one space to another
Perspective

Rasterization
Interpolation
Clipping
Depth sorting: z-buffer

Shading
Light / material interaction
Complex materials

Lecture 11

Lecture 8
Lecture 9

Lecture 11
Lecture 11

P2
P3
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Bases in ℝ2 and ℝ3

Recall: 

 Two linearly independent vectors form a base.
 We can reach any point in using:

 𝑎 = λ1𝑢 + λ2  𝑣

 If 𝑢 and  𝑣 are perpendicular unit vectors, the base is 
orthonormal.

 The Cartesian coordinate system is an example of 
this, with 𝑢 = (1,0) and  𝑣 = (0,1).

By manipulating 𝑢 and  𝑣, we can create a ‘coordinate 
system’ within a coordinate system. 𝑢

 𝑣
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Bases in ℝ2 and ℝ3

This extends naturally to ℝ3:

Three vectors, 𝑢,  𝑣 and 𝑤 allow us to reach any point in 
3D space;

𝑎 =λ1𝑢 + λ2  𝑣 + λ3 𝑤

Again, manipulating 𝑢,  𝑣 and 𝑤 changes where 
coordinates specified as (λ1, λ2 , λ3) end up.

y

z

x

𝑢

𝑣

𝑤

Matrices
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Matrices

A vector is an ordered set of d scalar values (i.e., a d-tuple):

 𝑣 =
𝑣1

𝑣2

𝑣3

or  (𝑣1, 𝑣2, 𝑣3) or …

A 𝑚 × 𝑛 matrix is an array of 𝑚 ∙ 𝑛 scalar values, sorted in 𝑚 rows and 𝑛
columns:

𝑀 =
𝑎11 𝑎12

𝑎21 𝑎22

The elements 𝑎𝑖𝑗 are referred to as the coefficients of the matrix (or 
elements, entries). Note that here 𝑖 is the row; 𝑗 is the column.

Matrices
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Terminology – Special Matrices

 A diagonal matrix is a matrix for which all elements aij are zero if 𝑖 ≠ 𝑗.
 An identity matrix is a diagonal matrix where each element 𝑎𝑖𝑖 = 1.
 The zero matrix contains only zeroes.

𝐴 =
1.5 0 0
0 0.99 0
0 0 3.14

𝐴 =
1 0 0
0 1 0
0 0 1

𝐴 =
0 0 0
0 0 0
0 0 0

Before we continue, what is  a matrix?

 Just a group of numbers;
 In graphics: often a representation of a coordinate system.

x y z

Matrices
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Matrices - Operations

Matrix addition is defined as:

𝐴 = 𝐵 + 𝐶, with: c𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗

Note that addition is only defined for matrices with the same dimensions.

Example:

1 0
0 1

+
2 2
4 4

=
3 2
4 5

Subtraction works the same.

Matrices
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Matrices - Operations

Multiplying a matrix with a scalar is defined as follows:

𝐴 = λ𝐵, with: a𝑖𝑗 = λ𝑏𝑖𝑗

Example:

2 
1 0
0 1

=
2 0
0 2

Matrices
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Matrices - Operations

Multiplying a matrix (dimensions 𝑤𝐴 × ℎ𝐴) with another 
matrix (dimensions 𝑤𝐵 × ℎ𝐵):

𝐶 = 𝐴𝐵, with:

Example:

2 6 1
5 2 4

1 4
2 5
3 6

=
17 44
21 54

Note the dimensions of the resulting
matrix: ℎ𝐴 × 𝑤𝐵.

Matrix multiplication is only defined
if ℎ𝐴 = 𝑤𝐵 (i.e., the width of B is equal to the height of A).

𝑐11 =  

𝑘=1

3

𝑎1𝑘 𝑏𝑘1 = 2 ∗ 1 + 6 ∗ 2 + 1 ∗ 3 = 17

𝑐21 =  

𝑘=1

3

𝑎2𝑘 𝑏𝑘1 = 5 ∗ 1 + 2 ∗ 2 + 4 ∗ 3 = 21

𝑐12 =  

𝑘=1

3

𝑎1𝑘 𝑏𝑘2 = 2 ∗ 4 + 6 ∗ 5 + 1 ∗ 6 = 44

𝑐22 =  

𝑘=1

3

𝑎2𝑘 𝑏𝑘2 = 5 ∗ 4 + 2 ∗ 5 + 4 ∗ 6 = 54

𝑐𝑖𝑗 =  

𝑘=1

𝑤
𝐴

𝑎𝑖𝑘 𝑏𝑘𝑗

Matrices
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Matrices - Operations

Doing matrix multiplication manually:

1 4
2 5
3 6

2 6 1
5 2 4

? ?
? ?

Note that each cell in the resulting matrix 
is essentially the dot product of a row 
and a column.

Some properties:

Matrix multiplication is distributive over 
addition:

𝐴 𝐵 + 𝐶 = 𝐴𝐵 + 𝐴𝐶
𝐴 + 𝐵 𝐶 = 𝐴𝐶 + 𝐵𝐶

…and associative:

𝐴𝐵 𝐶 = 𝐴 𝐵𝐶

However, matrix multiplication is not 
commutative, i.e., in general:

𝐴𝐵 ≠ 𝐵𝐴

Matrices
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Matrices - Operations

Doing matrix multiplication manually:

1 4
2 5
3 6

2 6 1
5 2 4

? ?
? ?

𝑎 𝑐
𝑏 𝑑

1 0
0 1

𝑎 𝑐
𝑏 𝑑

Multiplying by the zero matrix yields the 
zero matrix:

0𝐴 = 𝐴0 = 0

Multiplying by the identity matrix yields 
the original matrix:

𝐼𝐴 = 𝐴𝐼 = 𝐴

Matrices
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Matrices - Operations

The transpose 𝐴𝑇 of an 𝑚 × 𝑛 matrix is an 𝑛 × 𝑚 matrix that is obtained 
by interchanging rows and columns: 𝑎𝑖𝑗 becomes 𝑎𝑗𝑖 for all 𝑖, 𝑗:

𝐴 =
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝐴𝑇 =
𝑎11 𝑎21 𝑎31

𝑎12 𝑎22 𝑎32

𝑎13 𝑎23 𝑎33

The transpose of the product of two matrices is:

𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇

Matrices



INFOGR – Lecture 8 – “Engine Fundamentals”

Matrices - Operations

The inverse of a matrix 𝐴 is a matrix 𝐴-1 such that

𝐴𝐴−1 = 𝐴−1A = 𝐼

Note: only square matrix possibly have an inverse.

Matrices
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Matrices - Operations

We can multiply a d-dimensional vector by an 𝑚 × 𝑑 matrix:

𝑎11 ⋯ 𝑎1𝑑

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑑

𝑣1

⋮
𝑣𝑑

=

𝑎11𝑣1 + ⋯ + 𝑎1𝑑𝑣𝑑

⋯ + ⋯ + ⋯
𝑎𝑚1𝑣1 + ⋯ + 𝑎𝑚𝑑𝑣𝑑

Example: multiply a 3D vector by a 3x3 matrix:

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝑥
𝑦
𝑧

=

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧
𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧
𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧

Matrices

Note:

This is the same as matrix 
concatenation; the vector is 
simply an 𝑚 × 1 matrix.
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Matrices - Operations

We can multiply a d-dimensional vector by an 𝑚 × 𝑑 matrix:

𝑎11 ⋯ 𝑎1𝑑

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑑

𝑣1

⋮
𝑣𝑑

=

𝑎11𝑣1 + ⋯ + 𝑎1𝑑𝑣𝑑

⋯ + ⋯ + ⋯
𝑎𝑚1𝑣1 + ⋯ + 𝑎𝑚𝑑𝑣𝑑

Example: multiply a 3D vector by a 3x3 matrix:

𝑢𝑥 𝑣𝑥 𝑤𝑥

𝑢𝑦 𝑣𝑦 𝑤𝑦

𝑢𝑧 𝑣𝑧 𝑤𝑧

𝑥
𝑦
𝑧

=

𝑢𝑥𝑥 + 𝑣𝑥𝑦 + 𝑤𝑥𝑧
𝑢𝑦𝑥 + 𝑣𝑦𝑦 + 𝑤𝑦𝑧

𝑢𝑧𝑥 + 𝑣𝑧𝑦 + 𝑤𝑧𝑧
= 𝑥𝑢 + 𝑦  𝑣 + 𝑧𝑤

Matrices

Note:

This is the same as matrix 
concatenation; the vector is 
simply an 𝑚 × 1 matrix.

u v w
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Matrices – Determinant

The determinant 𝐴 of an 𝑛 × 𝑛 matrix A is the signed 
area or volume spanned by its column vectors.

Example (in ℝ2 ):

𝐴 =
𝑎11 𝑎12

𝑎21 𝑎22
det A = |A| = 

𝑎11 𝑎12

𝑎21 𝑎22

In this case, the determinant is the oriented area of the 
parallelogram defined by the two column vectors.

The determinant is positive if the vectors are counter-
clockwise, or negative if they are clockwise. Therefore:

det 𝑎1 𝑎2 = −det |𝑎2 𝑎1|

Matrices

(𝑎12, 𝑎22)

(𝑎11, 𝑎21)
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Matrices – Determinant

The determinant 𝐴 of an 𝑛 × 𝑛 matrix A is the 
signed volume spanned by its column vectors.

In ℝ3, the determinant is the oriented area of the 
parallelepiped defined by the three column 
vectors.

det 𝐴 = 𝐴 =
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

Matrices
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Matrices – Determinant

Calculating determinants: Laplace’s expansion.

The determinant of a matrix is the sum of the products 
of the elements of any row or column of the matrix 
with their cofactors.

The cofactor of an entry 𝑎𝑖𝑗 in an 𝑛 × 𝑛 matrix A is:

 The determinant of the (𝑛 − 1) × 𝑛 − 1 matrix A’ ,
 that is obtained from A by removing the 𝑖-th row 

and 𝑗-th column,
 multiplied by -1i+j .

Matrices

Example:

𝐴 =
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝑎11
𝑐 =

𝑎22 𝑎23

𝑎32 𝑎33
∗ (−12)

𝑎12
𝑐 =

𝑎21 𝑎23

𝑎31 𝑎33
∗ (−13)

𝑎13
𝑐 =

𝑎21 𝑎22

𝑎31 𝑎32
∗ (−14)

𝐴 = 𝑎11 𝑎11
𝑐 + 𝑎12 𝑎12

𝑐 +𝑎13 𝑎13
𝑐
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Matrices – Determinant

Full example for 3 × 3 matrix:

0 1 2
3 4 5
6 7 8

= 0
4 5
7 8

− 1
3 5
6 8

+ 2
3 4
6 7

3 5
6 8

= 3 ∗ 8 ∗ −12 + 5 ∗ 6 ∗ −13 = −6

3 4
6 7

= 3 ∗ 7 ∗ −12 + 4 ∗ 6 ∗ −13 = −3

0 – 1 ∗ −6 + 2 ∗ −3 = 0.

Matrices

Generic approach for a for 3 × 3 matrix:

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

= 𝑎
𝑒 𝑓
ℎ 𝑖

− ⋯

= 𝑎𝑒𝑖 + 𝑏𝑓𝑔 + 𝑐𝑑ℎ − (𝑐𝑒𝑔 + 𝑎𝑓ℎ + 𝑏𝑑𝑖)

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

Rule of Sarrus for 2 × 2:  
𝑎 𝑏
𝑐 𝑑

= 𝑎𝑑 − 𝑏𝑐
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Matrices – Adjoint

The adjoint (or adjugate)  𝐴 of matrix 𝐴 is the transpose of the 
cofactor matrix of A.

Example:

𝐴 =
2 5
1 3

 𝐶 =
3 ∗ (−12) 1 ∗ (−13)
5 ∗ (−13) 2 ∗ (−14)

=
3 −1

−5 2

𝑎𝑑𝑗 𝐴 = 𝐶𝑇 =
3 −5

−1 2
.

Matrices

The cofactor of an entry 𝑎𝑖𝑗 in an 𝑛 × 𝑛
matrix A is:

 The determinant of the 
(𝑛 − 1) × 𝑛 − 1 matrix A’ ,

 that is obtained from A by removing 
the 𝑖-th row and 𝑗-th column,

 multiplied by -1i+j .
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Matrices – Inverse

The adjoint is used to calculate the inverse 𝐴
_1 of a matrix A:

𝐴
_1 =

 𝐴

|𝐴|

Matrices
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Matrices – Overview

𝐴 =
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

=
1 0 0
0 1 0
0 0 1

𝑛 × 𝑚: n rows, m columns

det 𝐴 = 𝐴 = 1 = 𝑎𝑒𝑖 + 𝑏𝑓𝑔 + 𝑐𝑑ℎ − (𝑐𝑒𝑔 + 𝑎𝑓ℎ + 𝑏𝑑𝑖)

𝐴 =
1 0
0 1

note: 
−1 0
0 1

= −1,    and: det 𝑎1 𝑎2 = −det |𝑎2 𝑎1|

cofactor 𝑎11
𝑐 =

𝑎22 𝑎23

𝑎32 𝑎33
∗ (−12) Adjoint  𝐴 of A is 𝐶𝑇; inverse 𝐴

_1 is  
 𝐴

|𝐴|
.

Matrices

y

z

x

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖
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Spaces - Introduction

As we have seen before, we can multiply a matrix with a vector.

In 2D: 
𝑎11 𝑎12

𝑎21 𝑎22

𝑥
𝑦 =

𝑎11𝑥 + 𝑎12𝑦
𝑎21𝑥 + 𝑎22𝑦

In 3D:
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

𝑥
𝑦
𝑧

=

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧
𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧
𝑎31𝑥 + 𝑎32𝑦 + 𝑎33𝑧

Geometric interpretation:

scalar multiplication of 
𝑎11

𝑎21
by 𝑥, plus

scalar multiplication of 
𝑎12

𝑎22
by 𝑦 yields

transformed point.

= 𝑥
𝑎11

𝑎21
+ 𝑦

𝑎12

𝑎22

= 𝑥
𝑎11

𝑎21

𝑎31

+ 𝑦
𝑎12

𝑎22

𝑎32

+ 𝑧
𝑎13

𝑎23

𝑎33

𝑎11

𝑎21

𝑎12

𝑎22
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Spaces – Introduction

A matrix allows us to transform a coordinate system.

× =

rotation
+

scale

Transforms
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Spaces – Scaling

To scale by a factor 2 with respect to 
the origin, we apply the matrix

2 0
0 2

Applied to a vector, we get:

2 0
0 2

𝑥
𝑦 =

2𝑥 + 0𝑦
0𝑥 + 2𝑦

=
2𝑥
2𝑦

This is called uniform scaling.

𝑥, 𝑦 =
(2,1)

2𝑥, 2𝑦 =
(4,2)

Transforms
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Spaces – Projection

If we set one of the 𝑎𝑖𝑖 to 0, we get an 
orthographic projection.

1 0
0 0

This is useful for projecting a shadow 
of the dragon on the x-axis, or to draw 
a 3D object on a 2D screen.

Transforms
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Spaces – Reflection

We can construct a matrix that will 
swap 𝑥 and 𝑦 coordinates to get a 
reflection in the line 𝑦 = 𝑥:

0 1
1 0

𝑥
𝑦 =

0𝑥 + 1𝑦
1𝑥 + 0𝑦

=
𝑦
𝑥

𝑦 = 𝑥

Transforms
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Spaces – Shearing

Pushing things sideways:

1 1
0 1

𝑥
𝑦 =

1𝑥 + 1𝑦
1𝑦

=
𝑥 + 𝑦

𝑥

This is called shearing.

Transforms
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Spaces – Rotation

To rotate counter-clockwise about the 
origin, we use the following matrix:

cos ∅ −𝑠𝑖𝑛∅
sin ∅ 𝑐𝑜𝑠∅

For clockwise rotation, we use

cos ∅ 𝑠𝑖𝑛∅
−sin ∅ 𝑐𝑜𝑠∅

Ф

Transforms
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Spaces – Linear transformations

A function 𝑇: ℝ𝑛 → ℝ𝑚 is called a linear transformation, 
if it satisfies:

1. 𝑇 𝑢 +  𝑣 = 𝑇 𝑢 + 𝑇  𝑣
for all 𝑢,  𝑣 ϵ ℝ𝑛.

2. 𝑇 𝑐  𝑣 = 𝑐𝑇  𝑣
for all  𝑣 ∈ ℝ𝑛 and all scalars c.

Linear transformations can be represented by matrices.

We can summarize both conditions into one equation:

𝑇 𝑐1𝑢 + 𝑐2  𝑣 = 𝑐1𝑇 𝑢 + 𝑐2𝑇  𝑣
for all 𝑢,  𝑣 ∈ ℝ𝑛 and all scalars c1, c2.

𝑥, 𝑦 =
(2,1)

2𝑥, 2𝑦 =
(4,2)

Transforms
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Spaces – Linear transformations

𝑇 𝑐1𝑢 + 𝑐2  𝑣 = 𝑐1𝑇 𝑢 + 𝑐2𝑇  𝑣
for all 𝑢,  𝑣 ∈ ℝ𝑛 and all scalars c1, c2.

Remember Cartesian coordinates, where each vector 𝑤
can be expressed as a linear combination of base vectors 
𝑢 and  𝑣:

𝑤 =
𝑥
𝑦 = 𝑥

1
0

+ 𝑦
0
1

If we apply a linear transform T to this vector, we get

𝑇
𝑥
𝑦 = 𝑇 𝑥

1
0

+ 𝑦
0
1

= 𝑥𝑇(
1
0

) + 𝑦𝑇(
0
1

)

𝑥, 𝑦 =
(2,1)

2𝑥, 2𝑦 =
(4,2)

Transforms



INFOGR – Lecture 8 – “Engine Fundamentals”

Spaces – Linear transformations

𝑇 𝑐1𝑢 + 𝑐2  𝑣 = 𝑐1𝑇 𝑢 + 𝑐2𝑇  𝑣
for all 𝑢,  𝑣 ∈ ℝ𝑛 and all scalars c1, c2.

Matrices are constructed conveniently using 
two base vectors.

𝑢

 𝑣

𝑢

 𝑣

𝑢

 𝑣

Transforms



INFOGR – Lecture 8 – “Engine Fundamentals”

Spaces – Transforming normals

Unfortunately, normals are not always transformed correctly.

To transform a normal vector 𝑛 correctly under a given linear 
transformation 𝐴, we have to apply the matrix

𝐴
_1 𝑇

Why?

Note: if the transform is orthonormal, 
A

_1 = 𝐴 T ;  therefore 𝐴
_1 𝑇 = 𝐴 .

𝑛

 𝑡

Transforms
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Spaces – Transforming normals

We know that tangent vectors are transformed correctly: 𝐴 𝑡 =  𝑡𝐴 . But: 𝐴𝑛 ≠ 𝑛𝐴. 
Goal: find a matrix 𝐌 that transforms 𝒏 correctly, i.e. 𝑀𝑛 = 𝑛𝑀, where 𝑛𝑀 is the correct normal of 
the transformed surface.

Because the original normal vector 𝑛 is perpendicular to the original tangent vector  𝑡, we know 

that 𝑛 ∙  𝑡 = 0. This is the same as 𝑛 𝐼  𝑡 = 0. Since 𝐼 = 𝐴
_1𝐴, this is the same as 𝑛 (𝐴

_1𝐴)  𝑡 = 0.

Because 𝐴 𝑡 = 𝑡𝐴 is the correctly transformed tangent vector, we have 𝑛 𝐴
_1  𝑡𝐴 = 0.

Because their scalar product is 0, 𝑛 𝐴
_1 must be orthogonal to  𝑡𝐴. So, the vector we are looking for 

must be: 𝑛𝑀 = 𝑛 𝐴
_1 (which suggests 𝑀 = 𝐴

_1).

Because of how matrix multiplication is defined, 𝑛𝑀 and 𝑛 are transposed vectors. We can rewrite 
this to 𝑛𝑀 = (𝑛𝑇𝐴

_1)T. And finally, remember that 𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇 , which gets us 𝑛𝑀 = 𝐴
_1 𝑇𝑛.

Transforms
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Spaces – Needful things

Three things left undiscussed:

1. Reverting a transform
2. Combining transforms
3. Translation

Reverting a transform:

Invert the matrix.

Note: doesn’t always work; e.g. the 
matrix for orthographic projection 
has no inverse.

Combining transforms:

Use matrix multiplication.

Note: matrix multiplication is not 
commutative, mind the order!

Transforms



Today’s Agenda:

 Rendering Overview

 Matrices

 Transforms
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END of “Engine Fundamentals”
next lecture: “Transformations”


