
INFOGR – Computer Graphics
J. Bikker - April-July 2016 - Lecture 9: "Transformations"

Welcome!

1

2

Today’s Agenda:

 Affine Transforms

 Projection

 Pipeline Recap

 Rasterization

Spaces – Translation

Translation is not a linear transform.

With linear transforms, we get:

𝑎11 𝑎12
𝑎21 𝑎22

𝑥
𝑦 =

𝑎11𝑥 + 𝑎12𝑦
𝑎21𝑥 + 𝑎22𝑦

But we need something like:

𝑥
𝑦 =

𝑥 + 𝑥𝑡
𝑦 + 𝑦𝑡

We can do this with a combination of linear transformations and
translations called affine transformations.

Transforms

INFOGR – Lecture 9 – "Transformations" 3

Spaces – Translation

Observe: in 2D, shearing “pushes things sideways” (e.g., in
the 𝑥 direction), in a “fixed level” (the 𝑦 value).

We are thus performing a translation in a 1D subspace (a
line), using matrix multiplication in 2D.

In 3D, shearing leads to translation in a 2D subspace, i.e. a
plane.

(𝑥, 𝑦, 0)

(𝑥, 𝑦, 𝑙)

(𝑥 + 𝑥𝑡, 𝑦, 𝑙)

(𝑥 + 𝑥𝑡, 𝑦, 0)

Transforms

𝐴 =
1

2

3

0 1
; 𝐴

𝑥
𝑦 =

𝑥 +
2

3
𝑦

𝑦

INFOGR – Lecture 9 – "Transformations" 4

Spaces – Translation

By adding a 3rd dimension to 2D space, we can use matrix
multiplication to do translation.

𝑀
𝑥
𝑦
𝑧

=
𝑥 + 𝑥𝑡
𝑦 + 𝑦𝑡
𝑧

But: what does matrix 𝑀 look like? What about 𝑥𝑡 and 𝑦𝑡?
And how do we deal with the third coordinate 𝑧?

Transforms

INFOGR – Lecture 9 – "Transformations" 5

Spaces – Translation

Shearing in 3D based on the z coordinate is a simple generalization of 2D
shearing:

1 0 𝑥𝑡
0 1 𝑦𝑡
0 0 1

𝑥
𝑦
𝑧

=

1𝑥 + 0𝑦 + 𝑥𝑡𝑧
0𝑥 + 1𝑦 + 𝑦𝑡𝑧
0𝑥 + 0𝑦 + 1𝑧

=
𝑥 + 𝑥𝑡𝑧
𝑦 + 𝑦𝑡𝑧

𝑧

The final step is to set z to 1.

1 0 𝑥𝑡
0 1 𝑦𝑡
0 0 1

𝑥
𝑦
1

=
𝑥 + 𝑥𝑡
𝑦 + 𝑦𝑡
1

Transforms

INFOGR – Lecture 9 – "Transformations" 6

Spaces – Translation

Translations in 2D can be represented as shearing in 3D by looking at the
plane 𝑧 = 1.

By representing our 2D points (𝑥, 𝑦) by 3D vectors (𝑥, 𝑦, 1), we can
translate them about (𝑥𝑡, 𝑦𝑡) by applying the following matrix:

1 0 𝑥𝑡
0 1 𝑦𝑡
0 0 1

𝑥
𝑦
1

=
𝑥 + 𝑥𝑡
𝑦 + 𝑦𝑡
1

That works for points. What about vectors? We use the following transform:

1 0 𝑥𝑡
0 1 𝑦𝑡
0 0 1

𝑥
𝑦
0

=
𝑥
𝑦
0

Transforms

INFOGR – Lecture 9 – "Transformations" 7

Spaces – Translation

Affine transformations (i.e., linear transformations and translations) can be
done with matrix multiplication if we add homogeneous coordinates, i.e.

 A third coordinate 𝑧 = 1 to each point: 𝑝 =
𝑥
𝑦
1

 A third coordinate z = 0 to each vector: 𝑣 =
𝑥
𝑦
0

 A third row (0 0 1) to each matrix.

Transforms

INFOGR – Lecture 9 – "Transformations" 8

Spaces – Translation

These concepts apply naturally to 3D, in which case we again add a
homogeneous coordinate, i.e.

 A fourth coordinate w = 1 to each point;

 A fourth coordinate 𝑤 = 0 to each vector;

 A fourth row (0 0 0 1) to each matrix.

Transforms

INFOGR – Lecture 9 – "Transformations" 9

10

Today’s Agenda:

 Affine Transforms

 Projection

 Pipeline Recap

 Rasterization

Perspective

Projection – Applying matrices, working our way backwards

Goal: create 2D images of 3D scenes

Standard approach: linear perspective (in contrast to e.g. fisheye views)

Parallel
projection:

Perspective
projection:

11

INFOGR – Lecture 9 – "Transformations" 11

Parallel projection:

Maps 3D points to 2D by moving them along a projection direction until
they hit an image plane.

Perspective projection:

Maps 3D points to 2D by projecting them along lines that pass through a
single viewpoint until they hit an image plane.

Perspective

12

INFOGR – Lecture 9 – "Transformations" 12

Perspective

13

INFOGR – Lecture 9 – "Transformations" 13

Perspective

14

INFOGR – Lecture 9 – "Transformations" 14

Perspective

15

INFOGR – Lecture 9 – "Transformations" 15

Perspective

16

INFOGR – Lecture 9 – "Transformations" 16

Perspective

17

INFOGR – Lecture 9 – "Transformations" 17

Perspective

18

INFOGR – Lecture 9 – "Transformations" 18

Perspective projection

World space (3D) Screen space (2D)

We get our 3D objects perspective correct on the 2D screen
by applying a sequence of matrix operations.

Perspective

19

INFOGR – Lecture 9 – "Transformations" 19

The camera is defined by:

 Its position E

 The view direction 𝑉
 The image plane (defined by its distance

𝑑, aspect ratio and the field of view)

The view frustum is the volume visible
from the camera. It is defined by:

 A near and a far plane 𝑛 and 𝑓;
 A left and a right plane 𝑙 and 𝑟;
 A top and a bottom plane 𝑡 and 𝑏 (in 3D).

y

x
z

FOV

E

𝑉

𝑑

𝑛

𝑓

𝑟

𝑙

The world according to the camera:

Camera space

Perspective

20

INFOGR – Lecture 9 – "Transformations" 20

Camera space: looking down negative 𝑧.

We can now map from (𝑥, 𝑦, 𝑧) to (𝑥𝑠, 𝑦𝑠)
(but this mapping is not trivial)

Projection (and later: clipping) becomes easier
when we switch to an orthographic view
volume.

This time the mapping is:
𝑥, 𝑦, 𝑧 → 𝑥, 𝑦 → 𝑥𝑠, 𝑦𝑠 .

Going from camera space to the orthographic
view volume can be achieved using a matrix
multiplication.

x

-z
y

𝑧 = 𝑛

𝑧 = 𝑓

x

-z
y

𝑧 = 𝑛 𝑧 = 𝑓

Perspective

21

INFOGR – Lecture 9 – "Transformations" 21

The final transform is the one that takes us
from the orthographic view volume to the
canonical view volume.

Again, this is done using a matrix.

𝑥 = 1

-z

𝑧 = −1 𝑧 = 1

𝑥 = −1

Perspective

22

INFOGR – Lecture 9 – "Transformations" 22

Transformation Pipeline

World space camera space orthographic view canonical view

I × Mcamera × Mortho × Mcanonical

These can be collapsed into a single 4 × 4 matrix.

Perspective

23

INFOGR – Lecture 9 – "Transformations" 23

Transformation Pipeline

Canonical view screen

We need one last transform:

From canonical view (-1..1) to 2D
screen space (𝑁𝑥 × 𝑁𝑦).

Screen space (2D)

Perspective

24

INFOGR – Lecture 9 – "Transformations" 24

Transformation Pipeline

STEP ONE: canonical view to screen space

Vertices in the canonical view are
orthographically projected on an 𝑛𝑥 × 𝑛𝑦 image.

We need to map the square [-1,1]2 onto a
rectangle 0, 𝑛𝑥 × [0, 𝑛𝑦]. Matrix:

𝑛𝑥
2

0
𝑛𝑥
2

0
𝑛𝑦
2

𝑛𝑦
2

0 0 1

This is assuming we already threw away 𝑧 to get
an orthographic projection. We will however
combine all matrices in the end, so we actually
need a 4 × 4 matrix:

𝑀𝑣𝑝 =

𝑛𝑥
2

0

0
𝑛𝑦
2

0
𝑛𝑥
2

0
𝑛𝑦
2

0 0
0 0

1 0
0 1

Perspective

25

INFOGR – Lecture 9 – "Transformations" 25

Transformation Pipeline

STEP ONE: canonical view to screen space

We now know the final transform for the vertices:

𝑥𝑠𝑐𝑟𝑒𝑒𝑛
𝑦𝑠𝑐𝑟𝑒𝑒𝑛
𝑧𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙

1

= 𝑀𝑣𝑝

𝑥𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙
𝑦𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙
𝑧𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙

1

Next step: getting from the orthographic view
volume to the canonical view volume.

Perspective

26

INFOGR – Lecture 9 – "Transformations" 26

Transformation Pipeline

STEP TWO: orthographic view volume to canonical
view volume

The orthographic view volume is an axis aligned box
𝑙, 𝑟 × 𝑏, 𝑡 × [𝑛, 𝑓]. We want to scale this to a
2 × 2 × 2 box centered around the origin.

Moving the center to the origin:

1 0 0 −
𝑙 + 𝑟

2

0 1 0 −
𝑏 + 𝑡

2

0 0 1 −
𝑛 + 𝑓

2
0 0 0 1

Scaling to [-1,1]:

2

𝑟 − 𝑙
0 0 0

0
2

𝑡 − 𝑏
0 0

0 0
2

𝑛 − 𝑓
0

0 0 0 1

× =

Combined:

2

𝑟 − 𝑙
0 0 −

𝑙 + 𝑟

𝑟 − 𝑙

0
2

𝑡 − 𝑏
0 −

𝑏 + 𝑡

𝑡 − 𝑏

0 0
2

𝑛 − 𝑓
−
𝑛 + 𝑓

𝑛 − 𝑓
0 0 0 1

Perspective

27

INFOGR – Lecture 9 – "Transformations" 27

Transformation Pipeline

STEP TWO: orthographic view volume to canonical view volume

The final transforms for the vertices are thus:

𝑥𝑠𝑐𝑟𝑒𝑒𝑛
𝑦𝑠𝑐𝑟𝑒𝑒𝑛
𝑧𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙

1

= 𝑀𝑣𝑝𝑀𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙

𝑥𝑜𝑟𝑡ℎ𝑜
𝑦𝑜𝑟𝑡ℎ𝑜
𝑧𝑜𝑟𝑡ℎ𝑜
1

Next step: getting from camera space to the orthographic view volume.

Perspective

28

INFOGR – Lecture 9 – "Transformations" 28

Transformation Pipeline

STEP THREE: camera space to orthographic view volume

x

-z
y

y

x
z

Translate:

1 0 0 −𝐸𝑥
0 1 0 −𝐸𝑦
0 0 1 −𝐸𝑧
0 0 0 1

i.e., the inverse of the
camera translation.

Rotate:

We will use the inverse
of the basis defined by
the camera orientation.

E

Perspective

29

INFOGR – Lecture 9 – "Transformations" 29

Transformation Pipeline

STEP THREE: camera space to orthographic view volume

Basis defined by the camera orientation:

z-axis: −𝑉 (convention says we look down –z)

x-axis: −𝑉 × 𝑢𝑝

y-axis: 𝑉 × 𝑥

Matrix:

𝑋𝑥 𝑌𝑥 −𝑉𝑥 0
𝑋𝑦 𝑌𝑦 −𝑉𝑦 0

𝑋𝑧 𝑌𝑧 −𝑉𝑧 0
0 0 0 1

𝑉

𝑢𝑝

 𝑧 𝑦

 𝑥

Inverse:

𝑋𝑥 𝑋𝑦 𝑋𝑧 0

𝑌𝑥 𝑌𝑦 𝑌𝑧 0

−𝑉𝑥 −𝑉𝑦 −𝑉𝑧 0

0 0 0 1

1 0 0 −𝐸𝑥
0 1 0 −𝐸𝑦
0 0 1 −𝐸𝑧
0 0 0 1

= 𝑀𝑐𝑎𝑚𝑒𝑟𝑎×

Perspective

30

INFOGR – Lecture 9 – "Transformations" 30

Transformation Pipeline

STEP THREE: camera space to orthographic view volume

The combined transform so far:

𝑥𝑠𝑐𝑟𝑒𝑒𝑛
𝑦𝑠𝑐𝑟𝑒𝑒𝑛
𝑧𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙

1

= 𝑀𝑣𝑝𝑀𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙𝑀𝑐𝑎𝑚𝑒𝑟𝑎

𝑥𝑤𝑜𝑟𝑙𝑑
𝑦𝑤𝑜𝑟𝑙𝑑
𝑧𝑤𝑜𝑟𝑙𝑑
1

One thing is still missing: perspective.

x

-z
y

𝑧 = 𝑛

𝑧 = 𝑓

x

-z
y

𝑧 = 𝑛 𝑧 = 𝑓

Perspective

31

INFOGR – Lecture 9 – "Transformations" 31

Q: What is perspective?
A: The size of an object on the screen is proportional to 1/𝑧.

More precisely:

𝑦𝑠 =
𝑑

𝑧
𝑦 (and 𝑥𝑠 =

𝑑

𝑧
𝑥)

where 𝑑 is the distance of the view plane to the camera.

Q: How do we capture scaling based on distance in a matrix?
A: …

Dividing by z can’t be done using linear nor affine transforms.

Perspective

32

INFOGR – Lecture 9 – "Transformations" 32

Let’s have a look at homogeneous coordinates again.

Recall:

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

𝑥
𝑦
𝑧

=

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧
𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧
𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧

With homogeneous coordinates, we get:

𝑎1 𝑏1 𝑐1 𝑇𝑥
𝑎2 𝑏2 𝑐2 𝑇𝑦
𝑎3 𝑏3 𝑐3 𝑇𝑧
0 0 0 1

𝑥
𝑦
𝑧
1

=

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 + 𝑇𝑥
𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 + 𝑇𝑦
𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 + 𝑇𝑧

1

=

(𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 + 𝑇𝑥)/1
(𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 + 𝑇𝑦)/1

(𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 + 𝑇𝑧)/1
1

Perspective

33

INFOGR – Lecture 9 – "Transformations" 33

 𝑥
 𝑦
 𝑧
 𝑤

=

𝑎1 𝑏1 𝑐1 𝑇𝑥
𝑎2 𝑏2 𝑐2 𝑇𝑦
𝑎3 𝑏3 𝑐3 𝑇𝑧
𝑎4 𝑏4 𝑐4 𝑤

𝑥
𝑦
𝑧
1

=

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 + 𝑇𝑥
𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 + 𝑇𝑦
𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 + 𝑇𝑧
𝑎4𝑥 + 𝑏4𝑦 + 𝑐4𝑧 + 𝑤

Recall that using homogeneous coordinates 𝑥, 𝑦, 𝑧, 1 represents 𝑥, 𝑦, 𝑧 .

The homogeneous vector (𝑥, 𝑦, 𝑧, 𝑤) represents
𝑥

𝑤
,
𝑦

𝑤
,
𝑧

𝑤
.

The division by 𝑤 is called homogenization.

Notice that this doesn’t change any part of our framework when 𝑤 = 1.

Perspective

34

INFOGR – Lecture 9 – "Transformations" 34

So, multiplying by this matrix

𝑥
𝑦
𝑧
1

×

𝑎1 𝑏1 𝑐1 𝑇𝑥
𝑎2 𝑏2 𝑐2 𝑇𝑦
𝑎3 𝑏3 𝑐3 𝑇𝑧
𝑎4 𝑏4 𝑐4 𝑤

and homogenization, creates this vector:

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 + 𝑇𝑥 / (𝑎4𝑥 + 𝑏4𝑦 + 𝑐4𝑧 + 𝑤)

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 + 𝑇𝑦 / (𝑎4𝑥 + 𝑏4𝑦 + 𝑐4𝑧 + 𝑤)

𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 + 𝑇𝑧 / (𝑎4𝑥 + 𝑏4𝑦 + 𝑐4𝑧 + 𝑤)
1

How do we chose the coefficients of the
matrix so that we get correct perspective
correction?

I.e., something like this:

𝑛𝑥/𝑧
𝑛𝑦/𝑧
𝑧
1

Perspective

35

INFOGR – Lecture 9 – "Transformations" 35

The matrix we are looking for is:

𝑛 0 0 0
0 𝑛 0 0
0 0 𝑛 + 𝑓 −𝑓𝑛
0 0 1 0

Let’s verify.

What happened to 𝑧? 𝑧′ = 𝑛 + 𝑓 −
𝑓𝑛

𝑧

𝑥
𝑦
𝑧
1

=

𝑛𝑥
𝑛𝑦

𝑛 + 𝑓 𝑧 − 𝑓𝑛
𝑧

homogenize

𝑛𝑥/𝑧
𝑛𝑦/𝑧

𝑛 + 𝑓 − 𝑓𝑛/𝑧
1

 𝑧 = 𝑛: 𝑧′ = 𝑛
 𝑧 = 𝑓: 𝑧′ = 𝑓

 All other 𝑧 yield values between 𝑛 and 𝑓 (but: proportional to
1

𝑧
).

Perspective

36

INFOGR – Lecture 9 – "Transformations" 36

Combining with the orthographic projection matrix gives us:

𝑀𝑜𝑟𝑡ℎ𝑜 ×

𝑛 0 0 0
0 𝑛 0 0
0 0 𝑛 + 𝑓 −𝑓𝑛
0 0 1 0

=

2𝑛

𝑟 − 𝑙
0

𝑙 + 𝑟

𝑙 − 𝑟
0

0
2𝑛

𝑡 − 𝑏

𝑏 + 𝑡

𝑏 − 𝑡
0

0 0
𝑛 + 𝑓

𝑛 − 𝑓

2𝑓𝑛

𝑓 − 𝑛
0 0 1 0

Perspective

37

INFOGR – Lecture 9 – "Transformations" 37

Transformation Pipeline

To transform a single world vertex we thus apply:

𝑥𝑠𝑐𝑟𝑒𝑒𝑛
𝑦𝑠𝑐𝑟𝑒𝑒𝑛
𝑧𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙

1

= 𝑀𝑣𝑝𝑀𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑀𝑐𝑎𝑚𝑒𝑟𝑎

𝑥𝑤𝑜𝑟𝑙𝑑
𝑦𝑤𝑜𝑟𝑙𝑑
𝑧𝑤𝑜𝑟𝑙𝑑
1

1. 𝑀𝑐𝑎𝑚𝑒𝑟𝑎: takes us from world space to camera space;
2. 𝑀𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒: from camera space to canonical;
3. 𝑀𝑣𝑝: takes us from canonical to screen space.

𝑀𝑣𝑝 =

𝑛𝑥
2

0

0
𝑛𝑦
2

0
𝑛𝑥
2

0
𝑛𝑦
2

0 0
0 0

1 0
0 1

𝑀𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒

2𝑛

𝑟 − 𝑙
0

𝑙 + 𝑟

𝑙 − 𝑟
0

0
2𝑛

𝑡 − 𝑏

𝑏 + 𝑡

𝑏 − 𝑡
0

0 0
𝑛 + 𝑓

𝑛 − 𝑓

2𝑓𝑛

𝑓 − 𝑛
0 0 1 0

𝑀𝑐𝑎𝑚𝑒𝑟𝑎 =

𝑋𝑥 𝑋𝑦 𝑋𝑧 −𝐸𝑥
𝑌𝑥 𝑌𝑦 𝑌𝑧 −𝐸𝑦
−𝑉𝑥 −𝑉𝑦 −𝑉𝑧 −𝐸𝑧
0 0 0 1

Perspective

38

INFOGR – Lecture 9 – "Transformations" 38

39

Today’s Agenda:

 Affine Transforms

 Projection

 Pipeline Recap

 Rasterization

Scenegraph

world

car

wheel

wheel

wheel

wheel

turret

plane planecar

wheel

wheel

wheel

wheel

turret

buggy

wheel

wheel

wheel

wheel

dude

dudedude

camera

𝑇𝑐𝑎𝑚𝑒𝑟𝑎

𝑇𝑐𝑎𝑟1 𝑇𝑝𝑙𝑎𝑛𝑒1 𝑇𝑐𝑎𝑟2 𝑇𝑝𝑙𝑎𝑛𝑒2

𝑇𝑏𝑢𝑔𝑔𝑦

Pipeline Recap

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

Animation, culling,
tessellation, ...

Postprocessing

40

INFOGR – Lecture 9 – "Transformations" 40

Transformations

World space to screen space:

𝑥𝑠𝑐𝑟𝑒𝑒𝑛
𝑦𝑠𝑐𝑟𝑒𝑒𝑛

𝑧𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙
1

= 𝑀𝑣𝑝𝑀𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑀𝑐𝑎𝑚𝑒𝑟𝑎

𝑥𝑤𝑜𝑟𝑙𝑑
𝑦𝑤𝑜𝑟𝑙𝑑
𝑧𝑤𝑜𝑟𝑙𝑑
1

Object space to world space:

𝑥𝑤𝑜𝑟𝑙𝑑
𝑦𝑤𝑜𝑟𝑙𝑑
𝑧𝑤𝑜𝑟𝑙𝑑
1

= 𝑀𝑙𝑜𝑐𝑎𝑙𝑀𝑝𝑎𝑟𝑒𝑛𝑡

𝑥𝑙𝑜𝑐𝑎𝑙
𝑦𝑙𝑜𝑐𝑎𝑙
𝑧𝑙𝑜𝑐𝑎𝑙
1

In all cases, we construct a single 4 × 4 matrix, which we then
apply to all vertices of a mesh.

Pipeline Recap

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

Animation, culling,
tessellation, ...

Postprocessing

41

INFOGR – Lecture 9 – "Transformations" 41

Transformations

Rendering a scene graph is done using a recursive function:

Here, matrix concatenation is part of the recursive flow.

Pipeline Recap

void SGNode::Render(mat4& M)
{

mat4 M’ = Mlocal * M;
mesh->Rasterize(M’);
for(int i = 0; i < childCount; i++)

child[i]->Render(M’);
};

42

INFOGR – Lecture 9 – "Transformations" 42

Transformations

To transform meshes to world space, we call
SGNode::Render with an identity matrix.

To transform meshes to camera space, we call it
with the inverse transform of the camera.

Remember: the world revolves around the viewer;
instead of turning the viewer, we turn the world in
the opposite direction.

Pipeline Recap

void SGNode::Render(mat4& M)
{

mat4 M’ = Mlocal * M;
mesh->Rasterize(M’);
for(int i = 0; i < childCount; i++)

child[i]->Render(M’);
};

43

INFOGR – Lecture 9 – "Transformations" 43

After projection

The output of the projection stage is a
stream of vertices for which we know 2D
screen positions.

The vertex stream must be combined with
connectivity data to form triangles.

‘Triangles’ on a raster consist of a
collection of pixels, called fragments.

Pipeline Recap

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

connectivity data

44

INFOGR – Lecture 9 – "Transformations" 44

45

Today’s Agenda:

 Affine Transforms

 Projection

 Pipeline Recap

 Rasterization

Connectivity data

Two triangles forming a quad, using four vertices:

Note:

 Connectivity data has no relation to actual vertex
positions.

 Triangles are typically defined in clockwise order
around the triangle normal.

These two notes can be contradictory, but in practice, they
rarely are.

Rasterization

0 1 2

0 1

2 3

1 3 2

46

INFOGR – Lecture 9 – "Transformations" 46

Connectivity data

We can store triangles more efficiently using triangle strips.

Here, the first three vertex indices specify the first triangle.
After that, subsequent triangles use the previous two
indices, plus one extra vertex.

It is rarely possible to define a complete mesh using a single
triangle strip. However, we can generally reduce a mesh to
a small set of strips.

Rasterization

0 1 2

0 1

2 3

3

47

INFOGR – Lecture 9 – "Transformations" 47

Connectivity data

Rasterization

On modern hardware, triangle strips
are rarely used:

 The memory reduction affects only
the connectivity data, which is
small compared to vertex data;

 Multiple strips for a single mesh
may incur significant overhead in
the driver.

48

INFOGR – Lecture 9 – "Transformations" 48

Triangle rasterization

Rasterization

49

INFOGR – Lecture 9 – "Transformations" 49

Triangle rasterization

Rasterizing a triangle, method 1:
(from the book, 8.1.2)

1. Determine the axis-aligned bounding box
of the triangle;

2. For each pixel within this box, determine
whether it is inside the triangle.

Drawback: at least 50% of the pixels will be
rejected.

Rasterization

50

INFOGR – Lecture 9 – "Transformations" 50

Triangle rasterization

Rasterizing a triangle, method 2:
(see e.g. fatmap.txt, fatmap2.txt)

1. Per scanline (within the bounding box),
determine the left and right side of the
triangle;

2. Per scanline, draw a horizontal line from
the left to the right.

Drawback: not as easy to execute in parallel
on GPUs.

Rasterization

51

INFOGR – Lecture 9 – "Transformations" 51

Triangle rasterization

So far, we have seen how to fill a triangle, or more accurately:
how to determine which pixels it overlaps.

To shade the triangle, we need more information.

Per pixel:

 Color (e.g. from a texture);
 Normal;
 Interpolated per-vertex shading information.

Rasterization

52

INFOGR – Lecture 9 – "Transformations" 52

Sanity check

Let’s take a brief moment to meditate on the madness on the
previous slide.

Per pixel:

 Normal

A triangle is defined by three vertices. All points on the
triangle lie in the same plane. Therefore, the normal for each
point on the triangle is the same.

Rasterization

53

INFOGR – Lecture 9 – "Transformations" 53

Sanity check

Normal interpolation can cause some bad
behavior:

Shadows are still cast by the
not-so-smooth geometry.

Rasterization

54

INFOGR – Lecture 9 – "Transformations" 54

Sanity check

Normal interpolation can cause some bad
behavior:

Shadows are still cast by the
not-so-smooth geometry.

Rasterization

55

INFOGR – Lecture 9 – "Transformations" 55

Sanity check

Shading interpolation:

Normal interpolation is costly: a linearly interpolated normal
needs normalization, which involves a square root.

Solution: calculate shading per vertex, and interpolate.

Rasterization

56

INFOGR – Lecture 9 – "Transformations" 56

Sanity check

Shading:

In nature, the color of a surface is the sum of all the light reflected by the
surface towards the camera.

Incoming light:

 Direct light (arriving from light sources);
 Indirect light (arriving via other surfaces).

Incoming light is partially absorbed, partially reflected.
Light is generally not reflected uniformly in all directions.

Rasterization

57

INFOGR – Lecture 9 – "Transformations" 57

Triangle rasterization

Interpolating per-vertex values over a triangle:

Barycentric coordinates.

Any point on the triangle can be parameterized by two values:

𝑃(λ1, λ2) = 𝐴 + λ1 𝐵 − 𝐴 + λ2(𝐶 − 𝐴)

where 0 ≤ λ1, λ2 ≤ 1, and λ1+λ2 ≤ 1.

Or, reversed:

λ1 = 𝑃 ∙ 𝐵 − 𝐴 − 𝑃 ∙ 𝐴
λ2 = 𝑃 ∙ 𝐶 − 𝐴 − 𝑃 ∙ 𝐴

Rasterization

A

B

C

P

58

INFOGR – Lecture 9 – "Transformations" 58

Triangle rasterization

𝑃(λ1, λ2) = 𝐴 + λ1 𝐵 − 𝐴 + λ2(𝐶 − 𝐴)

Given the vertex normals 𝑁𝐴, 𝑁𝐵 and 𝑁𝐶 , we can now calculate the
interpolated per-pixel normal 𝑁𝑃:

𝑁𝑃 = 𝑁𝐴 + λ1 𝑁𝐵 − 𝑁𝐴 + λ2(𝑁𝐶 − 𝑁𝐴)

Remember that an interpolated
normal is typically not normalized.

Rasterization

A

B

C

P

59

INFOGR – Lecture 9 – "Transformations" 59

60

Today’s Agenda:

 Affine Transforms

 Projection

 Pipeline Recap

 Rasterization

INFOGR – Computer Graphics
J. Bikker - April-July 2016 - Lecture 9: "Transformations"

END of "Transformations"
next lecture: “Shading Models”

61

