
	
Tutorial	Sheet	5	-	Matrices	and	Transformations	
	

Tutorial 5 - Matrices and transformations

	

Basics	

In	the	following,	we	want	to	look	into	the	steps	of	the	graphics	pipeline	dealing	with	perspective	
projection,	i.e.	the	matrix	multiplications	that	transform	our	3D	models	and	vectors	into	the	2D	
representations	that	are	shown	on	the	computer	screen.	Chapter	7	of	the	book	and	the	slides	from	the	
lecture	describe	the	individual	steps	involved	in	this	process.	It	will	be	handy	if	you	have	those	around	
while	doing	the	following	exercises.	Let's	start	by	taking	a	closer	look	into	some	of	the	individual	steps	
involved.	

Exercise	1.	

Our	3D	models	and	scenes	are	usually	expressed	in	world	coordinates:	that	is,	with	respect	to	a	general	
coordinate	system	(usually	a	Cartesian	coordinate	system).	In	these	world	coordinates,	the	location	and	
orientation	of	our	camera	can	be	described	by	the	eye	position	𝐸	specifying	the	camera's	location	and	
the	view	vector	𝑉	specifying	the	direction	in	which	our	camera	is	looking.	To	project	the	3D	scene	
towards	our	camera,	it	would	be	much	easier	if	the	origin	was	placed	at	the	position	of	the	eye	and	the	
z-axis	was	pointing	in	the	viewing	direction	(or	negative	viewing	direction).	We	can	do	that	by	moving	
from	world	coordinates	to	camera	coordinates	where	our	3D	models	and	vectors	are	expressed	with	
respect	to	a	coordinate	system	centered	at	the	eye	vector,	and	the	axes	are	aligned	with	the	viewing	
window	and	view	vector.	

Let’s	look	at	a	simple	example	in	2D	to	understand	the	difference	between	“expressed	in	world	
coordinates”	versus	“expressed	in	camera	coordinates”.	Assume	a	2D	world	coordinate	system	with	
base	vectors	𝑏1	=	(1, 0)	and	𝑏2	=	(0, 1),	and	a	camera	placed	at	position	𝐸	=	(2,	1),	looking	in	direction	
𝑉=(!

!
2, !
!
2).	Notice	that	the	view	vector	is	already	a	unit	vector,	so	𝑢 = 𝑉	and	𝑣 = (− !

!
2, !
!
2)	

gives	us	a	camera	coordinate	system.	

a) Draw	an	image	of	this	scene	including	a	point	𝑃	=	(3, 1)	expressed	in	world	coordinates.	
b) If	a	point	𝑃	is	expressed	with	respect	to	a	particular	coordinate	system,	e.g.	the	world	coordinates	

given	by	𝑏1,𝑏2	,	we	can	denote	this	by	𝑃xy.	Likewise,	if	this	point	is	
expressed	in	camera	coordinates,	we	denote	it	𝑃uv.	
Write	down	the	general	form	of	a	point	𝑃xy	in	world	coordinates	(i.e.,	
write	down	𝑃xy	as	a	linear	combination	of	the	base	vectors	𝑏1	and	𝑏2).	
Write	down	the	general	form	of	a	point	𝑃uv	in	camera	coordinates	(i.e.,	
write	down	𝑃uv	as	a	linear	combination	of	the	base	vectors	𝑢	and	𝑣).	
Note:	you	don’t	have	to	fill	in	and	calculate	the	actual	numbers	yet.	
	
	

	

𝑃!" = 𝑃!𝑏!!!!⃗ + 𝑃!𝑏!!!!⃗ 	 	
𝑃!" = 𝑃!𝑢!⃗ + 𝑃!�⃗�				
or:		
𝑃!" = 𝐸 + 𝑃!𝑢!⃗ + 𝑃!�⃗�,		
but	we	will	ignore	the	
translate	for	now.	

	
Tutorial	Sheet	5	-	Matrices	and	Transformations	
	

c) We	can	transform	between	these	two	coordinate	systems	using	
matrix	multiplication.	The	procedure	is	the	same	as	in	the	case	of	
rotation	around	an	arbitrary	vector	that	we	discussed	in	the	
lecture	about	transformations.		
Give	the	matrix	that	transforms	a	point	given	in	camera	
coordinates	into	one	given	in	world	coordinates,	i.e.	a	matrix	𝑀	
with	𝑃xy	=	𝑀	𝑃uv.		
Give	the	matrix	that	transforms	a	point	given	in	world	coordinates	
into	one	given	in	camera	coordinates,	i.e.	a	matrix	𝑀	with	𝑃uv	=	𝑀	𝑃xy.	

d) Fill	in	the	actual	numbers	and	
express	the	point	𝑃xy	=	(3, 1)	in	
camera	coordinates.	

	

Exercise	2.	

In	the	simple	2D	example	in	the	previous	exercise	it	was	easy	to	create	the	base	vectors	for	the	camera	
coordinate	system.	For	3D,	this	process	is	a	little	more	complicated	because	we	need	three	base	vectors,	
but	we	only	have	one	(the	view	vector)	to	do	this.	Fortunately,	we	already	saw	how	to	generate	an	
orthonormal	basis	given	a	single	vector	when	we	talked	about	transformation	matrices	for	rotation	
around	an	arbitrary	vector	in	3D.	

a) For	the	rotation	around	an	arbitrary	vector	in	
3D,	we	used	a	non-parallel	random	vector	to	
create	our	coordinate	system	using	the	cross	
product.	Here,	we	introduced	a	so-called	view	
up	vector	𝑢𝑝.	How	is	that	vector	specified,	
and	why	do	we	need	it	(i.e.	why	can’t	we	just	
take	a	random	vector	like	before)?	

b) One	of	the	axis	of	our	camera	coordinate	system	will	be	a	normalized	version	of	either	the	view	
vector	or	the	negative	view	vector.	It	depends	of	course	if	we	want	to	get	a	left	or	right	handed	one.	
How	can	we,	for	example,	create	a	right	handed	one	using	the	view	up	vector	and	the	negative	view	
vector?	
	

	 	

Camera	matrix:	𝑀 = !
!
!√2 − !

!√2
!
!√2

!
!√2

!	

Inverse	camera	matrix	:	𝑀′ = 𝑀!! =

𝑀! = !
!
!√2

!
!√2

− !
!√2

!
!√2

!	

𝑃 = 𝑀′𝑃!" = !

1
2√2

1
2√2

−
1
2√

2
1
2√

2
! !31! =

!

1
2√2 ∗ 3 +

1
2√2 ∗ 1

−
1
2√

2 ∗ 3 +
1
2√

2 ∗ 1
! = !2√2

−√2
!.	

For	rotation	in	3D,	it	didn't	matter	how	we	mapped	the	coordinate	
systems	to	each	other.	Here,	it	does	matter.	We	want	to	map	the	
world	to	camera	coordinates	in	a	way	that	two	axes	are	parallel	to	
the	width	and	height,	respectively,	of	the	viewing	plane	and	the	third	
one	is	orthogonal	to	it.	This	is	achieved	by	using	the	up	vector	
instead	of	a	random	one.	The	up	vector	is	defined	as	a	vector	in	the	
plane	bisecting	the	viewer's	head	into	left	and	right	halves	and	
"pointing	to	the	sky".	

If	we	are	using	the	negative	view	vector,	our	camera	points	in	negative	Z-direction.	We	get	the	first	other	axis	using	the	
cross	product	of	the	up	vector	with	the	view	vector.	Building	the	cross	product	of	the	resulting	vector	with	the	view	vector	
gives	us	the	3rd	axis	of	our	camera	coordinate	system.	But	how	can	we	control	if	we	end	up	with	a	left	or	right	handed	
one?	It	depends	on	the	order	in	which	we	multiply	the	vectors	in	the	cross	product,	since	�⃗�×𝑏!⃗ = −𝑏!⃗ ×�⃗�.	

	
Tutorial	Sheet	5	-	Matrices	and	Transformations	
	

Exercise	3.	

The	following	matrix	𝑀orth	maps	the	orthographic	view	volume	to	the	canonical	view	volume:	

𝑀orth	=	

!!
!!!

0 !!!
!!!

0

0 !!
!!!

!!!
!!!

0

0 0 !!!
!!!

!!"
!!!

0 0 1 0

	

a) How	is	the	orthographic	view	volume	defined?		
b) How	is	the	canonical	view	volume	defined?	
c) Show	that	the	above	matrix	takes	the	corners	of	the	

orthographic	view	volume	to	the	corners	of	the	canonical	
view	volume.	
	
	
	
	

Exercise	4.	

Similarly	to	when	we	introduced	homogeneous	coordinates	in	order	to	be	able	to	do	affine	
transformations,	we	had	to	further	extend	our	matrix	framework	to	enable	us	to	do	projective	
transformations.	

a) Why?	
b) For	a	4×4	matrix	whose	top	three	rows	are	

arbitrary	and	whose	bottom	row	is	(0,0,0,1),	
show	that	points	(𝑥, 𝑦, 𝑧, 1)	and	(ℎ𝑥, ℎ𝑦, ℎ𝑧, ℎ)	
transform	to	the	same	point	after	
homogenization	(for	ℎ ≠ 0).	

c) Given	our	extended	framework,	the	original	𝑧-coordinate	is	mapped	to	a	value		𝑧s	=	𝑛 + 𝑓 −
!"
!

 .	
Show	algebraically	that	the	perspective	matrix	preserves	the	order	of	𝑧	values	within	the	view	
volume.	

a)	The	orthographic	view	volume	is	an	axis	parallel	
box	defined	by	its	enclosing	planes	[𝑙, 𝑟]×[𝑏, 𝑡]×
[𝑓, 𝑛]	(see	book,	page	144-145).	
b)	The	canonical	view	volume	is	the	cube	containing	
all	3D	points	whose	Cartesian	coordinates	are	
between	-1	and	+1	(see	book,	page	143).	

c)	To	prove	this,	we	first	have	to	specify	the	corners	of	the	two	volumes.	E.g.,	for	the	orthographic	view	volume,	
one	of	them	is	(r,	t,	n)	(which	represents	the	corner	on	the	right	and	top	on	the	near	plane).	The	corresponding	
corner	on	the	canonical	view	volume	is	(1,	1,	1).	Multiplying	(r,	t,	n)	with	the	given	matrix	shows	that	it	does	
indeed	realize	this	mapping.	

a)	Because	we	need	to	be	able	to	map	a	coordinate	to	a	new	
value	that	is	created	by	dividing	through	the	value	of	another	

coordinate	(e.g.	for	the	x-coordinate:	𝑥! =
!"
!
)	which	can't	be	

done	with	matrix	multiplication.shows	that	it	does	indeed	
realize	this	mapping.	

b)	To	prove	this,	we	basically	just	have	to	write	down	the	matrices	(with	generic	values	for	the	arbitrary	rows)	and	
do	the	related	arithmetic	operations	to	see	that	it	does	indeed	come	to	the	same	result.		
Alternatively	(and	with	less	writing)	you	could	show	this	using	distributivity	of	scalar	multiplication.	Let	𝑀	be	a	
4×4	matrix	as	described,	then	we	have	𝑀(𝑥 ,𝑦, 𝑧, 1) = (𝑥! , 𝑦! , 𝑧!, 1).	Then,	𝑀(ℎ𝑥, ℎ𝑦, ℎ𝑧, ℎ) = ℎ𝑀(𝑥, 𝑦, 𝑧, 1) =
ℎ(𝑥!, 𝑦!, 𝑧!, 1) = (ℎ𝑥! , ℎ𝑦!, ℎ𝑧! , ℎ).	We	see	that	after	homogenization	they	both	map	to	(x’,y’,z’).	

c)	see	slides.	

	
Tutorial	Sheet	5	-	Matrices	and	Transformations	
	

	

Now	that	we	have	a	better	understanding	of	some	of	the	steps	involved,	let's	go	through	the	whole	
process	of	projecting	a	3D	model	onto	our	2D	screen	with	a	concrete	example.	Notice	that	the	following	
requires	some	calculations	that	are	not	as	“smooth”	and	easy	as	the	ones	we	usually	have.	If	you	really	
want	to	calculate	all	these	matrices	(and	although	we	will	give	you	“nicer”	ones	in	the	exam	it	is	
recommended	to	do	so),	you	can	of	course	use	a	calculator	here	(but	not	in	the	exam	where,	as	said,	we	
try	to	make	the	numbers	easier	to	calculate).	

Exercise	5.	

Let's	assume	that	our	model	has	an	object	centered	at	the	point	(7, 16, 18).	Now,	instead	of	looking	at	it	
from	the	origin,	we	want	to	look	at	it	from	behind	and	above,	so	we	place	the	origin	of	our	camera	at	

(10, 20, 30).	What	is	the	view	vector	𝑉	we	should	specify	so	that	the	object	is	centered	in	the	image?	

	

Exercise	6.	

For	our	camera	in	the	previous	problem,	we	specify	an	up	vector	𝑢𝑝	of	(0, 1, 0).	We	are	going	to	do	
projection	in	the	way	it	is	explained	in	Chapter	7	of	the	textbook	and	the	related	lecture.	Explain	how	we	
compute	the	matrix	𝑀cam	that	does	the	transformation	from	world	space	to	camera	space.	If	you	want	
to	compute	the	actual	numbers,	beware	that	they	are	not	really	nice	(they	contain	fractions	and	square	
roots),	so	calculating	may	take	a	while.	But	as	said,	it	is	instructional	to	do	such	calculations	at	least	

once.	

The	view	vector	is	the	vector	specifying	the	looking	direction.	In	this	case,	it	is	𝑉!⃗ = (3,4,12).	

First,	we	need	to	construct	an	orthonormal	basis	(𝑢!⃗ , �⃗�,𝑤!!⃗)	for	the	camera.	Here,	𝑤!!⃗ 	is	simply	the	normalized	opposite	
view	vector	(note	that	we	look	into	the	negative	𝑤!!⃗ -direction),	so	𝑤!!⃗ = −𝑉!⃗ /|!𝑉!⃗ !|.	Filling	in	the	numbers	gives	𝑤!!⃗ =
(3/13,4/13,12/13).	The	vector	𝑢!⃗ 	is	perpendicular	to	the	plane	spanned	by	𝑤!!⃗ 	and	the	up	vector.	So	we	take	the	cross	
product	of	these	two	vectors,	and	normalize:	𝑢!⃗ = 𝑢𝑝!!!!⃗ ×𝑤!!⃗ /(||𝑢𝑝!!!!⃗ ×𝑤!!⃗ ||). 	In	our	concrete	case	we	get:	𝑢!⃗ = ! !

√!"
, 0, !!

√!"
!.	

Finally,	�⃗�	is	perpendicular	to	𝑤!!⃗ 	and	𝑢!⃗ ,	so	�⃗� = 𝑤!!⃗ ×𝑢!⃗ .	In	our	case,	this	gives	�⃗� = (!!
!"√!"

, !"
!"√!"

, !!"
!"√!"

).	
We	find	the	matrix	𝑀!"#	by	first	translating	over	(−𝑥! ,−𝑦! ,−𝑧!),	and	next	multiplying	by	the	matrix	where	the	rows	
are	formed	by	𝑢!⃗ ,	�⃗�,	and	𝑤!!⃗ 	(completed	with	zeros	and	ones	in	the	appropriate	places).	The	latter	matrix	aligns	the	
camera	coordinate	system	with	the	global	world	coordinate	system.	If	you	work	out	the	numbers,	you	should	end	up	
with	the	matrix:	

⎝

⎜⎜
⎛

!
√!"

0 !!
√!"

!!"
√!"

!!
!"√!"

!"
!"√!"

!!"
!"√!"

!!""
!"√!"

!
!"

!
!"

!"
!"

!!"#
!"

0 0 0 1 ⎠

⎟⎟
⎞
.	

	
Tutorial	Sheet	5	-	Matrices	and	Transformations	
	

	

Exercise	7.	
Our	camera	hasn't	been	completely	specified	yet.	Amongst	other	things,	we	need	to	set	the	near	and	far	
plane	distances.	Let's	set	them	at	𝑛 = −1	and	𝑓 = −100,	respectively	(recall	that	we	view	along	the	
negative	𝑧-axis).	What	is	the	matrix	𝑃	that	does	the	perspective	transform,	given	these	values?	(Note	

that	in	this	case,	the	numbers	are	much	nicer.)	

Exercise	8.	

The	final	matrix	that	we	need	to	construct	is	𝑀orth,	the	one	that	takes	care	of	the	orthographic	
projection.	Let's	specify	an	image	where	width	times	height	is	1024×768,	and	the	left,	right,	top	and	

bottom	plane	parameters	are	−4, 4, 4,	and	−3,	respectively.	Determine	𝑀orth,	given	these	parameters.	

Exercise	9.	

If	you	dare,	compute	the	full	matrix	𝑀	=	𝑀orth	𝑃	𝑀cam	(or,	if	you	use	the	notation	from	the	2nd	edition	of	
the	book:	𝑀	=	𝑀o𝑀p𝑀v).	Onto	which	pixel	is	the	point	(7, 16, 18)	projected?	Recall	that	we	wanted	it	to	
be	centered	in	the	image.	

	

	

The End
(for	now)	

This	matrix	can	be	found	in	the	lecture	slides,	and	in	the	textbook	on	page	152.	Filling	in	the	numbers	is	left	as	an	
exercise	for	the	reader.	

See	exercise	3.	You	can	also	find	it	in	the	slides,	and	in	the	textbook	on	page	145.	
Completing	the	answer	is	a	matter	of	filling	in	the	numbers	and	doing	the	matrix	multiplications.	Notice	however,	that	
you	are	strongly	advised	to	not	just	copy	the	formulas	and	fill	in	the	numbers,	but	to	make	sure	you	understand	how	we	
got	to	this	matrix	in	the	first	place!	

Anyone	brave	enough	to	compute	all	matrix	multiplications	such	that	the	resulting	matrix	maps	the	point	(7,16,18)	onto	
the	center	of	the	image	deserves	the	utmost	respect.	I	didn't	do	it	myself;	the	result	is	not	very	important,	but	
understanding	the	whole	procedure	is.	

