
Exercises

Exercise 1
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1f) A linear combination is a new vector made from other vectors, we can

choose whatever lambdas we want. λ1 = λ2 = λ3 = 1
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Exercise 2

~a =

1
5
4

 ,~b =

 2
−5
1

 ,~c =

1
2
1


2a

~a+~b =

1
5
4

+

 2
−5
1

 =

3
0
5


2b

|~a| =
√

1 + 52 + 42 =
√

1 + 25 + 16 =
√

42

2c

~u = 1√
42

1
5
4


2d

~a ·~b = 1 · 2 + 5 · −5 + 4 · 1 = 2− 25 + 4 = −19
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2e

The cross product can be skipped, but for whoever cares, we are going to use
a method that looks like calculating the determinant. With i, j and k being
unit vectors along the x, y and z-axis. i 1 1

j 5 2
k 4 1

⇒ i = 5 · 1− 4 · 2, j = 4 · 1− 1 · 1, k = 1 · 2− 5 · 1

Cross product:

−3
3
−3


Fun fact, the cross product of two vectors a normal vector for both lines.

2f

We create a normalized vector from~b, and multiply this by 2. |~b| =
√

4 + 25 + 1 =

√
30⇒ ~p = 2√

30

 2
−5
1


2g

A 3 dimensional vector has an infinite amount of normal vectors, in this case
we can just choose one. 2

−5
1

 · ~n = 0 ⇒ 2a − 5b + c = 0, neem a = 1, b = 1, c = 3.

1
1
3

 is a

normal vector. Note that this equation has a freedom of the second degree,
which means that two variables of a, b and c can be freely chosen while the
last is calculated.

2h

Remember the funfact given in 2e? We use that here.

~b× ~c =

−7
−1
9


But if you do not want to use the cross-product....

Using the property of the dot-product.

 2
−5
1

 · ~n = 0 and

1
2
1

 · ~n = 0,

2n1 − 5n2 + n3 = 0 (1)
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n1 + 2n2 + n3 = 0 (2)

Thanks to the linear property of these equations we can subtract the second
equation twice from the first equation. And we get:

−9n2 − n3 = 0⇔ n3 = −9n2

Substitute n3 in equation 1 and 2.

2n1 − 5n2 − 9n2 = 2n1 − 14n2 = 0 (3)

n1 + 2n2 − 9n2 = n1 − 7n2 = 0 (4)

We can see that n1 = 7n2. Now we choose n2 = −1, n1 = 7n2 = −7 and

n3 = −9n2 = 9. So our normal vector is

−7
−1
9


Exercise 3

The dot product of a vector with itself is the magnitude squared

Exercise 4

In this exercise we use the property of the dot product: ~a ·~b = |~a| · |~b| ·cos(α).

Due to ~a and ~b being unit vectors, their length is 1. The property becomes,
~a ·~b = cos(α)

4a

~a ·~b = cos(π
2
) = cos(3π

2
) = 0, this means that vectors are perpendicular.

4b

We know that the cosine is smaller than 0 when the radius is larger than 90
degrees.

4c

~a ·~b = cos(0) = cos(2π) = 1, so the angle is 0 degrees.
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Exercise 5

5a

It’s not 1 or -1, since both vectors can not be parallel. Assuming the vectors
are unit vectors.

5b

It’s 1 because ~b is a unit vector, since an orthonormal basis is made out set
of vectors that are all perpendicular to each other (orthogonal) and where
each vector is a unit vector.

5c

~b = 1
2

(
−
√

2√
2

)
, or ~b = 1

2

( √
2

−
√

2

)
5d

~b = 1
2

(
−
√

2√
2

)
λ1 · 12

(√
2√
2

)
+ λ2 · 12

(
−
√

2√
2

)
=

(
1
2

)
, λ1 = 3√

2
, λ2 = − 1√

2

Exercise 6

6a

f(x) = 2
5
x+ 6

5

6b

f(−3) = 0, f(2) = 2

6c

2
5
x− y = −6

5
⇔ 2x− 5y + 6 = 0

6d(
x
y

)
=

(
5
2

)
λ1 +

(
2
2

)
2 normals,

(
2
−5

)
and

(
−2
5

)
.
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6e

There is no relation, C only moves the line around but does not change
direction.

Exercise 7

This exercise is simply the definition of the dot product; hence left out of the
solution.

Exercise 8

Parametric:

(
x
y

)
=

(
a
b

)
λ+

(
c
d

)
or more general: ~P = ~rλ+ ~r0

Slope-intersect: y = mx+ c
Implicit: Ax+By + C = 0

Exercise 9

We can solve this following how it was done in class. Alternatively, we can
do it as follows.

We start by taking a few definitions. First consider a line for which b 6= 0,
i.e., the line is not parallel to the y-axis. Then define a small number ε > 0,
and take point P = (x, y) for which ax+ by + c = 0. Also, b can not be 0.

For the positive half we take a new point P+ = (x, y + ε) and show that
this is larger than 0.

f(x, y + ε) = ax+ b(y + ε) + c = ax+ by + c+ bε > ax+ by + c = 0

Therefore, for a point p in the positive half, f(xp, yp) > 0.
We do the same for the point in the negative half, we take point P−(x, y−

ε) and show that this is less than 0.

f(x, y + ε) = ax+ b(y − ε) + c = ax+ by + c− bε < ax+ by + c = 0

Therefore, for a point P− in the negative half, f(xp, yp) < 0.
The above method does not work if b = 0. However, note that b = 0

corresponds to the line being parallel to the y-axis. In that case on the right
of the line f(x, y) > 0 and on the left it is < 0.

In other words, the line f(x, y) = 0 divides the two-dimensional plane in
two parts. In one of them f(x, y) > 0, and in the other f(x, y) < 0.
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Exercise 10

Note that here we do not use unit vectors for the parametric equations for
the lines.

10a

Finding A′, we create a parametric line from P to A.(
5
5

)
+

((
3
1

)
−
(

5
5

))
λ1 =

(
5
5

)
+

(
−2
−4

)
λ1 (5)

We use equation 5 to find a point A′ on the x-axis and we know that A′ =
(xa, 0). (

5
5

)
+

(
−2
−4

)
λ1 =

(
xa
0

)
We find that λ1 = 5

4
, and therefore xa = 5− 2 · 5

4
= 5

2
. So A′ = (5

2
, 0)

Same for B′. The parametric line from P to B.(
5
5

)
+

((
6
3

)
−
(

5
5

))
λ2 =

(
5
5

)
+

(
1
−2

)
λ2 (6)

We use equation 6 to find a point B′ on the x-axis and we know that B′ =
(xb, 0). (

5
5

)
+

(
1
−2

)
λ2 =

(
xb
0

)
We find that λ2 = 2

5
, and therefore xa = 5 + 1 · 2

5
= 27

5
. So B′ = (27

5
, 0).

10b

Since point Q is depending on t, we need to express point Q as a function of
t.
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We make a line from A to B.(
3
1

)
+

((
6
3

)
−
(

3
1

))
λ =

(
3
1

)
+

(
3
2

)
λ

To find point Q we normalize the direction vector in equation so that we
can use constant t instead of the λ. Point Q will then be placed at:(

x
y

)
=

(
3
1

)
+

1√
13

(
3
2

)
t

Now that we found point Q, we need to find point Q′ on the x-axis. We
do this in the same way as in 10a, we construct the line from P to Q in a
parametric form and use that to calculate where point Q′ is.

(
5
5

)
+

((
3
1

)
+

1√
13

(
3
2

)
t−
(

5
5

))
λ =

(
5
5

)
+

(
1√
13

(
3
2

)
t−
(

2
4

))
λ (7)

Since we know that Q′ = (xq, 0), we can use equation 7 to solve xq.(
5
5

)
+

(
1√
13

(
3
2

)
t−
(

2
4

))
λ =

(
xq
0

)
We find that λ =

−5
2t√
13
− 4

, and therefore xq = 5 +
(

3t√
13
− 2
)
·
(

−5
2t√
13
−4

)
.

In conclusion, we can express the length of l as a function of t:

l = 5 +

(
3t√
13
− 2

)
·

(
−5

2t√
13
− 4

)
− 5

2
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