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May 15, 2017

Exercise 1

1a

(x− 5)2 + (y − 1)2 = r2 = 42 = 16

1b

y = 1 + r · sin θ, x = 5 + r · cos θ

1c

(1 + 4 sin π
4 , 5 + 4 cos π4 ) = (1 + 4

√
2, 5 + 4

√
2). The radial unit vector is then:(

1√
2
1√
2

)

1d

(1 + 4 sin 3π
4 , 5 + 4 cos 3π

4 ) = (1 + 4
√

2, 5− 4
√

2). The radial unit vector is then:(
1√
2

− 1√
2

)

Exercise 2

2a

xp =
√

2 cos θ1 +

√√
2− 1√
2 + 1

yp =
√

2 sin θ1 +
√

2

xq =
√

2 cos θ2 +

√√
2− 1√
2 + 1

yq =
√

2 sin θ2 +
√

2

1



2b

To find the tangent of point P, we need to take the normal of the line CP , where
C is the centre. The direction vector of this line is:(√

2 cos θ1 +
√√

2−1√
2+1√

2 sin θ1 +
√

2

)
−

(√√
2−1√
2+1√
2

)
=

(√
2 cos θ1√
2 sin θ1

)
The unit normal of this line: (

sin θ1
− cos θ1

)
So the tangent of point P is then:(√

2 cos θ1 +
√√

2−1√
2+1√

2 sin θ1 +
√

2

)
+

(
sin θ1
− cos θ1

)
λ,

In the same way, we find that the unit normal for point CQ is:(
sin θ2
− cos θ2

)
And the tanget: (√

2 cos θ2 +
√√

2−1√
2+1√

2 sin θ2 +
√

2

)
+

(
sin θ2
− cos θ2

)
λ

For specific values of θ1 and θ2. and correspondingly, of λ (you can calculate
these using trigonometry as discussed in mathematics lecture 1), the lines OP
and OQ are going to be tangents to the circle at P and at Q respectively. Note
here the advantage of using unit tangent vectors: then |λ| is simply the length
of the lines OP and OQ. In other words, the part of the circle that the eye is
able to see is confined between P and Q.

Exercise 3

3a

We have two points that we can see as vectors, we create a vector from one

to the other.

2
2
5

 −
−4

1
1

 =

6
1
4

 We can now calculate the length of this

vector.
√

62 + 12 + 42 =
√

53 = 7.28

3b

~p(t) =

−4
1
1

+

6
1
4

λ
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3c−1
6
0

 (swapping x/-y, zeroing z) and

−4
0
6

 (swapping x/-z, zeroing y)

3d

Unlimited, they lie on planes perpendicular to this straight line.

3e

Plane:

−1
6
0

λ1 +

−4
0
6

λ2 + ~c.

For the implicit form we can use: 6x+ 1y + 4z + d = 0

Exercise 4

4a

The line vector


6
1
4
−2

 Two normals


−1
6
0
0

 (swapping x/-y, zeroing y and z)

and


0
0
2
4

 (swapping z/-w, zeroing x and y).

4b

Unlimited, in a sphere of radius 1 around the 4D line.

Exercise 5

5a

The plane is perpendicular to the x-axis; so all vectors on this plane has to
have zero x-components. Two linearly independent vectors on a plane with

x = 1:

0
9
1

 and

 0
1
42

. [Any two vectors with zero x-components that are not

(anti-)parallel to each other will do.]

5b

We could calculate the cross product of the two vectors we just found, but

we don’t have to since we simply have

1
0
0

 pointing to the x-direction; i.e.,

perpendicular to the plane.
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5c

The closest distance from point P (5, 1, 1) to the plane is via the normal vector
of said plane. We can see this distance is 4 but we will show how to calculate it
anyway.

We need to find a point P ′ on the plane that is closest to P . We do this by
finding the intersection of point P to the plane. We can find this intersection
by:

PT +

1
0
0

λ =

5
1
1

+

1
0
0

λ =

1
0
0

+

0
9
1

λ1 +

 0
1
42

λ2

We get three equations:
5 + λ = 1

1 = 9λ1 + λ2

1 = λ1 + 42λ2

Solving these equations we find that λ = −4, λ2 = 8
377 and λ1 = 369

377 . Only λ is
important now.

Since we found for what λ the intersection exists, we can use the direction
vector multiplied with λ to find the length.∣∣∣∣∣∣−4 ·

1
0
0

∣∣∣∣∣∣ =
√

(−4)2 + 02 + 02 = 4

5d

There are infinite planes with distance 0 to the origin, it’s all the planes rotating
around the x-axis.

Exercise 6

6a

The first vector to create a plane: ~p1−~p2 =

0
7
6

−
8

0
8

 =

−8
7
−2

. The second

vector to create a plane ~p1 − ~p3 =

0
7
6

 −
12

10
0

 =

−12
−3
6

. This makes the

parametric equation:xy
z

 =

0
7
6

+

−8
7
−2

λ1 +

−12
−3
6

λ2

By varying λ1 and λ2 we can find all points on the plane.
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6b

We can use a normal vector from the plane to find the implicit equation. So let
s find the normal vector of this plane.

A normal vector should be perpendicular on both directional vectors in the
plane. By using the dot product we get two equations,

−8
7
−2

 · ~n = −8n1 + 7n2 − 2n3 = 0 (1)

−12
−3
6

 · ~n = −12n1 − 3n2 + 6n3 = 0 (2)

We can use the linear property of these equations to make a new equation
with one variable less. We add three of equation 1 to equation 2 to create a new
equation.

−36n1 + 18n2 = 0⇔ n2 = 2n1 (3)

Putting this in equation 1, we get:

−8n1 + 14n1 − 2n3 = 6n1 − 2n3 = 0⇔ n3 = 3n1 (4)

Let’s choose n1 = 1, then it follows that n2 = 2 and n3 = 3.
Now that we have a normal vector, the implicit equation of the plane has a

form of:
1x+ 2y + 3z = C

to find C, we fill in a point on the plane. Let’s take p1. We get:

1x+ 2y + 3z = 1 · 0 + 2 · 7 + 3 · 6 = 32

6c

To verify if the points are indeed on the plane, we fill in the points coordinates
in the equation and check if this equals 32. We already did this for point p1.
For p2: 1 · 8 + 2 · 0 + 3 · 8 = 32 and for p3: 1 · 12 + 2 · 10 + 3 · 0 = 32.

6d

Look at exercise 6b.

Exercise 7

7a

Parametric equation of l1xy
z

 =

0
7
6

+

0
7
6

−
8

0
8

λ =

0
7
6

+

−8
7
−2

λ
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7b

Parametric equation of l2xy
z

 =

0
7
6

+

0
7
6

−
12

10
0

λ =

0
7
6

+

−12
−3
6

λ

7c

The intersection point of l1 and l2 is point p1. Due to the fact they both lines
start from the same point. This is also the only intersection point because they
are lines that are not parallel to each other. If the lines were parallel then there
would be an infinite intersection points.

Exercise 8

8a

To display the xworld on xscreen, we need to translate the xw to the right, and
then scale it. We could it as a line from −2 to 2 along the x-axis. This line
needs to be moved and scaled to span the line from 0 to 1023. xscreen = (2 +
xworld) · 10234 .

We do the same for yworld to be displayed on yscreen. Except this time we
mirror it along the x-axis. So that the positive part of the y-axis is down, and
the negative is up. yscreen = −(−1.5 + yworld) · 7673 .

8b

Let:

f

(
xworld

yworld

)
=

(
xscreen
yscreen

)
=

(
(2 + xworld) · 10234
−(−1.5 + yworld) · 7673

)
We can fill the four points into function f .

Top left:

f

(
−2
1.5

)
=

(
(2− 2) · 10234

−(−1.5 + 1.5) · 7673

)
=

(
0
0

)
Top right:

f

(
2

1.5

)
=

(
(2 + 2) · 10234

−(−1.5 + 1.5) · 7673

)
=

(
1023

0

)
Bottom right:

f

(
2
−1.5

)
=

(
(2 + 2) · 10234

−(−1.5− 1.5) · 7673

)
=

(
1023
767

)
Bottom left:

f

(
−2
−1.5

)
=

(
(2− 2) · 10234

−(−1.5− 1.5) · 7673

)
=

(
0

767

)
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8c

World origin (0, 0) should appear on the middle on the screen.

f

(
0
0

)
=

(
(2 + 0) · 10234
−(−1.5 + 0) · 7673

)
=

(
511.5
383.5

)
Which is the center of the screen.

8d

xscreen = (x1 + xworld) · W

x2 − x1

yscreen = −(−y1 + yworld) · H

y2 − y1

8e

We have a width W . We shorten this to world coordinates. So W
x2−x1

and divide

this by W to get the width of a pixel in world coordinates. Width is 1
x2−x1

The same goes for the height of a pixel. The height is 1
y2−y1 .

8f

Suppose we have a given screen aspect ratio r. Since then x
r = y:

xscreen = (x1 + xworld) · W

x2 − x1

yscreen = −(−x1
r

+ yworld) · rH

x2 − x1

8g

xscreen = (x1 + xworld)
W

x2 − x1
⇔ xscreen ·

x2 − x1
W

− x1 = xworld

yscreen = −(−x1
r

+ yworld) · rH

x2 − x1
⇔ −yscreen ·

x2 − x1
rH

+
x1
r

= yworld
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