
INFOGR – Computer Graphics
J. Bikker   - April-July 2016  - Lecture 9: "Transformations"

Welcome!
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Today’s Agenda:

 Affine Transforms

 Projection

 Pipeline Recap

 Rasterization



Spaces – Translation

Translation is not a linear transform.

With linear transforms, we get:

𝑎11 𝑎12
𝑎21 𝑎22

𝑥
𝑦 =

𝑎11𝑥 + 𝑎12𝑦
𝑎21𝑥 + 𝑎22𝑦

But we need something like:

𝑥
𝑦 =

𝑥 + 𝑥𝑡
𝑦 + 𝑦𝑡

We can do this with a combination of linear transformations and 
translations called affine transformations.

Transforms
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Spaces – Translation

Observe: in 2D, shearing “pushes things sideways” (e.g., in 
the 𝑥 direction), in a “fixed level” (the 𝑦 value).

We are thus performing a translation in a 1D subspace (a 
line), using matrix multiplication in 2D.

In 3D, shearing leads to translation in a 2D subspace, i.e. a 
plane.

(𝑥, 𝑦, 0)

(𝑥, 𝑦, 𝑙)

(𝑥 + 𝑥𝑡, 𝑦, 𝑙)

(𝑥 + 𝑥𝑡, 𝑦, 0)

Transforms

𝐴 =
1

2

3

0 1
; 𝐴

𝑥
𝑦 =

𝑥 +
2

3
𝑦

𝑦
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Spaces – Translation

By adding a 3rd dimension to 2D space, we can use matrix 
multiplication to do translation.

𝑀
𝑥
𝑦
𝑧

=
𝑥 + 𝑥𝑡
𝑦 + 𝑦𝑡
𝑧

But: what does matrix 𝑀 look like? What about 𝑥𝑡 and 𝑦𝑡? 
And how do we deal with the third coordinate 𝑧?

Transforms
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Spaces – Translation

Shearing in 3D based on the z coordinate is a simple generalization of 2D 
shearing:

1 0 𝑥𝑡
0 1 𝑦𝑡
0 0 1

𝑥
𝑦
𝑧

=

1𝑥 + 0𝑦 + 𝑥𝑡𝑧
0𝑥 + 1𝑦 + 𝑦𝑡𝑧
0𝑥 + 0𝑦 + 1𝑧

=
𝑥 + 𝑥𝑡𝑧
𝑦 + 𝑦𝑡𝑧

𝑧

The final step is to set z to 1.

1 0 𝑥𝑡
0 1 𝑦𝑡
0 0 1

𝑥
𝑦
1

=
𝑥 + 𝑥𝑡
𝑦 + 𝑦𝑡
1

Transforms
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Spaces – Translation

Translations in 2D can be represented as shearing in 3D by looking at the 
plane 𝑧 = 1.

By representing our 2D points (𝑥, 𝑦) by 3D vectors (𝑥, 𝑦, 1), we can 
translate them about (𝑥𝑡, 𝑦𝑡) by applying the following matrix:

1 0 𝑥𝑡
0 1 𝑦𝑡
0 0 1

𝑥
𝑦
1

=
𝑥 + 𝑥𝑡
𝑦 + 𝑦𝑡
1

That works for points. What about vectors? We use the following transform:

1 0 𝑥𝑡
0 1 𝑦𝑡
0 0 1

𝑥
𝑦
0

=
𝑥
𝑦
0

Transforms
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Spaces – Translation

Affine transformations (i.e., linear transformations and translations) can be 
done with matrix multiplication if we add homogeneous coordinates, i.e.

 A third coordinate 𝑧 = 1 to each point: 𝑝 =
𝑥
𝑦
1

 A third coordinate z = 0 to each vector:  𝑣 =
𝑥
𝑦
0

 A third row (0 0 1) to each matrix.

Transforms
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Spaces – Translation

These concepts apply naturally to 3D, in which case we again add a 
homogeneous coordinate, i.e.

 A fourth coordinate w = 1 to each point;

 A fourth coordinate 𝑤 = 0 to each vector;

 A fourth row (0 0 0 1) to each matrix.

Transforms
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Today’s Agenda:

 Affine Transforms

 Projection

 Pipeline Recap

 Rasterization



Perspective

Projection – Applying matrices, working our way backwards

Goal: create 2D images of 3D scenes

Standard approach: linear perspective (in contrast to e.g. fisheye views)

Parallel 
projection:

Perspective
projection:

11
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Parallel projection:

Maps 3D points to 2D by moving them along a projection direction until 
they hit an image plane.

Perspective projection:

Maps 3D points to 2D by projecting them along lines that pass through a 
single viewpoint until they hit an image plane.

Perspective

12

INFOGR – Lecture 9 – "Transformations" 12



Perspective
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Perspective
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Perspective
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Perspective

16

INFOGR – Lecture 9 – "Transformations" 16



Perspective
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Perspective
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Perspective projection

World space (3D) Screen space (2D)

We get our 3D objects perspective correct on the 2D screen 
by applying a sequence of matrix operations.

Perspective

19
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The camera is defined by:

 Its position E

 The view direction 𝑉
 The image plane (defined by its distance 

𝑑, aspect ratio and the field of view)

The view frustum is the volume visible 
from the camera. It is defined by:

 A near and a far plane 𝑛 and 𝑓;
 A left and a right plane 𝑙 and 𝑟;
 A top and a bottom plane 𝑡 and 𝑏 (in 3D).

y

x
z

FOV

E

𝑉

𝑑

𝑛

𝑓

𝑟

𝑙

The world according to the camera:

Camera space

Perspective
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Camera space: looking down negative 𝑧.

We can now map from (𝑥, 𝑦, 𝑧) to (𝑥𝑠, 𝑦𝑠)
(but this mapping is not trivial)

Projection (and later: clipping) becomes easier 
when we switch to an orthographic view 
volume.

This time the mapping is:
𝑥, 𝑦, 𝑧 → 𝑥, 𝑦 → 𝑥𝑠, 𝑦𝑠 .

Going from camera space to the orthographic 
view volume can be achieved using a matrix 
multiplication. 

x

-z
y

𝑧 = 𝑛

𝑧 = 𝑓

x

-z
y

𝑧 = 𝑛 𝑧 = 𝑓

Perspective
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The final transform is the one that takes us 
from the orthographic view volume to the 
canonical view volume.

Again, this is done using a matrix.

𝑥 = 1

-z

𝑧 = −1 𝑧 = 1

𝑥 = −1

Perspective
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Transformation Pipeline

World space        camera space       orthographic view       canonical view

I             × Mcamera × Mortho × Mcanonical

These can be collapsed into a single 4 × 4 matrix.

Perspective
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Transformation Pipeline

Canonical view  screen

We need one last transform:

From canonical view (-1..1) to 2D 
screen space (𝑁𝑥 × 𝑁𝑦).

Screen space (2D)

Perspective
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Transformation Pipeline

STEP ONE: canonical view to screen space

Vertices in the canonical view are 
orthographically projected on an 𝑛𝑥 × 𝑛𝑦 image.

We need to map the square [-1,1]2 onto a 
rectangle 0, 𝑛𝑥 × [0, 𝑛𝑦]. Matrix:

𝑛𝑥
2

0
𝑛𝑥
2

0
𝑛𝑦
2

𝑛𝑦
2

0 0 1

This is assuming we already threw away 𝑧 to get 
an orthographic projection. We will however 
combine all matrices in the end, so we actually 
need a 4 × 4 matrix:

𝑀𝑣𝑝 =

𝑛𝑥
2

0

0
𝑛𝑦
2

0
𝑛𝑥
2

0
𝑛𝑦
2

0 0
0 0

1 0
0 1

Perspective
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Transformation Pipeline

STEP ONE: canonical view to screen space

We now know the final transform for the vertices:

𝑥𝑠𝑐𝑟𝑒𝑒𝑛
𝑦𝑠𝑐𝑟𝑒𝑒𝑛
𝑧𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙

1

= 𝑀𝑣𝑝

𝑥𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙
𝑦𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙
𝑧𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙

1

Next step: getting from the orthographic view 
volume to the canonical view volume.

Perspective
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Transformation Pipeline

STEP TWO: orthographic view volume to canonical 
view volume

The orthographic view volume is an axis aligned box 
𝑙, 𝑟 × 𝑏, 𝑡 × [𝑛, 𝑓]. We want to scale this to a 
2 × 2 × 2 box centered around the origin.

Moving the center to the origin:

1 0 0 −
𝑙 + 𝑟

2

0 1 0 −
𝑏 + 𝑡

2

0 0 1 −
𝑛 + 𝑓

2
0 0 0 1

Scaling to [-1,1]:

2

𝑟 − 𝑙
0 0 0

0
2

𝑡 − 𝑏
0 0

0 0
2

𝑛 − 𝑓
0

0 0 0 1

× =

Combined:

2

𝑟 − 𝑙
0 0 −

𝑙 + 𝑟

𝑟 − 𝑙

0
2

𝑡 − 𝑏
0 −

𝑏 + 𝑡

𝑡 − 𝑏

0 0
2

𝑛 − 𝑓
−
𝑛 + 𝑓

𝑛 − 𝑓
0 0 0 1

Perspective
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Transformation Pipeline

STEP TWO: orthographic view volume to canonical view volume

The final transforms for the vertices are thus:

𝑥𝑠𝑐𝑟𝑒𝑒𝑛
𝑦𝑠𝑐𝑟𝑒𝑒𝑛
𝑧𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙

1

= 𝑀𝑣𝑝𝑀𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙

𝑥𝑜𝑟𝑡ℎ𝑜
𝑦𝑜𝑟𝑡ℎ𝑜
𝑧𝑜𝑟𝑡ℎ𝑜
1

Next step: getting from camera space to the orthographic view volume.

Perspective
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Transformation Pipeline

STEP THREE: camera space to orthographic view volume

x

-z
y

y

x
z

Translate:

1 0 0 −𝐸𝑥
0 1 0 −𝐸𝑦
0 0 1 −𝐸𝑧
0 0 0 1

i.e., the inverse of the 
camera translation.

Rotate:

We will use the inverse 
of the basis defined by 
the camera orientation.

E

Perspective
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Transformation Pipeline

STEP THREE: camera space to orthographic view volume

Basis defined by the camera orientation:

z-axis:  −𝑉 (convention says we look down –z)

x-axis: −𝑉 × 𝑢𝑝

y-axis: 𝑉 ×  𝑥

Matrix:

𝑋𝑥 𝑌𝑥 −𝑉𝑥 0
𝑋𝑦 𝑌𝑦 −𝑉𝑦 0

𝑋𝑧 𝑌𝑧 −𝑉𝑧 0
0 0 0 1

𝑉

𝑢𝑝

 𝑧  𝑦

 𝑥

Inverse:

𝑋𝑥 𝑋𝑦 𝑋𝑧 0

𝑌𝑥 𝑌𝑦 𝑌𝑧 0

−𝑉𝑥 −𝑉𝑦 −𝑉𝑧 0

0 0 0 1

1 0 0 −𝐸𝑥
0 1 0 −𝐸𝑦
0 0 1 −𝐸𝑧
0 0 0 1

= 𝑀𝑐𝑎𝑚𝑒𝑟𝑎×

Perspective
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Transformation Pipeline

STEP THREE: camera space to orthographic view volume

The combined transform so far:

𝑥𝑠𝑐𝑟𝑒𝑒𝑛
𝑦𝑠𝑐𝑟𝑒𝑒𝑛
𝑧𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙

1

= 𝑀𝑣𝑝𝑀𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙𝑀𝑐𝑎𝑚𝑒𝑟𝑎

𝑥𝑤𝑜𝑟𝑙𝑑
𝑦𝑤𝑜𝑟𝑙𝑑
𝑧𝑤𝑜𝑟𝑙𝑑
1

One thing is still missing: perspective.

x

-z
y

𝑧 = 𝑛

𝑧 = 𝑓

x

-z
y

𝑧 = 𝑛 𝑧 = 𝑓

Perspective
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Q: What is perspective?
A: The size of an object on the screen is proportional to 1/𝑧.

More precisely:

𝑦𝑠 =
𝑑

𝑧
𝑦 (and 𝑥𝑠 =

𝑑

𝑧
𝑥 )

where 𝑑 is the distance of the view plane to the camera.

Q: How do we capture scaling based on distance in a matrix?
A: …

Dividing by z can’t be done using linear nor affine transforms.

Perspective
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Let’s have a look at homogeneous coordinates again.

Recall:

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

𝑥
𝑦
𝑧

=

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧
𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧
𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧

With homogeneous coordinates, we get:

𝑎1 𝑏1 𝑐1 𝑇𝑥
𝑎2 𝑏2 𝑐2 𝑇𝑦
𝑎3 𝑏3 𝑐3 𝑇𝑧
0 0 0 1

𝑥
𝑦
𝑧
1

=

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 + 𝑇𝑥
𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 + 𝑇𝑦
𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 + 𝑇𝑧

1

=     

(𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 + 𝑇𝑥)/1
(𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 + 𝑇𝑦)/1

(𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 + 𝑇𝑧)/1
1

Perspective
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 𝑥
 𝑦
 𝑧
 𝑤

=

𝑎1 𝑏1 𝑐1 𝑇𝑥
𝑎2 𝑏2 𝑐2 𝑇𝑦
𝑎3 𝑏3 𝑐3 𝑇𝑧
𝑎4 𝑏4 𝑐4 𝑤

𝑥
𝑦
𝑧
1

=

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 + 𝑇𝑥
𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 + 𝑇𝑦
𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 + 𝑇𝑧
𝑎4𝑥 + 𝑏4𝑦 + 𝑐4𝑧 + 𝑤

Recall that using homogeneous coordinates 𝑥, 𝑦, 𝑧, 1 represents 𝑥, 𝑦, 𝑧 .

The homogeneous vector (𝑥, 𝑦, 𝑧, 𝑤) represents 
𝑥

𝑤
,
𝑦

𝑤
,
𝑧

𝑤
.

The division by 𝑤 is called homogenization.

Notice that this doesn’t change any part of our framework when 𝑤 = 1.

Perspective

34

INFOGR – Lecture 9 – "Transformations" 34



So, multiplying by this matrix

𝑥
𝑦
𝑧
1

×

𝑎1 𝑏1 𝑐1 𝑇𝑥
𝑎2 𝑏2 𝑐2 𝑇𝑦
𝑎3 𝑏3 𝑐3 𝑇𝑧
𝑎4 𝑏4 𝑐4 𝑤

and homogenization, creates this vector:

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 + 𝑇𝑥 / (𝑎4𝑥 + 𝑏4𝑦 + 𝑐4𝑧 + 𝑤)

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 + 𝑇𝑦 / (𝑎4𝑥 + 𝑏4𝑦 + 𝑐4𝑧 + 𝑤)

𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 + 𝑇𝑧 / (𝑎4𝑥 + 𝑏4𝑦 + 𝑐4𝑧 + 𝑤)
1

How do we chose the coefficients of the 
matrix so that we get correct perspective 
correction?

I.e., something like this:

𝑛𝑥/𝑧
𝑛𝑦/𝑧
𝑧
1

Perspective
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The matrix we are looking for is:

𝑛 0 0 0
0 𝑛 0 0
0 0 𝑛 + 𝑓 −𝑓𝑛
0 0 1 0

Let’s verify.

What happened to 𝑧?    𝑧′ = 𝑛 + 𝑓 −
𝑓𝑛

𝑧

𝑥
𝑦
𝑧
1

=

𝑛𝑥
𝑛𝑦

𝑛 + 𝑓 𝑧 − 𝑓𝑛
𝑧

homogenize

𝑛𝑥/𝑧
𝑛𝑦/𝑧

𝑛 + 𝑓 − 𝑓𝑛/𝑧
1

 𝑧 = 𝑛:   𝑧′ = 𝑛
 𝑧 = 𝑓: 𝑧′ = 𝑓

 All other 𝑧 yield values between 𝑛 and 𝑓 (but: proportional to 
1

𝑧
).

Perspective
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Combining with the orthographic projection matrix gives us:

𝑀𝑜𝑟𝑡ℎ𝑜 ×

𝑛 0 0 0
0 𝑛 0 0
0 0 𝑛 + 𝑓 −𝑓𝑛
0 0 1 0

=

2𝑛

𝑟 − 𝑙
0

𝑙 + 𝑟

𝑙 − 𝑟
0

0
2𝑛

𝑡 − 𝑏

𝑏 + 𝑡

𝑏 − 𝑡
0

0 0
𝑛 + 𝑓

𝑛 − 𝑓

2𝑓𝑛

𝑓 − 𝑛
0 0 1 0

Perspective
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Transformation Pipeline

To transform a single world vertex we thus apply:

𝑥𝑠𝑐𝑟𝑒𝑒𝑛
𝑦𝑠𝑐𝑟𝑒𝑒𝑛
𝑧𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙

1

= 𝑀𝑣𝑝𝑀𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑀𝑐𝑎𝑚𝑒𝑟𝑎

𝑥𝑤𝑜𝑟𝑙𝑑
𝑦𝑤𝑜𝑟𝑙𝑑
𝑧𝑤𝑜𝑟𝑙𝑑
1

1. 𝑀𝑐𝑎𝑚𝑒𝑟𝑎: takes us from world space to camera space;
2. 𝑀𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒: from camera space to canonical;
3. 𝑀𝑣𝑝: takes us from canonical to screen space.

𝑀𝑣𝑝 =

𝑛𝑥
2

0

0
𝑛𝑦
2

0
𝑛𝑥
2

0
𝑛𝑦
2

0 0
0 0

1 0
0 1

𝑀𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒

2𝑛

𝑟 − 𝑙
0

𝑙 + 𝑟

𝑙 − 𝑟
0

0
2𝑛

𝑡 − 𝑏

𝑏 + 𝑡

𝑏 − 𝑡
0

0 0
𝑛 + 𝑓

𝑛 − 𝑓

2𝑓𝑛

𝑓 − 𝑛
0 0 1 0

𝑀𝑐𝑎𝑚𝑒𝑟𝑎 =

𝑋𝑥 𝑋𝑦 𝑋𝑧 −𝐸𝑥
𝑌𝑥 𝑌𝑦 𝑌𝑧 −𝐸𝑦
−𝑉𝑥 −𝑉𝑦 −𝑉𝑧 −𝐸𝑧
0 0 0 1

Perspective
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39

Today’s Agenda:

 Affine Transforms

 Projection

 Pipeline Recap

 Rasterization



Scenegraph

world

car

wheel

wheel

wheel

wheel

turret

plane planecar

wheel

wheel

wheel

wheel

turret

buggy

wheel

wheel

wheel

wheel

dude

dudedude

camera

𝑇𝑐𝑎𝑚𝑒𝑟𝑎

𝑇𝑐𝑎𝑟1 𝑇𝑝𝑙𝑎𝑛𝑒1 𝑇𝑐𝑎𝑟2 𝑇𝑝𝑙𝑎𝑛𝑒2

𝑇𝑏𝑢𝑔𝑔𝑦

Pipeline Recap

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

Animation, culling, 
tessellation, ...

Postprocessing
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Transformations

World space to screen space:

𝑥𝑠𝑐𝑟𝑒𝑒𝑛
𝑦𝑠𝑐𝑟𝑒𝑒𝑛

𝑧𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙
1

= 𝑀𝑣𝑝𝑀𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑀𝑐𝑎𝑚𝑒𝑟𝑎

𝑥𝑤𝑜𝑟𝑙𝑑
𝑦𝑤𝑜𝑟𝑙𝑑
𝑧𝑤𝑜𝑟𝑙𝑑
1

Object space to world space:

𝑥𝑤𝑜𝑟𝑙𝑑
𝑦𝑤𝑜𝑟𝑙𝑑
𝑧𝑤𝑜𝑟𝑙𝑑
1

= 𝑀𝑙𝑜𝑐𝑎𝑙𝑀𝑝𝑎𝑟𝑒𝑛𝑡

𝑥𝑙𝑜𝑐𝑎𝑙
𝑦𝑙𝑜𝑐𝑎𝑙
𝑧𝑙𝑜𝑐𝑎𝑙
1

In all cases, we construct a single 4 × 4 matrix, which we then 
apply to all vertices of a mesh.

Pipeline Recap

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

Animation, culling, 
tessellation, ...

Postprocessing
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Transformations

Rendering a scene graph is done using a recursive function:

Here, matrix concatenation is part of the recursive flow.

Pipeline Recap

void SGNode::Render( mat4& M )
{

mat4 M’ = Mlocal * M;
mesh->Rasterize( M’ );
for( int i = 0; i < childCount; i++ )

child[i]->Render( M’ );
};
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Transformations

To transform meshes to world space, we call 
SGNode::Render with an identity matrix.

To transform meshes to camera space, we call it 
with the inverse  transform of the camera.

Remember: the world revolves around the viewer; 
instead of turning the viewer, we turn the world in 
the opposite direction.

Pipeline Recap

void SGNode::Render( mat4& M )
{

mat4 M’ = Mlocal * M;
mesh->Rasterize( M’ );
for( int i = 0; i < childCount; i++ )

child[i]->Render( M’ );
};
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After projection

The output of the projection stage is a 
stream of vertices for which we know 2D 
screen positions.

The vertex stream must be combined with 
connectivity data to form triangles.

‘Triangles’ on a raster consist of a
collection of pixels, called fragments.

Pipeline Recap

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

connectivity data
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Today’s Agenda:

 Affine Transforms

 Projection

 Pipeline Recap

 Rasterization



Connectivity data

Two triangles forming a quad, using four vertices:

Note:

 Connectivity data has no relation to actual vertex 
positions.

 Triangles are typically defined in clockwise order 
around the triangle normal.

These two notes can be contradictory, but in practice, they 
rarely are.

Rasterization

0 1 2

0 1

2 3

1 3 2
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Connectivity data

We can store triangles more efficiently using triangle strips.

Here, the first three vertex indices specify the first triangle. 
After that, subsequent triangles use the previous two 
indices, plus one extra vertex.

It is rarely possible to define a complete mesh using a single 
triangle strip. However, we can generally reduce a mesh to 
a small set of strips.

Rasterization

0 1 2

0 1

2 3

3

47

INFOGR – Lecture 9 – "Transformations" 47



Connectivity data

Rasterization

On modern hardware, triangle strips 
are rarely used:

 The memory reduction affects only 
the connectivity data, which is 
small compared to vertex data;

 Multiple strips for a single mesh 
may incur significant overhead in 
the driver.
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Triangle rasterization

Rasterization
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Triangle rasterization

Rasterizing a triangle, method 1:
(from the book, 8.1.2)

1. Determine the axis-aligned bounding box 
of the triangle;

2. For each pixel within this box, determine 
whether it is inside the triangle.

Drawback: at least 50% of the pixels will be 
rejected.

Rasterization
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Triangle rasterization

Rasterizing a triangle, method 2:
(see e.g. fatmap.txt, fatmap2.txt)

1. Per scanline (within the bounding box), 
determine the left and right side of the 
triangle;

2. Per scanline, draw a horizontal line from 
the left to the right.

Drawback: not as easy to execute in parallel 
on GPUs.

Rasterization

51

INFOGR – Lecture 9 – "Transformations" 51



Triangle rasterization

So far, we have seen how to fill a triangle, or more accurately:  
how to determine which pixels it overlaps.

To shade the triangle, we need more information.

Per pixel:

 Color (e.g. from a texture);
 Normal;
 Interpolated per-vertex shading information.

Rasterization
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Sanity check

Let’s take a brief moment to meditate on the madness on the 
previous slide.

Per pixel:

 Normal

A triangle is defined by three vertices. All points on the 
triangle lie in the same plane. Therefore, the normal for each 
point on the triangle is the same.

Rasterization
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Sanity check

Normal interpolation can cause some bad 
behavior:

Shadows are still cast by the 
not-so-smooth geometry.

Rasterization
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Sanity check

Normal interpolation can cause some bad 
behavior:

Shadows are still cast by the 
not-so-smooth geometry.

Rasterization
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Sanity check

Shading interpolation:

Normal interpolation is costly: a linearly interpolated normal 
needs normalization, which involves a square root.

Solution: calculate shading per vertex, and interpolate.

Rasterization
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Sanity check

Shading:

In nature, the color of a surface is the sum of all the light reflected by the 
surface towards the camera.

Incoming light:

 Direct light (arriving from light sources);
 Indirect light (arriving via other surfaces).

Incoming light is partially absorbed, partially reflected.
Light is generally not reflected uniformly in all directions.

Rasterization
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Triangle rasterization

Interpolating per-vertex values over a triangle: 

Barycentric coordinates.

Any point on the triangle can be parameterized by two values:

𝑃(λ1, λ2) = 𝐴 + λ1 𝐵 − 𝐴 + λ2(𝐶 − 𝐴)

where 0 ≤ λ1, λ2 ≤ 1, and λ1+λ2 ≤ 1.

Or, reversed:

λ1 = 𝑃 ∙ 𝐵 − 𝐴 − 𝑃 ∙ 𝐴
λ2 = 𝑃 ∙ 𝐶 − 𝐴 − 𝑃 ∙ 𝐴

Rasterization

A

B

C

P
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Triangle rasterization

𝑃(λ1, λ2) = 𝐴 + λ1 𝐵 − 𝐴 + λ2(𝐶 − 𝐴)

Given the vertex normals 𝑁𝐴, 𝑁𝐵 and 𝑁𝐶 , we can now calculate the 
interpolated per-pixel normal 𝑁𝑃:

𝑁𝑃 = 𝑁𝐴 + λ1 𝑁𝐵 − 𝑁𝐴 + λ2(𝑁𝐶 − 𝑁𝐴)

Remember that an interpolated 
normal is typically not normalized.

Rasterization

A

B

C

P
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Today’s Agenda:

 Affine Transforms

 Projection

 Pipeline Recap

 Rasterization



INFOGR – Computer Graphics
J. Bikker   - April-July 2016  - Lecture 9: "Transformations"

END of "Transformations"
next lecture: “Shading Models”
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