Exercises

Exercise 1
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2+ ) =2((§> + <(1)>) =2 @ - @

1f) A linear combination is a new vector made from other vectors, we can
choose whatever lambdas we want. \{ = \a = A3 =1
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Exercise 2

1 . 2 1
a=|5|,b=|-5],c=12
4 1 1

2a
1 2 3
a+b=|5]+[-5]=1(0
4 1 5

2b

2c

1
-1
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2d

G-b=1-245--5+4-1=2-254+4=—19



2e

The cross product can be skipped, but for whoever cares, we are going to use
a method that looks like calculating the determinant. With i, j and k being
unit vectors along the x, y and z-axis.

1 1 1
J 5 2l =>i=5-1-4-27=4-1-1-1,k=1-2-5-1
E 4 1
-3
Cross product: | 3
-3

Fun fact, the cross product of two vectors a normal vector for both lines.

2f
We create a normalized vector from b, and multiply this by 2. \5] =V4+25+1=
2
/a0 2
2g

A 3 dimensional vector has an infinite amount of normal vectors, in this case
we can just choose one.

2 1
5]l - mn=0=2a—5b+c=0,neema=1,b=1,c=3. |1] isa
1 3

normal vector. Note that this equation has a freedom of the second degree,
which means that two variables of a, b and ¢ can be freely chosen while the
last is calculated.

2h
Remember the funfact given in 2e? We use that here.
-7
bxé= -1
9
But if you do not want to use the cross-product....
2 1
Using the property of the dot-product. | =5 | -i=0and [2| -7 =0,
1 1
2711 —5n2—|—n3 =0 (].)



n1+2n2+n320 (2)

Thanks to the linear property of these equations we can subtract the second
equation twice from the first equation. And we get:
—Ing —n3 =0 n3 = —9ny

Substitute ng in equation 1 and 2.

2711 — 5”2 — 9TL2 = 2711 — 14712 =0 (3)

n1+2n2—9n2:n1—7n2:0 (4)

We can see that n; = 7ny. Now we choose ny, = —1, ny = 7Tny = —7 and
—7
nz = —9ny = 9. So our normal vector is | —1
9

Exercise 3

The dot product of a vector with itself is the magnitude squared

Exercise 4

In this exercise we use the property of the dot product: @-b = |a- [b] - cos(a).
Due to a and b being unit vectors, their length is 1. The property becomes,
a-b=cos(a)

4a

3T

i b= cos(3) = cos(5) = 0, this means that vectors are perpendicular.

4b

We know that the cosine is smaller than 0 when the radius is larger than 90
degrees.

4c

@- b= cos(0) = cos(27) = 1, so the angle is 0 degrees.



Exercise 5

5a

It’s not 1 or -1, since both vectors can not be parallel. Assuming the vectors
are unit vectors.

5b

It’s 1 because b is a unit vector, since an orthonormal basis is made out set
of vectors that are all perpendicular to each other (orthogonal) and where
each vector is a unit vector.
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x 5 2
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6e

There is no relation, C only moves the line around but does not change
direction.

Exercise 7

This exercise is simply the definition of the dot product; hence left out of the
solution.

Exercise 8

Parametric: (z) = (Z) A+ <2) or more general: P =P+,

Slope-intersect: y = mx + ¢
Implicit: Ax+ By+C =0

Exercise 9

We can solve this following how it was done in class. Alternatively, we can
do it as follows.

We start by taking a few definitions. First consider a line for which b # 0,
i.e.; the line is not parallel to the y-axis. Then define a small number € > 0,
and take point P = (x,y) for which az + by + ¢ = 0. Also, b can not be 0.

For the positive half we take a new point Py = (z,y + €) and show that
this is larger than 0.

flz,y+e)=ar+bly+e)+c=ar+by+c+be>ar+by+c=0

Therefore, for a point p in the positive half, f(z,,y,) > 0.
We do the same for the point in the negative half, we take point P_(z,y—
¢) and show that this is less than 0.

flz,y+e)=ar+bly—€e)+c=ar+by+c—be<ar+by+c=0

Therefore, for a point P_ in the negative half, f(z,,y,) < 0.

The above method does not work if b = 0. However, note that b = 0
corresponds to the line being parallel to the y-axis. In that case on the right
of the line f(z,y) > 0 and on the left it is < 0.

In other words, the line f(x,y) = 0 divides the two-dimensional plane in
two parts. In one of them f(z,y) > 0, and in the other f(x,y) < 0.
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Exercise 10
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Note that here we do not use unit vectors for the parametric equations for
the lines.

10a

Finding A’, we create a parametric line from P to A.

B Q-GG )

We use equation 5 to find a point A’ on the x-axis and we know that A’ =

e

We find that A\; = 2, and therefore 2, =5—2-2 =3 So 4’ = (2,0)
Same for B’. The parametric line from P to B.

) 6 ) ) 1
6+ (G)-6)=-6) () @
We use equation 6 to find a point B’ on the x-axis and we know that B’ =
(.27[,, O)
5 1 o Tp
(5) = (%)= (0)
We find that Ay = 2, and therefore z, =5+ 1-2 = 2L, So B’ = (2,0).

10b

Since point () is depending on ¢, we need to express point () as a function of
t.



We make a line from A to B.

(1) (6)-()=()+6)

To find point ) we normalize the direction vector in equation so that we
can use constant ¢ instead of the A. Point () will then be placed at:

()= () 7 ()

Now that we found point @), we need to find point @)’ on the x-axis. We
do this in the same way as in 10a, we construct the line from P to Q in a
parametric form and use that to calculate where point @' is.

6 ()5 6)-6)= () (s 6) - () o

Since we know that ' = (x,,0), we can use equation 7 to solve z,.

5 1 3 2 e
() ()= ()= ()
_ —9 _ 3t . -5
We find that A = —; , and therefore z, = 5 + iE = |-
Y

In conclusion, we can express the length of [ as a function of ¢:

3t =5 5
=5+ (———-2) [—-]-2
<\/13 ) (2—%—4> 2
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