tic: ⊾ (depth < 144

= inside / l nt = nt / nc, ddo ps2t = 1.0f - ont D, N); D)

st a = nt - nc, b - nt st Tr = 1 - (80 + (1 Tr) R = (0 * nnt - N

= diffuse = true;

efl + refr)) 88 (depth k HANDI

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it properly if; adiance = SampleLight(%rand I. .x + radiance.y + radiance.r) > 0_____

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Puncture st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * 100

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, Nrd) prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

INFOGR – Computer Graphics

J. Bikker - April-July 2016 - Lecture 8: "Engine Fundamentals"

Welcome!

tic: ⊾ (depth < 1955

:= inside / i it = nt / nc, ddo os2t = 1.8f - ont 0; N); 3)

at a = nt - nc, b - nt - --at Tr = 1 - (80 + (1 Tr) R = (0 * nnt - N

= diffuse; = true;

= efl + refr)) && (depth < HAND

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it property ff; radiance = SampleLight(%rand, I & .x + radiance.y + radiance.z) > 0) %

v = true;

at brdfPdf = EvaluateDiffuse(L, N) Paur st3 factor = diffuse = INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) = [Pdd]

andom walk - done properly, closely following a /ive)

; t3 Brdf = SampleDiffuse(diffuse, N, r1, r2, RR, set urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Today's Agenda:

- Rendering Overview
- Matrices
- Transforms

Rendering

- st a = nt

-), N); efl * E * diffuse; = true;

AXDEPTH)

- survive = SurvivalProbability(diff if; adiance = SampleLight(&rand, I, LL e.x + radiance.y + radiance.z) > 0) 6
- v = true; at brdfPdf = EvaluateDiffuse(L, N) st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf) at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)
- andom walk done properly, closely follo vive)
- at3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, UR rvive; pdf; i = E * brdf * (dot(N, R) / pdf); sion = true:

Topics covered so far:

Basics:

- Rasters
- Vectors
- Color representation

Ray tracing:

- Light transport
- Camera setup
 - Textures

Shading:

- N dot L
- Distance attenuation

- Pure specular

Rendering

- ic) € (depth ⊂ NASS
- = = inside / : it = nt / nc, ddn ss2t = 1.8f - nnt -2, N); 8)
- st a = nt nc, b + nt + st Tr = 1 - (R0 + (1 - 1 fr) R = (D * nnt - N *
- E * diffuse; = true;
- efl + refr)) && (depth k HACD
-), N); -efl * E * diffuse; = true;
- AXDEPTH)
- survive = SurvivalProbability(different estimation - doing it properly, if; radiance = SampleLight(%rand, I, M, I) e.x + radiance.y + radiance.z) > 0) MM

- Rendering Functional overview
- 1. Transform: translating / rotating / scaling meshes
- 2. Project: calculating 2D screen positions
- 3. Rasterize: determining affected pixels
- 4. Shade: calculate color per affected pixel

Animation, culling, tessellation, ...

pixels

Postprocessing

camera

 T_{car1}

car

(turret)

dude)

T_{camera}

(wheel)

(wheel)

Rendering

Rendering – Data Overview

plane

world

car

(turret)

(dude)

plane1

(wheel)

(wheel)

 T_{car2}

(wheel)

(wheel)

T_{buggy}

plane

plane2

), N); = true;

AXDEPTH)

survive = SurvivalPr wheel if; adiance = SampleLight(e.x + radiance.y + radiance v = true; at brdfPdf = EvaluateDiffu st3 factor = diffuse = INVPI at weight = Mis2(directPdf, brdfPdf

at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPd andom walk - done properly, closely fol

vive)

at3 brdf = SampleDiffuse(diffuse, N, r1 urvive;

wheel)

pdf; i = E * brdf * (dot(N, R) / pdf); sion = true:

Rendering

"Le: € (depth (192

= = inside / : it = nt / nc, ddo -552t = 1.0f - nnt -3, N); 3)

it a = nt - hc, b + nt + ntit Tr = 1 - (R0 + (1 - 1))'r) R = (0 + nnt - R - 1)

= diffuse; = true;

efl + refr)) && (depth is HANDIN

), N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it property ff; radiance = SampleLight(&rand, I,) e.x + radiance.y + radiance.r) = 0

v = true;

st brdfPdf = EvaluateDiffuse(L, N) * Pause st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * 0000

andom walk - done properly, closely following : /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, RR, D) pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Rendering – Data Overview

Objects are organized in a hierarchy: the *scenegraph*.

In this hierarchy, objects have translations and orientations relative to their parent node.

Relative translations and orientations are specified using matrices.

Mesh vertices are defined in a coordinate system known as *object space*.

Rendering

tice ≰ (depth (⊂1888

= inside / 1 it = nt / nc, ddo ss2t = 1.8f - nnt 5, N); 3)

st a = nt - nc, b = nt - ncst Tr = 1 - (R0 + (1 - 1))Tr) R = (0 + nnt - 1)

= diffuse; = true;

efl + refr)) && (depth & NADIII

D, N); -efl * E * diffuse; = true;

AXDEPTH)

v = true; at brdfPdf = EvaluateDiffuse(L, N

st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * (***

andom walk - done properly, closely following : /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, Not prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Rendering – Data Overview

Transform takes our meshes from object space (3D) to camera space (3D).

Project takes the vertex data from camera space (3D) to screen space (2D).

Rendering

Rendering – Data Overview

The screen is represented by (at least) two buffers:

(depth (Marca) = inside / 1 nt = nt / nc. dde

os2t = 1.0f), N); B)

at a = nt - nc, b - nt at Tr = 1 - (R0 + 1 Tr) R = (D * nnt - N

= diffuse = true;

: :fl + refr)) && (depth & MADIIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it property ff; radiance = SampleLight(&rand I e.x + radiance.y + radiance.r)

w = true; at brdfPdf = EvaluateDiffuse(L, N,) * P at3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf

andom walk - done properly, closely following

vive)

; t3 brdf = SampleDiffuse(diffuse, N, r1, r2, RR both nrvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Rendering

= inside / : nt = nt / nc, d/n -552t = 1.0f - nnt -2, N); 3)

st a = nt - nc, b - nt st Tr = 1 - (R0 + (1 - 1 Tr) R = (D - nnt - N - 1

= diffuse; = true;

-: :fl + refr)) && (depth is MARD)

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

w = true; at brdfPdf = EvaluateDiffuse(L, N) * Puer st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following /ive)

, t3 brdf = SampleDiffuse(diffuse, N, r1, r2, HR, hpt urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Rendering – Components
Scenegraph Culling
Vertex transform pipeline Matrices to convert from one space to another Perspective
Rasterization
Interpolation
Clipping

Depth sorting: z-buffer

Shading

Light / material interaction Complex materials *Lecture 11*

Lecture 8 Lecture 9

Lecture 11 Lecture 11 P2

P3

tic: ⊾ (depth < 1955

:= inside / i it = nt / nc, ddo os2t = 1.8f - ont 0; N); 3)

at a = nt - nc, b - nt - --at Tr = 1 - (80 + (1 Tr) R = (0 * nnt - N

= diffuse; = true;

= efl + refr)) && (depth < HAND

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it property ff; radiance = SampleLight(%rand, I & .x + radiance.y + radiance.z) > 0) %

v = true;

at brdfPdf = EvaluateDiffuse(L, N) Paur st3 factor = diffuse = INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) = [Pdd]

andom walk - done properly, closely following a /ive)

; t3 Brdf = SampleDiffuse(diffuse, N, r1, r2, RR, set urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Today's Agenda:

- Rendering Overview
- Matrices
- Transforms

Matrices

tic: k (depth < 100

= inside / 1 ht = nt / nc, dde os2t = 1.0f - nnt -0, N); 0)

st a = nt - nc, b - nt st Tr = 1 - (80 + (1 Tr) R = (0 * nnt - N

= diffuse; = true;

-:fl + refr)) && (depth K MA

D, N); -efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it property if; radiance = SampleLight(&rand, I, I) e.x + radiance.y + radiance.r) = 0

v = true; t brdfPdf = EvaluateDiffuse(L, N.) * Poil st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, lock prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Bases in \mathbb{R}^2 and \mathbb{R}^3

Recall:

- Two linearly independent vectors form a base.
- We can reach any point in using:
 - $\vec{a} = \lambda_1 \vec{u} + \lambda_2 \vec{v}$
- If \vec{u} and \vec{v} are perpendicular unit vectors, the base is *orthonormal*.
- The Cartesian coordinate system is an example of this, with $\vec{u} = (1,0)$ and $\vec{v} = (0,1)$.

By manipulating \vec{u} and \vec{v} , we can create a 'coordinate system' within a coordinate system.

Matrices

tic: ⊾ (depth < 100

: = inside / l it = nt / nc, dde os2t = 1.0f - ont), N); 3)

at a = nt - nc, b - mt - ncat Tr = 1 - (R0 + (1 - mt))Tr) R = (0 + mt - N - mt)

= diffuse; = true;

: :fl + refr)) && (depth < HADDITI

), N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it property if; adiance = SampleLight(&rand, I, I, I, e.x + radiance.y + radiance.z) = 0

v = true;

st brdfPdf = EvaluateDiffuse(L, N) * Paurole st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * 100

andom walk - done properly, closely following a /ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, soft urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Bases in \mathbb{R}^2 and \mathbb{R}^3

This extends naturally to \mathbb{R}^3 :

Three vectors, \vec{u} , \vec{v} and \vec{w} allow us to reach any point in 3D space;

$$u = \lambda_1 \vec{u} + \lambda_2 \vec{v} + \lambda_3 \vec{w}$$

Again, manipulating \vec{u} , \vec{v} and \vec{w} changes where coordinates specified as $(\lambda_1, \lambda_2, \lambda_3)$ end up.

12

Matrices

Matrices

tic: ≰ (depth < Norr

: = inside / 1 it = nt / nc, dde os2t = 1.0f - nnt), N); 3)

st a = nt - nc, b + nt + st Tr = 1 - (R0 + (1 Tr) R = (D * nnt - N *

E = diffuse; = true;

-:fl + refr)) 88 (depth k HANI

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it properly ff; radiance = SampleLight(\$rand, 1 2.x + radiance.y + radiance.z) > 0)

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pi at3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf

indom walk - done properly, closely following
/ive)

; t33 brdf = SampleDiffuse(diffuse, N, r1, r2, RR, ser urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

A vector is an ordered set of *d* scalar values (i.e., a *d*-tuple):

$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
 or (v_1, v_2, v_3) or ...

A $m \times n$ matrix is an array of $m \cdot n$ scalar values, sorted in m rows and n columns:

$$=\begin{pmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}$$

M

The elements a_{ij} are referred to as the *coefficients* of the matrix (or elements, entries). Note that here *i* is the row; *j* is the column.

Matrices

tice (depth (1000-

= inside / 1 ht = nt / nc, dde bs2t = 1.0f - nnt -D, N); B)

at a = nt - nc, b - nt - at Tr = 1 - (R0 + (1 Tr) R = (D * nnt - N

E * diffuse; = true;

= e**fl + refr)) && (depth** < HANDI

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(&rand, I, &) e.x + radiance.y + radiance.z) > 0) &

v = true;

at brdfPdf = EvaluateDiffuse(L, N) * F
st3 factor = diffuse * INVPI;
bt weight = Mis2(directPdf, brdfPdf);
st cosThetaOut = dot(N, L);
E * ((weight * cosThetaOut) / directPdf

andom walk - done properly, closely following /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, F1, F2, NR pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Terminology – Special Matrices

- A *diagonal matrix* is a matrix for which all elements a_{ij} are zero if $i \neq j$.
- An *identity matrix* is a diagonal matrix where each element $a_{ii} = 1$.
- The *zero matrix* contains only zeroes.

$$A = \begin{pmatrix} 1.5 & 0 & 0 \\ 0 & 0.99 & 0 \\ 0 & 0 & 3.14 \end{pmatrix} \qquad A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 \end{pmatrix}$$
$$X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Before we continue, what *is* a matrix?

- Just a group of numbers;
- In graphics: often a representation of a coordinate system.

Matrices

Matrices - Opera

le: (depth < NASS

: = inside / i nt = nt / nc, dde os2t = 1.0f - nnt -2, N); 3)

st a = nt - nc, b - nt st Tr = 1 - (R0 + (1 Tr) R = (D * nnt - N -

E = diffuse; = true;

efl + refr)) 88 (depth k MANDI

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it property if; radiance = SampleLight(%rand, I & e.x + radiance.y + radiance.z) = 0)

v = true; at brdfPdf = EvaluateDiffuse(L, N.) * Promise st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) *

andom walk - done properly, closely following: /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, R, ser pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Matrices - Operations

Matrix addition is defined as:

A = B + C, with: $c_{ij} = a_{ij} + b_{ij}$

Note that addition is only defined for matrices with the same dimensions.

Example:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 2 & 2 \\ 4 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 4 & 5 \end{pmatrix}$$

Subtraction works the same.

Matrices

Matrices - Operations

Multiplying a matrix with a scalar is defined as follows:

$$A = \lambda B$$
, with: $a_{ij} = \lambda b_{ij}$

Example:

 $2\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

AXDEPTH)

), N);

-efl * E * diffuse;

survive = SurvivalProbability(difference estimation - doing it properly if; adiance = SampleLight(&rand, I, I, e.x + radiance.y + radiance.z) > 0) #

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pour st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, F1, F2, UR, body pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Matrices

Matrices - Operations

tic: k (depth < 19

: = inside / 1 it = nt / nc, dde os2t = 1.0f - nn: 0, N); 0)

st a = nt - nc, b - nt st Tr = 1 - (R0 + 1 Tr) R = (0 * nnt - 11*

= diffuse; = true;

-:fl + refr)) && (depth & HANDIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it property ff; radiance = SampleLight(&rand, I, L) e.x + radiance.y + radiance.r) = 0 = 0

v = true;

at brdfPdf = EvaluateDiffuse(L, N) * *
st3 factor = diffuse * INVPI;
at weight = Mis2(directPdf, brdfPdf);
at cosThetaOut = dot(N, L);
E * ((weight * cosThetaOut) / directPdf

andom walk - done properly, closely fo /ive)

; t3 brdf = SampleDiffuse(diffuse, N, r1, r2, L rvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Multiplying a matrix (dimensions $w_A \times h_A$) with another matrix (dimensions $w_B \times h_B$):

$$C = AB$$
, with: $c_{ij} = \sum_{k=1}^{W_A} a_{ik} b_{kj}$

Example:

Note the dimensions of the resulting matrix: $h_A \times w_B$.

Matrix multiplication is only defined if $h_A = w_B$ (*i.e., the width of B is equal to the height of A*).

$$c_{11} = \sum_{k=1}^{3} a_{1k} b_{k1} = 2 * 1 + 6 * 2 + 1 * 3 = 17$$

$$c_{21} = \sum_{k=1}^{3} a_{2k} b_{k1} = 5 * 1 + 2 * 2 + 4 * 3 = 21$$

$$c_{12} = \sum_{k=1}^{3} a_{1k} b_{k2} = 2 * 4 + 6 * 5 + 1 * 6 = 44$$

$$c_{22} = \sum_{k=1}^{3} a_{2k} b_{k2} = 5 * 4 + 2 * 5 + 4 * 6 = 54$$

Matrices

tice ⊾ (depth < 10.5

= inside / 1 ht = nt / nc, ddo os2t = 1.8f - ont 0; N); 3)

st a = nt - nc, b - nt + + st Tr = 1 - (R8 + + + + Tr) R = (D * nnt - N * + +

= diffuse; = true;

-:fl + refr)) && (depth < NAA

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

vive)

survive = SurvivalProbability(difference estimation - doing it property ff; radiance = SampleLight(&rand, I, L) e.x + radiance.y + radiance.r) > 0)

w = true; st brdfPdf = EvaluateDiffuse(L, N) ot3 factor = diffuse = INVPI; st weight = Mis2(directPdf, brdfPdf st cosThetaOut = dot(N, L);

andom walk - done properly, closely following

E * ((weight * cosThetaOut) / directPdf)

; bt3 brdf = SampleDiffuse(diffuse, N, r1, r2, R, L urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Matrices - Operations

Doing matrix multiplication manually:

Note that each cell in the resulting matrix is essentially the dot product of a row and a column.

Some properties:

Matrix multiplication is distributive over addition:

A(B + C) = AB + AC(A + B)C = AC + BC

...and associative:

(AB)C = A(BC)

However, matrix multiplication is not commutative, i.e., in general:

 $AB \neq BA$

Matrices

efl + refr)) && (depth

), N); -efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(diff adiance = SampleLight(&rand, I. e.x + radiance.y + radiance.z) > (

v = true; at brdfPdf = EvaluateDiffuse(L, N st3 factor = diffuse * INVPI;

at weight = Mis2(directPdf, brdfPdf) at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf

andom walk - done properly, closely felle vive)

at3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, U rvive; pdf; i = E * brdf * (dot(N, R) / pdf); sion = true:

Matrices - Operations

Doing matrix multiplication manually:

 $\binom{c}{d}$

 $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$

b

Multiplying by the zero matrix yields the zero matrix:

0A = A0 = 0

Multiplying by the identity matrix yields the original matrix:

IA = AI = A

Matrices

Matrices - Operations

tic: ⊾(depth < 10

: = inside / | it = nt / nc, dda os2t = 1.0f = ant 0, N); 3)

st a = nt - nc, b - nt st Tr = 1 - (R0 + 1 Tr) R = (D * nnt - N *

= diffuse; = true;

-:fl + refr)) && (depth is HANDII

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it property ff; radiance = SampleLight(&rand, I .x + radiance.y + radiance.r) = 0.000

w = true; st brdfPdf = EvaluateDiffuse(L, N) ' st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf

at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * (P

andom walk - done properly, closely following . /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, R, ser pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

The *transpose* A^T of an $m \times n$ matrix is an $n \times m$ matrix that is obtained by interchanging rows and columns: a_{ij} becomes a_{ji} for all i, j:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \qquad A^{T} = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

The transpose of the product of two matrices is:

 $\overline{(AB)^T = B^T A^T}$

Matrices

Matrices - Operations

The *inverse* of a matrix *A* is a matrix *A*⁻¹ such that

 $AA^{-1} = A^{-1}A = I$

Note: only square matrix possibly have an inverse.

at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * andom walk - done properly, closely follow/r /ive)

efl + refr)) && (depth < H

survive = SurvivalProbability(diff

radiance = SampleLight(&rand, I, L., e.x + radiance.y + radiance.z) > 0) []

at brdfPdf = EvaluateDiffuse(L, N) =) at3 factor = diffuse = INVPI;

-efl * E * diffuse;

), N);

AXDEPTH)

v = true;

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, Npd) prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Matrices

Matrices - Operations

We can multiply a *d*-dimensional vector by an $m \times d$ matrix:

$$\begin{pmatrix} a_{11} & \cdots & a_{1d} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{md} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix} = \begin{pmatrix} a_{11}v_1 + \cdots + a_{1d}v_d \\ \cdots + \cdots + \cdots \\ a_{m1}v_1 + \cdots + a_{md}v_d \end{pmatrix}$$

Note:

This is the same as matrix concatenation; the vector is simply an $m \times 1$ matrix.

Example: multiply a 3D vector by a 3x3 matrix:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_{11}x + a_{12}y + a_{13}z \\ a_{21}x + a_{22}y + a_{23}z \\ a_{31}x + a_{32}y + a_{33}z \end{pmatrix}$$

vive)

andom walk - done properly, closely follow

at3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, ... irvive; pdf; i = E * brdf * (dot(N, R) / pdf); sion = true:

efl + refr)) && (depth k

), N); efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(diff adiance = SampleLight(&rand, I, L e.x + radiance.y + radiance.z) > 0)

v = true; at brdfPdf = EvaluateDiffuse(L, N st3 factor = diffuse * INVPI: at weight = Mis2(directPdf, brdfPdf) at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

Matrices

Matrices - Operations

We can multiply a *d*-dimensional vector by an $m \times d$ matrix:

$$\begin{pmatrix} a_{11} & \cdots & a_{1d} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{md} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix} = \begin{pmatrix} a_{11}v_1 + \cdots + a_{1d}v_d \\ \cdots + \cdots + \cdots \\ a_{m1}v_1 + \cdots + a_{md}v_d \end{pmatrix}$$

Note:

This is the same as matrix concatenation; the vector is simply an $m \times 1$ matrix.

Example: multiply a 3D vector by a 3x3 matrix:

=

v_{χ} u_x $|W_{\chi}|$ v_y W_y $u_{\mathbf{v}}$ v_z \mathcal{U}_{Z} W_{7}

st weight = Mis2(directPdf, brdfPdf) at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf

survive = SurvivalProbability dif

-adiance = SampleLight(&rand, I. e.x + radiance.y + radiance.z) > (

st brdfPdf = EvaluateDiffuse(L, st3 factor = diffuse * INVPI;

efl + refr)) && (depth c

-efl * E * diffuse;

), N);

AXDEPTH)

v = true;

if;

andom walk - done properly, closely follo vive)

at3 brdf = SampleDiffuse(diffuse, N, r1, r2, R, A irvive; pdf; i = E * brdf * (dot(N, R) / pdf); sion = true:

$\begin{pmatrix} u_x \overline{x} + v_x y + w_x z \\ u_y x + v_y y + w_y z \\ u_z x + v_z y + w_z z \end{pmatrix} = x \overline{u} + y \overline{v} + z \overline{w}$

 $\begin{pmatrix} x \\ y \end{pmatrix}$

Matrices

tice ⊾ (depth ic NAS

z = inside / L it = nt / nc, ddo os2t = 1.0f - nnt -O, N); δ)

st $a = nt - nc_1 b - nt$ st Tr = 1 - (R0 + (1))Tr) R = (0 = nnt - N)

= diffuse = true;

. :fl + refr)) && (depth ⊂ HAND

), N); -efl * E * diffuse; = true;

AXDEPTH)

v = true; at brdfPdf = EvaluateDiffuse(L, N) * F st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf

andom walk - done properly, closely followin /ive)

; ot3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, Upd) prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Matrices – Determinant

The determinant |A| of an $n \times n$ matrix A is the signed area or volume spanned by its column vectors.

Example (in \mathbb{R}^2):

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \quad \det A = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

In this case, the determinant is the oriented area of the *parallelogram* defined by the two column vectors.

The determinant is positive if the vectors are counterclockwise, or negative if they are clockwise. Therefore:

$$\det |\overrightarrow{a1} \, \overrightarrow{a2}| = -\det |\overrightarrow{a2} \, \overrightarrow{a1}|$$

Matrices

tice ⊾ (depth < NAS

: = inside / l it = nt / nc, dde os2t = l.0f - nnt -D, N); B)

st a = nt - nc, b - nt + st Tr = 1 - (R0 + (1 - 1))
r) R = (D * nnt - N *)

= diffuse; = true;

efl + refr)) && (depth & HAADII

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it property if; radiance = SampleLight(&rand, I .x + radiance.y + radiance.r) _____

w = true; st brdfPdf = EvaluateDiffuse(L, N) * st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPdf) * ()

andom walk - done properly, closely following :
/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, brain pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Matrices – Determinant

The determinant |A| of an $n \times n$ matrix A is the signed volume spanned by its column vectors.

In \mathbb{R}^3 , the determinant is the oriented area of the parallelepiped defined by the three column vectors.

 $\det A = |A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$

Matrices

-1cc 6 (depth < 155

= inside / i nt = nt / nc, dde os2t = 1.8f - nnt -0, N); ∂)

st a = nt - nc, b - nt - st Tr = 1 - (R0 + (1 - R0 fr) R = (D * nnt - R

= diffuse; = true;

efl + refr)) && (depth k HAADI

D, N); refl * E * diffuse; = true;

AXDEPTH)

v = true; st brdfPdf = EvaluateDiffuse(L, N) * Pours st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following : /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, bod urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Matrices – Determinant

Calculating determinants: Laplace's expansion.

The determinant of a matrix is the sum of the products of the elements of any row or column of the matrix with their *cofactors*.

The cofactor of an entry a_{ii} in an $n \times n$ matrix A is:

- The determinant of the $(n-1) \times (n-1)$ matrix A',
- that is obtained from *A* by removing the *i*-th row and *j*-th column,
 multiplied by -1^{i+j}.

Example:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\begin{aligned} a_{11}^{c} &= \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} * (-1^{2}) \\ a_{12}^{c} &= \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} * (-1^{3}) \\ a_{13}^{c} &= \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} * (-1^{4}) \end{aligned}$$

 $|A| = a_{11}a_{11}^c + a_{12}a_{12}^c + a_{13}a_{13}^c$

Matrices

Matrices – Determinant

 $\begin{vmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{vmatrix} = 0 \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} - 1 \begin{vmatrix} 3 & 5 \\ 6 & 8 \end{vmatrix} + 2 \begin{vmatrix} 3 & 4 \\ 6 & 7 \end{vmatrix}$

 $\begin{vmatrix} 3 & 5 \\ 6 & 8 \end{vmatrix} = 3 * 8 * -1^2 + 5 * 6 * -1^3 = -6$

 $\begin{vmatrix} 3 & 4 \\ 6 & 7 \end{vmatrix} = 3 * 7 * -1^2 + 4 * 6 * -1^3 = -3$

Full example for 3×3 matrix:

0 - 1 * - 6 + 2 * - 3 = 0.

:= inside / ; it = nt / nc, dd os2t = 1.0f - ~~), N);))

st a = nt - nc_{1} b - ntst Tr = 1 - (R0 + (1 Tr) R = (0 * nnt - N *

= diffuse; = true;

-:fl + refr)) && (depth & MACOLLIN

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it properly if; radiance = SampleLight(&rand, I ______ e.x + radiance.y + radiance.r_____

v = true; ∎t brdfPdf = EvaluateDiffuse(L, N)

st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directPdf) * ()

andom walk - done properly, closely following :
/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, R, R, r pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Generic approach for a for 3×3 matrix:

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - \cdots$$

= (aei + bfg + cdh) - (ceg + afh + bdi)

a b c a b c d e f d e f g h i g h i

Rule of Sarrus for 2 × 2: $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

Matrices

tic: ⊾(depth < 12

: = inside / l it = nt / nc, ddo os2t = 1.0f - nnt '), N); 3)

st $a = nt - nc_{1} b - nt$ st Tr = 1 - (R0 + (1 - 1))Tr) R = (0 + nnt - 1)

= diffuse = true;

: :**fl + refr))** && (depth < MA

), N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(different estimation - doing it properly ff; radiance = SampleLight(&rand, I .x + radiance.y + radiance.r)

v = true;

at brdfPdf = EvaluateDiffuse(L, N) Provide st3 factor = diffuse = INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following -/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, RR, Sch pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Matrices – Adjoint

The *adjoint* (or *adjugate*) \tilde{A} of matrix A is the transpose of the cofactor matrix of A.

Example:

$$I = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \implies C = \begin{pmatrix} 3 * (-1^2) & 1 * (-1^3) \\ 5 * (-1^3) & 2 * (-1^4) \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix}$$

$$adj(A) = C^T = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}.$$

The cofactor of an entry a_{ij} in an $n \times n$ matrix A is:

- The determinant of the $(n-1) \times (n-1)$ matrix A',
- that is obtained from A by removing the *i*-th row and *j*-th column,
- multiplied by -1^{i+j}.

Matrices

Matrices – Inverse

tice ≰ (depth < 10000

:= inside / l it = nt / nc, dde os2t = 1.0f - nnt 0, N); 3)

st $a = nt - nc_{1} b - nt + st$ st Tr = 1 - (R0 + 1)Tr) R = (0 * nnt - N *)

= diffuse = true;

-: **:fl + refr)) && (depth k NACD**

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(%rand, I, M. e.x + radiance.y + radiance.r) > 0) %

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Puncture st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * 100

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, Sch pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

$$A^{-1} = \frac{\tilde{A}}{|A|}$$

The adjoint is used to calculate the inverse A^{-1} of a matrix A:

 $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Matrices

efl + refr)) && (depth

), N); efl * E * diffuse;

AXDEPTH)

survive = SurvivalProbability if: -adiance = SampleLight(&rand, I. e.x + radiance.y + radiance.z) > 0

v = true;

at brdfPdf = EvaluateDiffuse(st3 factor = diffuse * INVPI at weight = Mis2(directPdf, brdfPdf

at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPd

andom walk - done properly, closely f vive)

at3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR rvive; pdf; i = E * brdf * (dot(N, R) / pdf); sion = true:

Matrices – Overview

cofactor $a_{11}^c = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} * (-1^2)$

 $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $n \times m$: n rows, m columns

det(A) = |A| = 1 = (aei + bfg + cdh) - (ceg + afh + bdi)

note: $\begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix} = -1$, and: det $|\overrightarrow{a1} \, \overrightarrow{a2}| = -\det |\overrightarrow{a2} \, \overrightarrow{a1}|$

Adjoint \tilde{A} of A is C^{T} ; inverse A^{-1} is $\frac{A}{|A|}$.

tic: ⊾ (depth < 1955

:= inside / i it = nt / nc, ddo os2t = 1.8f - ont 0; N); 3)

at a = nt - nc, b - nt - --at Tr = 1 - (80 + (1 Tr) R = (0 * nnt - N

= diffuse; = true;

= efl + refr)) && (depth < HAND

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it property ff; radiance = SampleLight(%rand, I & .x + radiance.y + radiance.z) > 0) %

v = true;

at brdfPdf = EvaluateDiffuse(L, N) Paur st3 factor = diffuse = INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) = [Pdd]

andom walk - done properly, closely following a /ive)

; t33 brdf = SampleDiffuse(diffuse, N, r1, r2, RR, ser urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Today's Agenda:

- Rendering Overview
- Matrices
- Transforms

Spaces - Introduction

As we have seen before, we can multiply a matrix with a vector.

In 2D: $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_{11}x + a_{12}y \\ a_{21}x + a_{22}y \end{pmatrix} = x \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} + y \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix}$

$$\ln 3D: \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_{11}x + a_{12}y + a_{13}z \\ a_{21}x + a_{22}y + a_{23}z \\ a_{31}x + a_{32}y + a_{33}z \end{pmatrix} = x \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + y \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix} + z \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}$$

AXDEPTH)

), N);

efl * E * diffuse;

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pau st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely folic-/ive)

st3 brdf = SampleDiffuse(diffuse, N, r1, r2, 48, urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Geometric interpretation:

scalar multiplication of $\begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}$ by *x*, plus scalar multiplication of $\begin{pmatrix} a_{12} \\ a_{12} \\ a_{22} \end{pmatrix}$ by *y* yields *transformed point.*

Transforms

Spaces – Introduction

A matrix allows us to *transform* a coordinate system.

= = inside / : it = nt / nc., ddi 552t = 1.0f - nn 5, N); 3)

at a = nt - nc, b - nt - at Tr = 1 - (R0 + (1 Tr) R = (D * nnt - N

= diffus = true;

efl + refr)) && (depth & Hotbill

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it property if; radiance = SampleLight(&rand, I. .x + radiance.y + radiance.r) = 0.000

v = true; at brdfPdf = EvaluateDiffuse(L, N,) * Pauro st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following : /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, ppd prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true; =

Х

rotation + scale

tic: k (depth < 100

= inside / 1 it = nt / nc. dde -552t = 1.0f = nnt -5, N); 8)

nt a = nt - nc, b - mt nt Tr = 1 - (R8 + (1 "r) R = (D * nnt - N *

E * diffuse; = true;

-:fl + refr)) && (depth k HANDII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it properly if; radiance = SampleLight(%rand I = 1, .x + radiance.y + radiance.z)

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pours st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) *

andom walk - done properly, closely following /ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Spaces – Scaling

To scale by a factor 2 with respect to the origin, we apply the matrix

 $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

Applied to a vector, we get:

 $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + 0y \\ 0x + 2y \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \end{pmatrix}$

This is called *uniform scaling*.

Transforms

tice ≰ (depth < 1000

= = inside / 1 ht = nt / nc, dif 552t = 1.0f = nnt 3, N); 8)

E = diffuse; = true;

-:fl + refr)) 88 (depth & MANDII

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it property if; adiance = SampleLight(%rand, I = x + radiance.y + radiance.z) > 0) %

v = true; tbrdfPdf = EvaluateDiffuse(L, N.) * Point st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

sndom walk - done properly, closely following vive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, bp3 pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Spaces – Projection

If we set one of the a_{ii} to 0, we get an *orthographic projection*.

 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

This is useful for projecting a shadow of the dragon on the x-axis, or to draw a 3D object on a 2D screen.

tic: ⊾(depth < NA

= inside / l nt = nt / nc, ddo ps2t = 1.0f - ont D, N); D)

st a = nt - nc, b = nt + cst Tr = 1 - (R0 + c)Tr R = (D - nnt - N - c)

E ⁼ diffuse = true;

: efl + refr)) && (depth ⊂ HANDIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; adiance = SampleLight(%rand, I,) e.x + radiance.y + radiance.z) > 0) %

v = true;

st brdfPdf = EvaluateDiffuse(L, N.) Pauro st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * (null)

andom walk - done properly, closely following -/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, F1, F2, UR, S pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Spaces – Reflection

We can construct a matrix that will swap x and y coordinates to get a reflection in the line y = x:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0x + 1y \\ 1x + 0y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}$$

y = x

tic: K (depth < 10

= inside / 1 it = nt / nc, dda os2t = 1.0f - nnt 0, N(); 3)

st a = nt - nc, b = nt - scst $Tr = 1 - (R0 + (1 - Tr))R = (D^{-1} nnt - N^{-1})$

= diffuse = true;

-:fl + refr)) && (depth & NADE 1

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it property if; radiance = SampleLight(%rand, I, Market e.x + radiance.y + radiance.z) > 0) %

v = true; ot brdfPdf = EvaluateDiffuse(L, N) ↑ P

st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, F1, F2, UR, S pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Spaces – Shearing

Pushing things sideways:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1x + 1y \\ 1y \end{pmatrix} = \begin{pmatrix} x + y \\ x \end{pmatrix}$$

This is called *shearing*.

tic: ⊾(depth ∈ 100

= inside / 1 it = nt / nc, dde -552t = 1.0f - nnt -5, N); 3)

at a = nt - nc, b + nt - ncat Tr = 1 - (R0 + (1 - 1))(r) $R = (D^{-1} nnt - N^{-1})$

E * diffuse; = true;

-:fl + refr)) 88 (depth < MAND)

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(d.f. estimation - doing it properly if; adiance = SampleLight(%rand, I. ... e.x + radiance.y + radiance.z) = 0

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pourst3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) *

andom walk - done properly, closely following : /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, N, so pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Spaces – Rotation

To rotate counter-clockwise about the origin, we use the following matrix:

 $\begin{pmatrix} \cos \emptyset & -\sin \emptyset \\ \sin \emptyset & \cos \emptyset \end{pmatrix}$

For clockwise rotation, we use

 $\begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix}$

tic: ⊾ (depth < 100

= inside / 1 it = nt / nc, ddm -552t = 1.8f - nnt -2, N); 8)

at a = nt - nc, b - nt at Tr = 1 - (80 + (1 Tr) R = (0 * nnt - N

E ⁼ diffuse = true;

-: :fl + refr)) && (depth k HAXDIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(&rand, I, I, I, e.x + radiance.y + radiance.z) = 0)

v = true; at brdfPdf = EvaluateDiffuse(L, N) * F st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf

andom walk - done properly, closely following /ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, bod urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Spaces – Linear transformations

A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear transformation, if it satisfies:

1. $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all $\vec{u}, \vec{v} \in \mathbb{R}^n$.

2. $T(c\vec{v}) = cT(\vec{v})$ for all $\vec{v} \in \mathbb{R}^n$ and all scalars c.

Linear transformations can be represented by matrices.

We can summarize both conditions into one equation:

 $T(c_1\vec{u} + c_2\vec{v}) = c_1T(\vec{u}) + c_2T(\vec{v})$ for all $\vec{u}, \vec{v} \in \mathbb{R}^n$ and all scalars c_1, c_2 .

tic: K (depth < 12

: = inside / 1 ht = nt / nc, dde os2t = 1.0f - nnt -D, N); B)

st a = nt - nc, b - nt + st st Tr = 1 - (R0 + (1 Tr) R = (D * nnt - N *

= diffuse; = true;

e**fl + refr))** && (depth k HAADII

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it proper) if; adiance = SampleLight(%rand, I, I, I, e.x + radiance.y + radiance.r) = 0.000

v = true; at brdfPdf = EvaluateDiffuse(L

st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPd

indom walk - done properly, closely following
/ive)

, t33 brdf = SampleDiffuse(diffuse, N, r1, r2, 4R, hpt urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Spaces – Linear transformations

 $T(c_1\vec{u} + c_2\vec{v}) = c_1T(\vec{u}) + c_2T(\vec{v})$ for all $\vec{u}, \vec{v} \in \mathbb{R}^n$ and all scalars c_1, c_2 .

Remember Cartesian coordinates, where each vector \vec{w} can be expressed as a linear combination of base vectors \vec{u} and \vec{v} :

$$\vec{w} = \begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

If we apply a linear transform T to this vector, we get

$$T\left(\binom{x}{y}\right) = T\left(x\binom{1}{0} + y\binom{0}{1}\right) = xT\binom{1}{0} + yT\binom{0}{1}$$

tic: ⊾ (depth < 100

: = inside / 1 it = nt / nc, dde os2t = 1.0f = nnt '), N); 3)

at a = nt - nc, b - nt - at Tr = 1 - (R0 + (1 - 1) Tr) R = (D * nnt - N

= diffuse; = true;

-: :fl + refr)) && (depth < NADIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

v = true; at brdfPdf = EvaluateDiffuse(L, N.) * Pauro st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * ***

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, brd pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Spaces – Linear transformations

 $T(c_1\vec{u} + c_2\vec{v}) = c_1T(\vec{u}) + c_2T(\vec{v})$ for all $\vec{u}, \vec{v} \in \mathbb{R}^n$ and all scalars c_1, c_2 .

Matrices are constructed conveniently using two base vectors.

Why?

Transforms

tic: k (depth < 100

:= inside / 1 it = nt / nc, dda ps2t = 1.0f - nnt p, N(); 0)

st a = nt - nc, b - nt + st Tr = 1 - (R0 + (1 - 1 Tr) R = (D - nnt - N - 1

= = diffuse; = true;

: :fl + refr)) && (depth < HACOIOT

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it property if; radiance = SampleLight(%rand, I e.x + radiance.y + radiance.z) = 0)

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Ps st3 factor = diffuse * INVPT; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, brd pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Spaces – Transforming normals

Unfortunately, normals are not always transformed correctly.

To transform a normal vector \vec{n} correctly under a given linear transformation A, we have to apply the matrix

 $(A^{-1})^T$

Note: if the transform is orthonormal, $A^{-1} = A^{T}$; therefore $(A^{-1})^{T} = A$.

Spaces – Transforming normals

We know that tangent vectors are transformed correctly: $A\vec{t} = \vec{t}_A$. But: $A\vec{n} \neq \vec{n}_A$. Goal: **find a matrix M that transforms** \vec{n} **correctly**, i.e. $M\vec{n} = \vec{n}_M$, where \vec{n}_M is the correct normal of the transformed surface.

Because the original normal vector \vec{n} is perpendicular to the original tangent vector \vec{t} , we know that $\vec{n} \cdot \vec{t} = 0$. This is the same as $\vec{n} I \vec{t} = 0$. Since $I = A^{-1}A$, this is the same as $\vec{n} (A^{-1}A) \vec{t} = 0$.

Because $A\vec{t} = t_A$ is the correctly transformed tangent vector, we have $\vec{n} A^{-1} \vec{t}_A = 0$.

Because their scalar product is 0, $\vec{n} A^{-1}$ must be orthogonal to \vec{t}_A . So, the vector we are looking for must be: $\vec{n}_M = \vec{n} A^{-1}$ (which suggests $M = A^{-1}$).

Because of how matrix multiplication is defined, \vec{n}_M and \vec{n} are transposed vectors. We can rewrite this to $\vec{n}_M = (\vec{n}^T A^{-1})^T$. And finally, remember that $(AB)^T = B^T A^T$, which gets us $\vec{n}_M = (A^{-1})^T \vec{n}$.

), N); refl * E * diffuse; = true; MAXDEPTH)

efl + refr)) && (de

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(\$rand, I, I, e.x + radiance.y + radiance.z) > 0)

w = true; t brdfPdf = EvaluateDiffuse(L, N) it3 factor = diffuse * INVPI; it weight = Mis2(directPdf, brdfPdf it cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / direct3

andom walk - done properly, closely following /ive)

; ot3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, Dot prvive; pdf; a = E * brdf * (dot(N, R) / pdf); sion = true;

Transforms

tice € (depth < 1000

: = inside / l it = nt / nc, dde os2t = l.0f - nnt -D, N); B)

at a = nt - nc, b - nt at Tr = 1 - (R0 -Tr) R = (D * nnt - N *

= diffuse; = true;

-:fl + refr)) && (depth k HANDIIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; adiance = SampleLight(%rand, I, M) = x + radiance.y + radiance.r) > 0) %

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pour st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * 000

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, br pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Spaces – Needful things

Three things left undiscussed:

- . Reverting a transform
- 2. Combining transforms
- 3. Translation

Reverting a transform:

Invert the matrix.

Note: doesn't always work; e.g. the matrix for orthographic projection has no inverse.

Combining transforms:

Use matrix multiplication.

Note: matrix multiplication is not commutative, mind the order!

tic: ⊾ (depth < 1955

:= inside / i it = nt / nc, ddo os2t = 1.8f - ont 0; N); 3)

at a = nt - nc, b - nt - --at Tr = 1 - (80 + (1 Tr) R = (0 * nnt - N

= diffuse; = true;

= efl + refr)) && (depth < HAND

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it property ff; radiance = SampleLight(%rand, I & .x + radiance.y + radiance.z) > 0) %

v = true;

at brdfPdf = EvaluateDiffuse(L, N) Paur st3 factor = diffuse = INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) = [Pdd]

andom walk - done properly, closely following a /ive)

; t33 brdf = SampleDiffuse(diffuse, N, r1, r2, RR, ser urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Today's Agenda:

- Rendering Overview
- Matrices
- Transforms

tic: k (depth < 100

: = inside / 1 it = nt / nc, dde os2t = 1.0f - nn: 0, N(); 3)

st a = nt - nc, b - nt st Tr = 1 - (R0 + 11 fr) R = (D * nnt - N

= diffuse = true;

--:fl + refr)) && (depth < HAND)

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it properly if; radiance = SampleLight(%rand, I & e.x + radiance.y + radiance.z) = 0)

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pour base st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * 0000

andom walk - done properly, closely following : /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, L, H pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

INFOGR – Computer Graphics

J. Bikker - April-July 2016 - Lecture 8: "3D Engine Fundamentals"

END of "Engine Fundamentals"

next lecture: "Transformations"

